Peace Parkland Native Grassland Stewardship Program 2001/02

Alberta Species at Risk Report No. 49
Peace Parkland Native Grassland Stewardship Program 2001/02

Annette Baker

Alberta Species at Risk Report No. 49

2002

Project Partners
Cover Photograph: Native Grassland east of Grande Prairie by Annette Baker

For copies of this report, contact:

Information Centre – Publications
Alberta Environment / Alberta Sustainable Resource Development
Main Floor, Great West Life Building
9920 108 Street
Edmonton, Alberta, Canada T5K 2M4
Telephone: (780) 422-2079

OR

Visit our web site at:
http://www3.gov.ab.ca/srd/fw/riskspecies/

This publication may be cited as:

DISCLAIMER

The views and opinions expressed are those of the author and do not necessarily represent the policies or positions of the Department or the Alberta Government.
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 Goals and Objectives ... 2

2.0 STUDY AREA ... 3

2.1 General Description ... 3

2.2 Pilot Area for Method Comparison ... 3

2.3 Vegetation .. 4

3.0 METHODS ... 5

3.1 Identifying Native Grasslands .. 5

3.2 Field Inventory and Mapping .. 5

3.2.1 Vegetation Inventory ... 6

3.2.2 Range Health ... 6

3.2.3 Butterflies ... 6

3.2.4 Rare Plants ... 6

3.2.5 Mapping ... 7

3.3 Stewardship ... 7

4.0 RESULTS .. 8

4.1 Location of Native Grassland Remnants ... 8

4.2 Area of Native Grassland Remnants .. 8

4.3 Vegetation Inventory ... 8

4.4 Range Health ... 9

4.5 Butterflies ... 9

4.6 Rare Plants .. 9

4.7 Stewardship .. 9

4.8 Mapping and Data Storage .. 10

5.0 DISCUSSION AND FUTURE DIRECTIONS .. 11

6.0 LITERATURE CITED .. 13

APPENDIX A .. 15

APPENDIX B .. 20
LIST OF FIGURES

Figure 1. Northwest region of Alberta - Study and pilot areas of the Peace Native Grasslands Program, 2001. .. 3

LIST OF TABLES

Table 1. Area (ha, %) and number (#, %) of upland native grassland remnants in each size category within the studied areas of Grande Prairie and Fairview, 2001 (n=43) ... 8
ACKNOWLEDGEMENTS

To the landowners who gave access to their native grassland remnants, thank-you for the stewardship you already do, and for sharing these special sites with us. Darcy Meyers, Alberta Conservation Association, willingly assisted with fieldwork, data entry and anything else that was required, thank-you. Bonnie Hood, Resource Information Unit, Land and Forest Service, your professionalism, patience and attention to detail produced a quality of mapping that surpassed expectation. Anne Holcroft-Weerstra, Biota Consultants, without your expertise in air-photo interpretation this project would not have had a life beyond the first year.

This project was a combined effort of many individuals and organisations giving of their time, experience and enthusiasm in big, small and overlapping ways. Thanks to Ed Kolodychuk and Adam James for having the vision to start the program, and for helping out with subsequent project decisions, along with Carcey Rowand, Colin Stone, Margot Hervieux, Reg Arbuckle, Ron Bennett, and Tara Szkorupa. Bruce Sanders of Lands and Forest Service provided the use of air-photographs for interpretation. Brendan Kowalenko, Cameron Broatch, Chantel Winnicky, John Hallett, Mark Feldberg, Rene Labbe, Reg Arbuckle and Sheila Rangen helped with fieldwork. For botanical help, especially rare plants, thanks to Graham Griffiths, Joyce Gould, Ksenija Vujnovic, Lorna Allen, Patricia McIsaac and Sue Peters. Kim Banman and John Hallett checked data.

In 2001/02, funding was secured through the Government of Canada Habitat Stewardship Program for Species at Risk, the Alberta Government’s Species at Risk program, and the Alberta Conservation Association. Support through in-kind contributions also came from Alberta Conservation Association, Alberta Fish and Wildlife Division, Alberta Lands and Forest Division, Alberta Public Lands Division, Ducks Unlimited Canada, and Peace Parkland Naturalists Club.

Note:

Common plant names are from “Alberta Plants and fungi – Master species list and species group checklists” (Alberta Environmental Protection, 1993).

Butterfly names are from “Butterflies of Canada” (Layberry et al, 1998)
EXECUTIVE SUMMARY

Historically, native grasslands were extensive and contiguous throughout the Peace Parkland of northwest Alberta. Land development has fragmented the landscape since 1900 and less than 0.5% of the original area of upland native grassland now remains. Land managers, researchers, writers and decision makers, often overlook these grasslands and there is little information on the location, area and state of remnants.

Native grasslands provide many benefits, including habitat for plant and animal species. In particular, a number of butterfly species with disjunct populations are found in the native grasslands of the Peace and they may be at risk from habitat disturbance and further habitat fragmentation.

A pilot project was initiated in 2001 to locate, inventory and map remaining native grasslands in two areas around Grande Prairie and Fairview. Air-photo interpretation provided the best means of locating small remnants and fieldwork included inventory of plant and butterfly species as well as assessment of range health. Remnants were mapped using Global Positioning Systems (GPS) and Geographical Information Systems (GIS) technology, which provided an electronic dataset, useful for planning.

As a result of the first year of this project, the documented area of native grasslands in the Peace River region has more than tripled. Conservation efforts should target the medium (10.1-30 ha) and large (30.1-65.0 ha) remnants first, as collectively they contribute the greatest area (87%), and should be easier to manage and maintain at a self-functioning size. The smaller remnants, which are the majority of sites, offer management challenges, which will require unique strategies to maintain them in their natural state.

In the future we will apply proven techniques of locating remnants from the pilot project to the entire white (settled) zone of the Northwest region. Continued work to further understand the relationship between butterflies and the native grassland on which they live, will be important to fill the current knowledge gaps that exist. The discovery of many new sites indicated that there is a need to work with landowners to conserve and maintain native grasslands that remain in the Peace Parkland region. Conservation of the sites through stewardship will become the primary means of protecting remnant native grasslands of the Peace Parkland region.
1.0 INTRODUCTION

Grasslands, which were once extensive and contiguous throughout the Peace River region, are now confined to small, scattered remnants in the uplands, and larger areas on south and west facing slopes of the Peace River and its tributaries (Alberta Environmental Protection 1997). Based on early survey data from Bezanson (1907), Kelly (1910), Macoun (1904), Mair (1908), and Wright (1930), cited in Wilkinson (1981), native grasslands covered an estimated 435,264 to 1,128,935 hectares in the Grande Prairie, Spirit River and Peace River areas. Less than a century later, the author estimates that less than 0.5% of the historical area of upland native grassland remains in the Peace River region.

Native grasslands were utilised for hay and pasture for cattle and horses as early as the late 1800s in the Spirit River area (Leonard 2000). The openess and rich soils under the grasslands ensured that these were the first areas to be cultivated when settlers arrived in the region in the early 1900s to homestead and establish widespread agriculture in the north (Leonard 2000). Towns and settlements scattered throughout the northwest testify to the importance of these open grasslands (prairies) through their names (e.g. Grande Prairie, High Prairie, Big Prairie, Salt Prairie, Paddle Prairie, John D’or Prairie, Buffalo Head Prairie, Wilson Prairie, Savage Prairie, Clear Prairie, Little Prairie, Prairie Echo, and Prairie Point).

The wide-scale loss of native grassland can be attributed to the expansion of cultivation and grazing, urbanisation, industrial development, encroachment of forests and shrub lands, and competition with non-native species (from tame pastures and invasive weeds). These factors have impacted all parkland areas of Alberta. However, the Peace River Parkland has undergone the most extensive alteration of all Alberta’s parklands and fragmentation is recognised as the most serious threat to biological diversity within the region (Alberta Environmental Protection 1997).

Native grasslands are home to a diverse and interdependent mix of insects, birds, plants and mammals. The grasslands of the Peace River Parkland support a number of disjunct plant species (Alberta Environmental Protection 1997). Important relationships also exist between native grasslands and butterflies. For example, the larvae of the plains skipper (*Hesperia comma assiniboia*), Alberta arctic (*Oeneis alberta*) and Uhler’s Arctic (*Oeneis uhleri varuna*) feed predominantly on native grasses and have disjunct populations in the Peace River area (Hervieux 2002). Native grasslands also provide habitat for vulnerable plant species like the leather grape fern (*Botrychium multifidum*; general status May be at Risk). Maintaining and conserving grasslands has the potential to conserve multiple species associated with or dependant upon these areas.

There has been little opportunity to study the grasslands of northern Alberta, and they are often overlooked in reference material and maps. The lack of information about native grasslands in the uplands of the Peace Parkland has also precluded their inclusion in recent descriptions and management recommendations of grasslands found in the Peace River Parkland, and these recommendations are restricted to the plant communities found
on the river slopes; e.g. “Guide to using native plants in Reclamation” (Gerling et al. 1999), and “Range Health Assessment” (Adams et al. 2000).

This project was initiated to increase knowledge about the Peace native grasslands. In particular, managers required information on the amount, location and condition of remnant patches, as well as the conservation threats and land use pressures. Using current Global Positioning System (GPS) and Geographical Information System (GIS) technology, conservation planning can be quickly visualised through the expediency and accuracy of spatially mapped information. This basic information will help to focus and coordinate the stewardship and conservation of native grasslands in the Peace region. In addition, data from the study of these remnants can be used by government, conservation organizations, reclamation industry and landowners for developing recommendations for management of these areas.

1.1 Goals and Objectives

The goal of the Peace Native Grassland Program was to identify and conserve native grassland remnants in the Northwest region. Specific objectives included, to:

1. Identify native grassland remnants by compiling existing information and identifying undocumented sites;
2. Inventory sites, collect vegetation information, and assess range health;
3. Document the presence of butterflies associated with native grassland habitats in association with the Peace Parkland Butterfly Survey.
4. Map remnants spatially, for use in GIS; and
5. Use information collected to direct stewardship activities:
 a) Inform landowners of the conservation value of their property;
 b) Provide information on the unique characteristics of native grasslands;
 c) Provide information on the economic and social benefits of maintaining sites; and
 d) Encourage landowners to participate in conservation easements, management agreements, land acquisition and other stewardship options to maintain areas.
2.0 STUDY AREA

2.1 General Description

The Northwest administrative region for Alberta Conservation Association (ACA) and Alberta Sustainable Resource Development covers 229,215 km sq, which is 34% of the provincial land base (Alberta Environment 2001). The region is divided into two land management zones: the White (settled) zone, primarily held under private ownership with some crown grazing leases, mineral leases and protected areas, and the Green (forestry) zone, primarily public land and, apart from some protected areas, is mainly used for logging, grazing and oil and gas operations. A variety of recreational activities also occur throughout the area.

This study considered all native grasslands throughout the region, but concentrated on the White zone as it was seen as being more at risk, had historical locations of grasslands, was held under private ownership and had existing resources such as air-photo coverage to enable a complete assessment. The White zone extends from Valleyview in the south to High Level in the north, and Slave Lake in the east to the Alberta/British Columbia border in the west. This area covers 43,203 km sq or 9% of the provincial land mass.

2.2 Pilot Area for Method Comparison

In 2001, the study concentrated on the Grande Prairie and Fairview areas. A pilot area within these areas was selected to determine the best method of locating remnants. Two areas, each approximately eight townships in size, were selected for the pilot. Each was known to contain native grasslands and was representative of the landscape found in the Fairview and Grande Prairie areas. Only the area in Grande Prairie was completed in 2001 due to the unavailability of air-photos for the Fairview area.

Figure 1. Northwest region of Alberta - Study and pilot areas of the Peace Native Grasslands Program, 2001.
2.3 Vegetation

Native grasslands contain a diverse mixture of grasses, forbs, and shrubs. Moss (1952) identified 36 species of grasses, sedges and rushes, 84 species of forbs and 19 species of woody plants for a total of 139 species of vascular plants in the Peace region. Native grasslands in the Peace are found on river slopes, uplands and lowlands and the plant assemblages differ under these various conditions. Our study focussed on upland native grasslands described by Moss (1952) as a wheat grass (*Agropyron*)- needle grass (*Stipa*) faciation of a wheat grass – needle grass – sedge (*Carex*) plant community. Other botanists have classified these native grasslands as sedge – intermediate oatgrass (*Danthonia intermedia*) – western porcupine grass (*Stipa spartea var. curtiseta*) communities (Wilkinson 1981) and (*Agropyron trachycaulum* var. *unilaterale*) – porcupine grass (*Stipa spartea*) – intermediate oat grass – sedge type (Wallis 1982). For a comprehensive overview of these community types see Vujnovic and Bentz (2001).
3.0 METHODS

3.1 Identifying Native Grasslands

To locate remaining native grasslands, we used word of mouth, previous studies, government databases, happenstance, and air-photo interpretation. Air-photo interpretation gave the most number of potential sites and identified even small remnants. An experienced air-photo interpreter was contracted to interpret images for upland native grassland remnants in the White zone. The most recent available black and white air-photos, primarily at a scale of 1:30,000 (sometimes 1:40,000), were used to identify potential native grasslands. Interpretation was to 3-4 ha in size, or as small as could be discerned. Potential sites were outlined on a clear film 1:50,000 scale mapsheet that showed a 1998 Indian Resources Satellite (IRS) image and Alberta Township System (ATS) information. Completed mapsheets were used for field verification.

Historical descriptions from surveyors and pioneers were reviewed, and existing survey, land use, soil and vegetation maps were examined to see if this would identify targets on which to focus. While this gave a general idea of historical locations, the wide scale cultivation of the grassland since settlement has altered the landscape so much that these records could not accurately pinpoint the small remnants left today. In the Peace River region, solonetzic soils play an important role in maintaining grasslands through the inhibition of tree root growth (Wilkinson 1981, Wilkinson and Johnson 1983). However soil conditions do not fully explain the location of all grasslands in the Peace (Wilkinson 1981, Wilkinson and Johnson 1983). The use of satellite imagery was also investigated, but as it is hard to reliably differentiate between tame and native grasses, this method was not recommended by similar studies being undertaken in Alberta’s Grassland and Central Parkland natural regions (R. Bjorge pers comm).

3.2 Field Inventory and Mapping

Often, researchers and rangeland specialists use indicator plant species or standard ecological site descriptions to determine plant community type. This information was very limited for upland native grasslands of the Peace Parkland and we first needed to gather the baseline data, which can be used to formulate these approaches. We also needed to verify the accuracy of the air-photo interpretation pilot. These needs were addressed through the collection of baseline data between June and August 2001.

We used the term “site” to refer to a quarter section (65 hectares in size). Within each site, “polygons” were open grassland areas separated by topography, vegetation or distance and each site could have multiple polygons. At each site, we familiarized ourselves with the polygons by traversing them, recording the presence of all plant species in the grassland and estimating plant species composition. If a polygon had more than 30% native species, it was classified as being native, if there was more than 70% non-native species it was classed as modified (Adams et al. 2000) and no further work was undertaken.
3.2.1 Vegetation Inventory

The most representative polygon of native grassland at each site was chosen for detailed vegetation sampling using the method described by Robertson and Adams (1990). The composition of plant species was estimated by listing each plant species present along with its cover estimate. Plants were identified to the species level where possible following the classification of Moss (1983). The cover estimate was determined using a Daubenmire cover class, which was assigned to each plant species, litter, exposed soil, and moss/lichen within each frame (plot). A 20 cm x 50 cm frame was used to delineate the sample area. Ten frames (or 5 if the site was extremely small) were sampled in the polygon. Frames were located at regular intervals measured along a traverse line, which generally cut through the middle of the polygon. Woody species growing in the grassland within the polygon were described using an estimated density distribution, height and percent area covered.

3.2.2 Range Health

To determine the ability of a site to perform certain functions, we assessed its health using the recently developed “Range/Pasture Health Assessment Short Form” (Adams et al. 2000). This assessment compares a site’s ecological processes (integrity and ecological status, community structure, hydrological function and nutrient cycling, site stability and noxious weeds) with a standard or reference plant community. The reference plant community is the potential natural community for the site under light grazing disturbance. There were limited standard plant communities to refer to for upland native grasslands of the Peace Parkland, so a basic description was formulated under the guidance of Colin Stone, Range Management Specialist, Public Lands, Peace River.

3.2.3 Butterflies

We recorded all butterflies seen, weather conditions and total survey time when visiting native grassland sites; these were the protocols developed by Hervieux (2001). We paid particular attention to observations of the plains skipper, Pike’s Old World swallowtail (Papilio machaon pikei), coral hairstreak (Satyrium titus), striped hairstreak (Satyrium liparops), Gorgone checkerspot (Chlosyne gorgone carlota), northern checkerspot (Chlosyne palla), Uhler’s arctic and Alberta arctic. We did not collect information when it was cloudy, extremely windy, or rainy so not all native grassland sites were inventoried for butterflies. Adult butterflies were identified by sight, using Bird et al. (1995), usually after capture with an insect net. Some individuals were collected for future DNA analysis by the University of Alberta and for a reference collection being developed by Alberta Fish and Wildlife. Data was submitted to the Peace Parkland Butterfly Survey and also sent to the Alberta Natural Heritage Information Centre (ANHIC).

3.2.4 Rare Plants

Prior to the field season, ANHIC provided all known occurrence records of tracked plants found in the Peace Parkland. Through consultation with ANHIC and Species at Risk
staff, we developed a list of rare and tracked plant species that might be found in this study. Under the current Alberta species risk assessments (Anon 2001), there was one “may-be-at-risk” species and 13 species whose status was “in-preparation” that were likely to be found in native grassland uplands of the Peace Parkland. During the traverse of the site and vegetation inventory, every effort was made to look in microhabitats that had the potential to support rare or tracked plant species. Observations of tracked plant species were recorded and submitted to ANHIC using their rare plant guidelines.

3.2.5 Mapping

A hand held GPS unit was used to record the location of each Daubenmire frame. The perimeter of the native grassland where the grassland met shrubs taller than 0.5 metres, or some other barrier (e.g. cultivation, fence-line, water body etc.) was traversed and recorded with the GPS. This gave an estimation of area and was incorporated into a GIS, which was used to map native grassland locations.

3.3 Stewardship

Landowner support was an important element of this project. After ownership of sites was determined, landowners were contacted for permission to enter their land and were invited to accompany staff during the field inspection. As follow-up to the visit, landowners were sent a copy of the list of plant species that were observed at the site.
4.0 RESULTS

4.1 Location of Native Grassland Remnants

Using the methods described above to locate potential remnants, 110 sites were identified within the Fairview and Grande Prairie areas. Of these, 83 (75%) sites were field checked and 43 (39%) sites were classified as having native upland grassland remnants. For various reasons, 4 sites were not accessed but an assessment “over the fence” was conducted and the results are included as part of the data set. The majority of native sites were concentrated around the Kleskun Hills, east of Grande Prairie. Three sites were located outside the method-comparison-pilot-area with one site located west of Grande Prairie near Saskatoon Lake and the other two south of Fairview. The location of these sites is considered sensitive information but will be made available to project partners for stewardship planning.

4.2 Area of Native Grassland Remnants

The native grassland remnants verified during 2001 covered a total area of 480 ha. The size of each remnant varied in size from 0.1 to 50.7 ha with an average size of 11.2 ha. Table 1 compares the area and number of sites in each size category. Nearly 60% (25) of the sites were less than 10.0 ha in size and while only 12% of the sites were in the 30.1-65.0 ha size range, these 5 sites represented almost half (45.8%) of the native grasslands. It also shows that the highest number of sites (38%) were under 3.0 ha but covered less than 4% (18.3 ha) of the total area.

Table 1. Area (ha, %) and number (#, %) of upland native grassland remnants in each size category within the studied areas of Grande Prairie and Fairview, 2001 (n=43)

<table>
<thead>
<tr>
<th>Remnant Size (ha)</th>
<th>< 1.0</th>
<th>1.1 - 3.0</th>
<th>3.1 - 10.0</th>
<th>10.1 - 30.0</th>
<th>30.1 - 65.0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area (ha)</td>
<td>1.9 (0.4%)</td>
<td>16.4 (3.4%)</td>
<td>43.0 (9.0%)</td>
<td>198.8 (41.4%)</td>
<td>219.6 (45.8%)</td>
<td>479.7</td>
</tr>
<tr>
<td>Number of Sites (#)</td>
<td>8 (19%)</td>
<td>8 (19%)</td>
<td>9 (21%)</td>
<td>13 (30%)</td>
<td>5 (12%)</td>
<td>43</td>
</tr>
</tbody>
</table>

4.3 Vegetation Inventory

Detailed vegetation inventories were conducted on 37 (86%) of the 43 verified native upland grassland sites. The total number of species (shrubs, grasses, and forbs) that were identified through the inventory was 117. Of these, there were 69 native forbs, 26 native grasses and grass-like species, 15 native shrubs and 7 introduced forbs and grasses. An additional 61 vascular species were identified during the traverse portion of the site inspections.

Plant diversity at each native site ranged from 15 to 41 species with an average of 27. The occurrence of introduced grasses and forbs was generally quite low at each site (maximum of three and two respectively) and there were four sites with no introduced
species identified. Native forbs generally contributed the largest proportion of species with between 11 and 28 species and an average of 19 at each site. Native grasses in turn provided between 4 and 14 species with an average of 9 at each site. Up to 8 shrub species were identified at an individual site.

4.4 Range Health

A range health assessment was done at each of the 37 inventoried native grassland sites. Sites could be rated as healthy, healthy with problems, or unhealthy. None of the sites were unhealthy, 32% (12 sites) were healthy with problems, and 68% (25 sites) were healthy. Approximately half (14 sites) of the healthy sites scored a perfect rating of 100%. Factors that affected the rating of sites included significant alterations in the plant community due to grazing or other disturbances, missing life form layers, and reduced amounts of litter. Most sites were stable with little evidence of accelerated erosion, and none of the sites had a noxious weed problem. Generally, the number of native forbs increased as range health improved and the number of grass species stayed the same, though the species and their abundance often changed. As a reference and comparison, range health was also assessed at eight other sites that were accessed (native shrub, slope, modified).

4.5 Butterflies

Observations of 20 butterfly species were recorded at one third (13/37) of the inventoried upland native grassland sites, at one native shrub site and one modified grassland site. Two tracked species were observed; the plains skipper was recorded at five sites and the coral hairstreak at one site. The sites where these two species were observed had average or higher plant species diversity, a range health of healthy or healthy with problems, and were between 2.5 – 32.5 ha in area. Three other possibly disjunct species were also observed, the common ringlet (Coenonympha inornata), great spangled fritillary (Speyeria cybele) and garita skipper (Oarisma garita).

4.6 Rare Plants

Leather grape fern, assessed as a “May be at Risk” fern in Alberta, was observed at eight native grassland sites and one modified grassland site. Most of these sites were grazed and, apart from the one modified grassland site, were in a healthy range condition (greater than 72% health score).

4.7 Stewardship

Most of the sites were on privately owned land and we had the opportunity to speak with over 50 landowners. Only 4 of the 50 landowners withheld permission to access their land. Some landowners were sceptical about our interest in their native grassland. However, those we were able to speak with after completing the site assessment, expressed interest in the variety of plant species and in ways that they could maintain their sites.
4.8 Mapping and Data Storage

An electronic and hardcopy map of potential and confirmed upland native grassland remnants has been produced and is available to project partners. The original is housed at ACA in Peace River. Information on the distribution of rare plants and uncommon butterflies is considered sensitive information and is not included here.
5.0 DISCUSSION AND FUTURE DIRECTIONS

When this project started, there were two commonly known and documented sites of remnant upland native grassland in the Grande Prairie area - Kleskun Hills Natural Area, and the Cochrane site. These two sites had a combined area of 143 ha. As a result of the first year of this project, the documented area of native grasslands in the Peace River region has more than tripled to 480 ha. More work is needed to complete the identification of remnants in the Grande Prairie and Fairview areas, and to expand the coverage to the rest of the White zone in the Peace River region will probably result in the identification of additional sites. To increase efficiency and maximize cost effectiveness of the air-photo interpretation, other lands of conservation interest (e.g., river breaks and wetlands) could be assessed at the same time.

Nearly all the native grassland remnants in the pilot area are concentrated within a ten-mile radius of the Kleskun Hills Natural Area, which makes this an important area to focus conservation and stewardship activities. While every site is important and valuable to conserve, efforts should target the medium (10.1-30 ha) and large (30.1-65.0 ha) remnants first, as they contribute the greatest area (87%), and should be easier to manage and maintain at a self-functioning size. The three largest sites are already protected as a Natural Area (Kleskun Hills Natural Area) or owned by a conservation organization (Cochrane Ranch). While other remnants may be protected in the future, they are currently under private ownership and are being utilized for agricultural production in the form of grazing or idle land. These sites offer a good opportunity to be maintained through voluntary landowner stewardship that may include management strategies like grazing or burning practices, and protection against land development, especially residential subdivision.

The majority of sites (59%) had remnants under 10.0 ha in size, which contributed to 13% of the total area. The medium-small (3.1-10.0 ha) remnants cover 9% of the area and due to an overall contribution and close proximity to larger remnants are important to maintain. The cost/area may be high due to the small area, but individual remnants would benefit from management strategies that can buffer them from encroachment of shrubs and introduced plants like awnless brome (Bromus inermis), and Kentucky bluegrass (Poa pratensis) while potentially increasing the area of native grassland.

Small remnants (1.1-2.0 ha) cover 3.4% of the area, and will hold the greatest challenge for conservation and management because they may be subject to the spread of introduced plants or native shrubs. The cost (financial and time) to maintain these small sites could be prohibitive. However, as long as they are intact, they contribute to local biodiversity and may provide important habitat for some species of butterflies (M. Hervieux, pers comm.).

The smallest sites (<1.0 ha) only cover 0.4% of the area and if they are not close to one another to provide effective habitat for butterflies, may not be cost or time effective to secure. However, even these small sites may be important as sources of genetic material to help in the conservation of native grasslands in the Peace River region.
Landowners were interested in the results of this study, especially information concerning plant species that occurred on their property. Landowners also had questions about ways to best manage the native grassland, and why they are so important. A brochure or fact sheet that provides this information would help landowners and promote conservation of native grasslands. A short questionnaire about the landowners’ interest in conservation is planned for 2002/2003 to help facilitate land stewardship efforts.

Vegetation data collected through the inventory has been helpful to gain a broader picture of the plant composition of the upland remnants. Further inventories at more sites, will increase this knowledge and can be used to make more accurate descriptions of reference plant community types. It will also give a better sense of the overall diversity of native grassland plant communities growing in the Peace River region.

There is limited knowledge about the food and nectar sources required for individual butterfly species. Further work on plant community types that support particular butterfly species may bridge this gap, and potentially, indicator species could be used to predict butterfly occurrences. This would be especially helpful as butterflies vary within a season (flight time and climatic conditions) and between seasons, so it is difficult to observe all species on a single visit. Documenting the phenology of plants and corresponding butterflies present may also help with this analysis and will be incorporated in future years.

The discovery of many overlooked remnants indicates that there is a need to work with landowners to conserve these areas and to inform people that native grasslands are an important part of the Peace River region landscape.
6.0 LITERATURE CITED

APPENDIX A.

Plants identified on upland native grasslands remnants, in the Peace region of Northwest Alberta, by the *Peace Native Grassland Program*, 2001.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common name</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>common yarrow</td>
<td>Compositae</td>
</tr>
<tr>
<td>* Agoseris glauca</td>
<td>yellow false dandelion</td>
<td>Compositae</td>
</tr>
<tr>
<td>* Agrimonia striata</td>
<td>agrimony</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Allium cernuum</td>
<td>nodding onion</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>* Allium schoenoprasum</td>
<td>wild chives</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>Allium textile</td>
<td>prairie onion</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>Androsace septentrionalis</td>
<td>northern fairy candelabra</td>
<td>Primulaceae</td>
</tr>
<tr>
<td>Anemone</td>
<td>anemone</td>
<td>Ranunculaceae</td>
</tr>
<tr>
<td>Anemone canadensis</td>
<td>Canada anemone</td>
<td>Ranunculaceae</td>
</tr>
<tr>
<td>Anemone cylindrica</td>
<td>long-fruited anemone</td>
<td>Ranunculaceae</td>
</tr>
<tr>
<td>* Anemone multifida</td>
<td>cut-leaved anemone</td>
<td>Ranunculaceae</td>
</tr>
<tr>
<td>Anemone patens</td>
<td>prairie crocus</td>
<td>Compositae</td>
</tr>
<tr>
<td>Antennaria</td>
<td>Everlasting</td>
<td>Compositae</td>
</tr>
<tr>
<td>Antennaria neglecta</td>
<td>broad-leaved everlasting</td>
<td>Compositae</td>
</tr>
<tr>
<td>Antennaria parvifolia</td>
<td>small-leaved everlasting</td>
<td>Compositae</td>
</tr>
<tr>
<td>* Arabis</td>
<td>rock cress</td>
<td>Cruciferae</td>
</tr>
<tr>
<td>Arnica</td>
<td>arnica</td>
<td>Compositae</td>
</tr>
<tr>
<td>* Arnica chamissonis</td>
<td>leafy arnica</td>
<td>Compositae</td>
</tr>
<tr>
<td>Arnica cordifolia</td>
<td>heart-leaved arnica</td>
<td>Compositae</td>
</tr>
<tr>
<td>Arnica fulgens</td>
<td>shining arnica</td>
<td>Compositae</td>
</tr>
<tr>
<td>Artemisia</td>
<td>artemisia</td>
<td>Compositae</td>
</tr>
<tr>
<td>Artemisia biennis</td>
<td>biennial sagewort</td>
<td>Compositae</td>
</tr>
<tr>
<td>Artemisia campestris</td>
<td>plains wormwood</td>
<td>Compositae</td>
</tr>
<tr>
<td>Artemisia frigida</td>
<td>pasture sagewort</td>
<td>Compositae</td>
</tr>
<tr>
<td>Artemisia ludoviciana</td>
<td>prairie sagewort</td>
<td>Compositae</td>
</tr>
<tr>
<td>Aster</td>
<td>aster</td>
<td>Compositae</td>
</tr>
<tr>
<td>Aster conspicuus</td>
<td>showy aster</td>
<td>Compositae</td>
</tr>
<tr>
<td>Aster ericoides</td>
<td>tufted white prairie aster</td>
<td>Compositae</td>
</tr>
<tr>
<td>Aster laevis</td>
<td>smooth aster</td>
<td>Compositae</td>
</tr>
<tr>
<td>Astragalus</td>
<td>milk vetch</td>
<td>Leguminosae</td>
</tr>
<tr>
<td>* Atriplex nutallii (from Moss)</td>
<td>Nuttall's atriplex</td>
<td>Chenopodiaceae</td>
</tr>
<tr>
<td>Botrychium multifidum</td>
<td>leather grape fern</td>
<td>Ophioglossaceae</td>
</tr>
<tr>
<td>* Brassica</td>
<td>mustard</td>
<td>Cruciferae</td>
</tr>
<tr>
<td>Campanula rotundifolia</td>
<td>harebell</td>
<td>Campanulaceae</td>
</tr>
<tr>
<td>* Capsella bursa-pastoris</td>
<td>shepherd's-purse</td>
<td>Cruciferae</td>
</tr>
<tr>
<td>Castilleja miniata</td>
<td>common red paintbrush</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Cerastium</td>
<td>chickweed</td>
<td>Caryophyllaceae</td>
</tr>
<tr>
<td>Cerastium arvense</td>
<td>field mouse-ear chickweed</td>
<td>Caryophyllaceae</td>
</tr>
<tr>
<td>* Chenopodium album</td>
<td>lamb's-quarters</td>
<td>Chenopodiaceae</td>
</tr>
</tbody>
</table>
* Cicuta maculata
 water-hemlock
* Cirsium
 thistle
* Cirsium drummondii
 Drummond's thistle
* Comandra umbellata
 bastard toadflax
* Cornus canadensis
 bunchberry
* Delphinium glaucum
 tall larkspur
* Descarainia sophia
 flixweed
* Dracocephalum parviflorum
 American dragonhead
* Epilobium angustifolium
 common fireweed
* Equisetum
 horsetail
* Erigeron
 fleabane
 tufted fleabane
* Erigeron caespitosus
 smooth fleabane
* Erigeron glabellus
 Philadelphia fleabane
* Erigeron philadelphicus
 wild strawberry
 northern bedstraw
 gentian/felwort
* Fragaria virginiana
 felwort
* Galium boreale
 three-flowered avens
* Gentianella
 gumweed
 bog orchid
 alpine hedysarum
* Gentianella amarella
 sunflower
 common annual sunflower
 cow parsnip
* Geum triflorum
 Richardson's alumroot
* Grindelia squarrosa
 cream-colored vetchling
 western wood lily
 wild blue flax
* Habenaria
 wild lily-of-the-valley
 scentless chamomile
 alfalfa
* Hedysarum alpinum
 yellow sweet-clover
* Heliantus annuus
 tall lungwort
 wild bergamot
* Helianthus
 brittle prickly-pear
* Hieracium umbellatum
 owl-clover
* Hieracium triflorum
 locoweed
* Hieracium umbellatum
 early yellow locoweed
* Hieracium triflorum
 showy locoweed
* Lathyrus ochroleucus
 lilac-flowered beardtongue
* Lilium philadelphicum
 slender blue beardtongue
* Linum lewisii
 common plantain
* Maianthemum canadense
 common plantain
* Matricaria perforata
 yellow sweet-clover
* Medicago sativa
 tall lungwort
* Melilotus officinalis
 brittle bergamot
* Mertensia paniculata
 locoweed
* Monarda fistulosa
 early yellow locoweed
* Opuntia fragilis
 showy locoweed
* Orthocarpus luteus
 lilac-flowered beardtongue
* Oxytropis
 slender blue beardtongue
* Oxytropis sericea
 common plantain
* Oxytropis splendidus
 cinquefoil
* Penstemon gracilis
 white cinquefoil
* Penstemon procerus
 common plantain
* Plantago major
 Cinquefoil
* Potentilla
 Potentilla arguta
 Cinquefoil
 Rosaceae
Potentilla gracilis graceful cinquefoil Rosaceae
Potentilla hippocana woolly cinquefoil Rosaceae
R Ranunculus buttercup Ranunculaceae
R Ranunculus acris tall buttercup Ranunculaceae
Ranunculus macounii Macoun's buttercup Ranunculaceae
R Rumex dock Polygonaceae
Sedum lanceolatum lace-leaved stonecrop Crassulaceae
Selaginella densa prairie selaginella Selaginellaceae
S Senecio eremophillus cut-leaved ragwort Compositae
Sisyrinchium montanum common blue-eyed grass Iridaceae
Smilacina stellata star-flowered Solomon's seal Liliaceae
Solidago goldenrod Compositae
R Solidago canadensis Canada goldenrod Compositae
Solidago missouriensis low goldenrod Compositae
Solidago spathulata mountain goldenrod Compositae
Sonchus stinkweed Compositae
* Spiranthus romanzoffianus hooded ladies'-tresses Orchidaceae
Stellaria chickweed Caryophyllaceae
* Tanacetum vulgare common tansy Compositae
Taraxacum officinale common dandelion Compositae
Thalictrum venulosum veiny meadow rue Ranunculaceae
* Thlaspi arvense stinkweed Cruciferae
* Tragopogon dubius common goat's-beard Compositae
Trifolium clover Leguminosae
Trifolium hybridum alsike clover Leguminosae
R Trifolium pratense red clover Leguminosae
* Trifolium repens white clover Leguminosae
* Urtica dioica common nettle Urticaceae
Vicia americana wild vetch Leguminosae
* Viola canadensis western Canada violet Violaceae
Viola adunca early blue violet Violaceae
* Zizia aptera heart-leaved Alexanders Umbelliferae

GRASSES and GRASS-LIKES

Agropyron wheat grass Gramineae
Agropyron dasystachyum northern wheat grass Gramineae
Agropyron repens quack grass Gramineae
Agropyron smithii western wheat grass Gramineae
Agropyron trachycaulum slender wheat grass Gramineae
Agropyron trachycaulum var. unilaterale awned wheat grass Gramineae
Agrostis scabra rough hair grass Gramineae
Avena fatua wild oat Gramineae
Bromus ciliatus fringed brome Gramineae
Bromus inermis awnless brome Gramineae
Bromus pumpellianus (from Moss) northern awnless brome Gramineae
Calamagrostis
* Calamagrostis canadensis bluejoint
Calamagrostis inexpansa northern reed grass
Calamagrostis montanensis plains reed grass
Calamagrostis purpurascens purple reed grass
Carex
Deschampsia intermedia intermediate oat grass
Deschampsia cespitosa tufted hair grass
* Elymus innovatus hairy wild rye
* Festuca rubra red fescue
Festuca saximontana Rocky Mountain fescue
* Hierochloe odorata sweet grass
* Hordeum jubatum foxtail barley
Juncus
Koeleria macrantha June grass
* Muhlenbergia richardsonis mat muhly
Phleum pratense timothy
Poa
Poa compressa Canada bluegrass
* Poa interior inland bluegrass
Poa palustris fowl bluegrass
Poa pratensis Kentucky bluegrass
Poa sandbergii Sandberg bluegrass
Schizachne purpurascens purple oat grass
* Scirpus
* Stipa columbiana Columbia needle grass
* Stipa comata needle-and-thread
Stipa curtiseta western porcupine grass
Stipa richardsonii Richardson needle grass
Stipa viridula green needle grass
* Triticum aestivum common wheat
* Typha latifolia common cattail

SHRUBS
* Alnus
Amelanchier alnifolia saskatoon
Arctostaphylos uva-ursi common bearberry
Cornus stolonifera red-osier dogwood
Elaeagnus commutata silverberry
Juniper
* Juniperus communis Juniper
Juniperus horizontalis ground juniper
* Lonicera dioica twining honeysuckle
Lonicera involucrata bracted honeysuckle
Populus tremuloides aspen

Alder
saskatoon
common bearberry
red-osier dogwood
silverberry
Juniper
ground juniper
twining honeysuckle
bracted honeysuckle
aspen

Alder

Saskatoon
Common bearberry
Red-osier dogwood
Silverberry
Juniper
Ground juniper
Twining honeysuckle
Bracted honeysuckle
Aspen

Betulaceae
Rosaceae
Ericaceae
Cornaceae
Elaeagnaceae
Cupressaceae
Cupressaceae
Caprifoliaceae
Caprifoliaceae
Salicaceae
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>northern gooseberry</td>
<td>Vaccinium myrtilloides</td>
<td>Grossulariaceae</td>
</tr>
<tr>
<td>wild red currant</td>
<td>Ribes oxyacanthoides</td>
<td>Grossulariaceae</td>
</tr>
<tr>
<td>rose</td>
<td>Ribes triste</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>wild red raspberry</td>
<td>Rosa</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>willow</td>
<td>Rubus idaeus</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Canada buffaloberry</td>
<td>Salix</td>
<td>Salicaceae</td>
</tr>
<tr>
<td>buckbrush</td>
<td>Shepherdia canadensis</td>
<td>Elaeagnaceae</td>
</tr>
<tr>
<td>common blueberry</td>
<td>Symphoricarpos occidentalis</td>
<td>Caprifoliaceae</td>
</tr>
</tbody>
</table>

* identified during the traverse, but were not recorded in the vegetation inventory

Source used for common names:
APPENDIX B.

Butterflies observed by Peace Native Grasslands Program, in the Peace River region during 2001

Skippers
*Plains Skipper
**Garita Skipper
Long-dash Skipper

Hesperia comma assiniboia
Oarisma garita
Polites mystic

Swallowtails
Swallowtail sp.

Whites, Marbles and Sulphurs
Cabbage White
White sp.
Sulphur sp.

Pieris rapae

Coppers, Hairstreaks and Blues
*Coral Hairstreak
Northern Blue
Blue sp.

Satyrium titus
Lycaeides idas

Tortoiseshells, Admirals and Anglewings
White Admiral

Limenitis arthemis

Fritillaries
Meadow Fritillary
Aphrodite Fritillary
Northwestern Fritillary
**Great Spangled Fritillary
Mormon Fritillary
Greater Fritillary sp.

Boloria bellona
Speyeria aphrodite
Speyeria electa
Speyeria cybele pseudocarpenterii
Speyeria mormonia

Checkerspots and Crescents
Northern Pearl Crescent

Phyciodes cocyta

Satyrs
Common Wood Nymph
**Common (Inornate) Ringlet

Cercyonis pegala
Coenonympha inornata

* = tracked butterflies found in Peace River region
** = disjunct Alberta butterflies found in Peace River region
7.0 LIST OF TITLES IN THIS SERIES
(as of February 2004)

No. 2 Survey of the peregrine falcon (Falco peregrinus anatum) in Alberta, by R. Corrigan. (2001)

No. 3 Distribution and relative abundance of the shortjaw cisco (Coregonus zenithicus) in Alberta, by M. Steinhilber and L. Rhude. (2001)

No. 4 Survey of the bats of central and northwestern Alberta, by M.J. Vonhof and D. Hobson. (2001)

No. 8 Burrowing owl trend block survey and monitoring - Brooks and Hanna areas, by D. Scobie and R. Russell. (2000)

No. 9 Survey of the Lake Sturgeon (Acipenser fulvescens) fishery on the South Saskatchewan River, Alberta (June-September, 2000), by L.A. Winkel. (2000)

No. 12 Distribution of selected small mammals in Alberta, by L. Engley and M. Norton. (2001)

No. 16 Proposed monitoring plan for harlequin ducks in the Bow Region of Alberta, by C.M. Smith. (2001)
No. 17 Distribution and relative abundance of small mammals of the western plains of Alberta as determined from great horned owl pellets, by D. Schowalter. (2001)

No. 18 Western blue flag (*Iris missouriensis*) in Alberta: a census of naturally occurring populations for 2000, by R. Ernst. (2000)

No. 21 Proposed protocols for inventories of rare plants of the Grassland Natural Region, by C. Wallis. (2001)

No. 22 Utilization of airphoto interpretation to locate prairie rattlesnake (*Crotalus viridis viridis*) hibernacula in the South Saskatchewan River valley, by J. Nicholson and S. Rose. (2001)

No. 27 The 2001 international piping plover census in Alberta, by D.R.C. Prescott. (2001)

No. 31 Alberta furbearer harvest data analysis, by K.G. Poole and G. Mowat. (2001)

No. 33 Woodland caribou (*Rangifer tarandus caribou*) habitat classification in northeastern Alberta using remote sensing, by G.A. Sanchez-Azofeifa and R. Bechtel. (2001)

No. 38 A census and recommendations for management for western blue flag (*Iris missouriensis*) in Alberta, by R. Ernst. (2002)

No. 40 Management and recovery strategies for the Lethbridge population of the prairie rattlesnake, by R. Ernst. (2002)

No. 45 Fish species at risk in the Milk and St. Mary drainages, by RL&L Environmental Services Ltd. (2002)

No. 50 Carnivores and corridors in the Crowsnest Pass, by C. Chetkiewicz. (2002)

No. 51 2001 Burrowing owl trend block survey and monitoring, Brooks and Hanna areas, by D. Scobie. (2002)

No. 56 Developing a habitat-based population viability model for greater sage-grouse in southeastern Alberta, by C.L. Aldridge. (2001)

No. 59 Rare plant inventory of the eastern edge of the lower foothills natural subregion, west-central Alberta, by J. Doubt. (2002)

No. 60 Western (Aechmophorus occidentalis) and eared (Podiceps nigricollis) grebes of central Alberta: 2002 field summary, by S. Hanus, L. Wilkinson and H. Wollis. (2002)

No. 66 Inventory and monitoring protocol for naturally occurring western blue flag (Iris missouriensis) in Alberta, by R.D. Ernst. (2003)

No. 69 Survey protocol for the Richardson’s ground squirrel, by B.A. Downey. (2003)

