THE DECENNIAL PUBLICATIONS OF THE UNIVERSITY OF CHICAGO
THE DECENNIAL PUBLICATIONS

ISSUED IN COMMEMORATION OF THE COMPLETION OF THE FIRST TEN YEARS OF THE UNIVERSITY'S EXISTENCE

AUTHORIZED BY THE BOARD OF TRUSTEES ON THE RECOMMENDATION OF THE PRESIDENT AND SENATE

EDITED BY A COMMITTEE APPOINTED BY THE SENATE

EDWARD CAPPS

STARR WILLARD CUTTING ROLLIN D. SALISBURY
JAMES ROWLAND ANGELL WILLIAM I. THOMAS SHAILEN MATHEWS
CARL DARLING BUCK FREDERIC IVES CARPENTER OSKAR BOLZA
JULIUS STIEGLITZ JACQUES LOEB
THESE VOLUMES ARE DEDICATED

TO THE MEN AND WOMEN
OF OUR TIME AND COUNTRY WHO BY WISE AND GENEROUS GIVING
HAVE ENCOURAGED THE SEARCH AFTER TRUTH
IN ALL DEPARTMENTS OF KNOWLEDGE
LECTURES ON THE CALCULUS OF VARIATIONS
Copyright 1904
BY THE UNIVERSITY OF CHICAGO

September, 1904
PREFACE

The principal steps in the progress of the Calculus of Variations during the last thirty years may be characterized as follows:

1. A critical revision of the foundations and demonstrations of the older theory of the first and second variation according to the modern requirements of rigor, by Weierstrass, Erdmann, Du Bois-Reymond, Scheeffer, Schwarz, and others. The result of this revision was: a sharper formulation of the problems, rigorous proofs for the first three necessary conditions, and a rigorous proof of the sufficiency of these conditions for what is now called a "weak" extremum.

2. Weierstrass's extension of the theory of the first and second variation to the case where the curves under consideration are given in parameter-representation. This was an advance of great importance for all geometrical applications of the Calculus of Variations; for the older method implied—for geometrical problems—a rather artificial restriction.

3. Weierstrass's discovery of the fourth necessary condition and his sufficiency proof for a so-called "strong" extremum, which gave for the first time a complete solution, at least for the simplest type of problems, by means of an entirely new method based upon what is now known as "Weierstrass's construction."

These discoveries mark a turning-point in the history of the Calculus of Variations. Unfortunately they were given by Weierstrass only in his lectures, and thus became known only very slowly to the general mathematical public. Chiefly under the influence of Weierstrass's theory a vigorous activity in the Calculus of Variations has set in
during the last few years, which has led—apart from extensions and simplifications of Weierstrass's theory—to the following two essentially new developments:

4. Kneser's theory, which is based upon an extension of certain theorems on geodesics to extremals in general. This new method furnishes likewise a complete system of sufficient conditions and goes beyond Weierstrass's theory, inasmuch as it covers also the case of variable end-points.

5. Hilbert's *a priori* existence proof for an extremum of a definite integral—a discovery of far-reaching importance, not only for the Calculus of Variations, but also for the theory of differential equations and the theory of functions.

To give a detailed account of this development was the object of a series of lectures which I delivered at the Colloquium held in connection with the summer meeting of the American Mathematical Society at Ithaca, N.Y., in August, 1901. And the present volume is, in substance, a reproduction of these lectures, with such additions and modifications as seemed to me desirable in order that the book could serve as a treatise on that part of the Calculus of Variations to which the discussion is here confined, viz., the case in which the function under the integral sign depends upon a plane curve and involves no higher derivatives than the first.

With this view I have throughout supplied the detail argumentation and introduced examples in illustration of the general principles. The emphasis lies entirely on the theoretical side: I have endeavored to give clear definitions of the fundamental concepts, sharp formulations of the problems, and rigorous demonstrations. Difficult points, such as the proof of the existence of a "field," the details in Hilbert's existence proof, etc., have received special attention.

For a rigorous treatment of the Calculus of Variations the principal theorems of the modern theory of functions of a real variable are indispensable; these I had therefore to
presuppose, the more so as I deviate from Weierstrass and Kneser in not assuming the function under the integral sign to be analytic. In order, however, to make the book accessible to a larger circle of readers, I have systematically given references to the following standard works: *Encylopaedie der mathematischen Wissenschaften* (abbreviated *E.*), especially the articles on “Allgemeine Functionslehre” (*Pringsheim*) and “Differential- und Integralrechnung” (*Voss*); Jordan, *Cours d’Analyse*, second edition (abbreviated *J.*); Genocchi-Peano, *Differentialrechnung und Grundzüge der Integralrechnung*, translated by Bohlmann and Schepp (abbreviated *P.*); occasionally also to Dini, *Theorie der Functionen einer veränderlichen reellen Grösse*, translated by Lüroth and Schepp; Stolz, *Grundzüge der Differential- und Integralrechnung*. The references are given for each theorem where it occurs for the first time; they may also be found by means of the index at the end of the book.

Certain developments have been given in smaller print in order to indicate, not that they are of minor importance, but that they may be passed over at a first reading and taken up only when referred to later on.

A few remarks are necessary concerning my attitude toward Weierstrass’s lectures. Weierstrass’s results and methods may at present be considered as generally known, partly through dissertations and other publications of his pupils, partly through Kneser’s *Lehrbuch der Variationsrechnung* (Braunschweig, 1900), partly through sets of notes (“Ausarbeitungen”) of which a great number are in circulation and copies of which are accessible to everyone in the library of the Mathematische Verein at Berlin, and in the Mathematische Lesezimmer at Göttingen.

Under these circumstances I have not hesitated to make use of Weierstrass’s lectures just as if they had been published in print.
My principal source of information concerning Weierstrass’s theory has been the course of lectures on the Calculus of Variations of the Summer Semester, 1879, which I had the good fortune to attend as a student in the University of Berlin. Besides, I have had at my disposal sets of notes of the courses of 1877 (by Mr. G. Schulz) and of 1882 (a copy of the set of notes in the "Lesezimmer" at Göttingen for which I am indebted to Professor Tanner), a copy of a few pages of the course of 1872 (from notes taken by Mr. Ott), and finally a set of notes (for which I am indebted to Dr. J. C. Fields) of a course of lectures on the Calculus of Variations by Professor H. A. Schwarz (1898–99).

I regret very much that I have not been able to make use of the articles on the Calculus of Variations in the Encyclopaedie der mathematischen Wissenschaften by Kneser, Zermelo, and Hahn. When these articles appeared, the printing of this volume was practically completed. For the same reason no reference could be made to Hancock’s Lectures on the Calculus of Variations.

In concluding, I wish to express my thanks to Professor G. A. Bliss for valuable suggestions and criticisms, and to Dr. H. E. Jordan for his assistance in the revision of the proof-sheets.

The University of Chicago,
August 28, 1904.

Oskar Bolza.
TABLE OF CONTENTS

CHAPTER I

The First Variation of the Integral $\int_{x_0}^{x_1} F(x, y, y') \, dx$

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>§ 2. Agreements concerning Notation and Terminology</td>
<td>5</td>
</tr>
<tr>
<td>§ 3. General Formulation of the Problem</td>
<td>9</td>
</tr>
<tr>
<td>§ 4. Vanishing of the First Variation</td>
<td>13</td>
</tr>
<tr>
<td>§ 5. The Fundamental Lemma and Euler's Differential Equation</td>
<td>20</td>
</tr>
<tr>
<td>§ 7. Miscellaneous Remarks concerning the Integration of Euler's Differential Equation</td>
<td>26</td>
</tr>
<tr>
<td>§ 8. Weierstrass's Lemma and the E-function</td>
<td>33</td>
</tr>
<tr>
<td>§ 9. Discontinuous Solutions</td>
<td>36</td>
</tr>
<tr>
<td>§10. Boundary Conditions</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER II

The Second Variation of the Integral $\int_{x_0}^{x_1} F(x, y, y') \, dx$

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§11. Legendre's Condition</td>
<td>44</td>
</tr>
<tr>
<td>§12. Jacobi's Transformation of the Second Variation</td>
<td>51</td>
</tr>
<tr>
<td>§13. Jacobi's Theorem</td>
<td>54</td>
</tr>
<tr>
<td>§14. Jacobi's Criterion</td>
<td>57</td>
</tr>
<tr>
<td>§15. Geometrical Interpretation of the Conjugate Points</td>
<td>60</td>
</tr>
<tr>
<td>§16. Necessity of Jacobi's Condition</td>
<td>65</td>
</tr>
</tbody>
</table>

CHAPTER III

Sufficient Conditions for an Extremum of the Integral $\int_{x_0}^{x_1} F(x, y, y') \, dx$

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§17. Sufficient Conditions for a Weak Minimum</td>
<td>68</td>
</tr>
<tr>
<td>§18. Insufficiency of the Preceding Three Conditions for a Strong Minimum, and Fourth Necessary Condition</td>
<td>73</td>
</tr>
</tbody>
</table>
Table of Contents

§19. Existence of a Field of Extremals - - - 78
§20. Weierstrass's Theorem - - - 84
§21. Hilbert's Proof of Weierstrass's Theorem - - 91
§22. Sufficient Conditions for a Strong Minimum - - 94
§23. The Case of Variable End-Points - - - 102

CHAPTER IV

Weierstrass's Theory of the Problem in Parameter-Representation

§24. Formulation of the Problem - - - 115
§25. The First Variation - - - 122
§26. Examples - - - 126
§27. The Second Variation - - - 130
§28. The Fourth Necessary Condition and Sufficient Conditions - - 138
§29. Boundary Conditions - - - 148
§30. The Case of Variable End-Points - - - 153
§31. Weierstrass's Extension of the Meaning of the Definite Integral $\int_{t_0}^{t_1} F(x, y, x', y') dt$ - - - 156

CHAPTER V

Kneser's Theory

§32. Gauss's Theorems on Geodesies - - - 164
§33. Kneser's Theorem on Transversals and the Theorem on the Envelope of a Set of Extremals - - - 166
§34. Construction of a Field - - - 175
§35. Kneser's Curvilinear Co-ordinates - - - 181
§36. Sufficient Conditions for a Minimum in the Case of One Movable End-Point - - - 187
§37. Various Proofs of Weierstrass's Theorem The Assumption $F(t, \alpha) \neq 0$ - - - 193
§38. The Focal Point - - - 199

CHAPTER VI

Weierstrass's Theory of the Isoperimetric Problems

§39. Euler's Rule - - - 206
§40. The Second Necessary Condition - - - 213
| §41. The Third Necessary Condition and the Conjugate Point | - | - | - | - | - | - | 218 |
| §42. Sufficient Conditions | - | - | - | - | - | - | 232 |

CHAPTER VII

Hilbert's Existence Theorem

§43. Introductory Remarks	-	-	-	-	-	-	245
§44. Theorems concerning the Generalized Integral J^*	-	-	-	-	-	-	247
§45. Hilbert's Construction	-	-	-	-	-	-	253
§46. Properties of Hilbert's Curve	-	-	-	-	-	-	259

ADDENDA - - - - - - - - 265

INDEX - - - - - - - - 269
CHAPTER I

THE FIRST VARIATION

§1. INTRODUCTION

The Calculus of Variations deals with problems of maxima and minima. But while in the ordinary theory of maxima and minima the problem is to determine those values of the independent variables for which a given function of these variables takes a maximum or minimum value, in the Calculus of Variations definite integrals involving one or more unknown functions are considered, and it is required so to determine these unknown functions that the definite integrals shall take maximum or minimum values.

The following example will serve to illustrate the character of the problems with which we are here concerned, and its discussion will at the same time bring out certain points which are important for an exact formulation of the general problem:

Example 1: In a plane there are given two points A, B and a straight line 2. It is required to determine, among all curves which can be drawn in this plane between A and B, the one which, if revolved around the line 2, generates the surface of minimum area.

We choose the line 2 for the x-axis of a rectangular system of co-ordinates, and denote the co-ordinates of the points A and B by \(x_0, y_0\) and \(x_1, y_1\) respectively. Then for a curve

\[y = f(x) \]

1 The problem of the Calculus of Variations has, however, been extended beyond the domain of definite integrals (viz., to functions defined by differential equations) by A. Mayer, Leipzig Berichte, 1878 and 1895. Compare Kneser, Lehrbuch, chap. vii.
Calculus of Variations

joining the two points \(A \) and \(B \), the area in question is given by the definite integral

\[
J = 2\pi \int_{x_0}^{x_1} y \sqrt{1 + y'^2} \, dx.
\]

where \(y' \) stands for the derivative \(f'(x) \). For different curves the integral will take, in general, different values; and our problem is then analytically: among all functions \(f(x) \) which take for \(x = x_0 \) and \(x = x_1 \) the prescribed values \(y_0 \) and \(y_1 \) respectively, to determine the one which furnishes the smallest value for the integral \(J \).

This formulation of the problem implies, however, a number of tacit assumptions, which it is important to state explicitly:

\(a) \) In the first place, we must add some restrictions concerning the nature of the functions \(f(x) \) which we admit to consideration. For, since the definite integral contains the derivative \(y' \), it is tacitly supposed that \(f(x) \) has a derivative; the function \(f(x) \) and its derivative must, moreover, be such that the definite integral has a determinate finite value. Indeed, the problem becomes definite only if we confine ourselves to curves of a certain class, characterized by a well-defined system of conditions concerning continuity, existence of derivative, etc.

For instance, we might admit to consideration only functions \(f(x) \) with a continuous first derivative; or functions with continuous first and second derivatives; or analytic functions, etc.

\(b) \) Secondly, by assuming the curves representable in the form \(y = f(x) \), where \(f(x) \) is a single-valued function of \(x \), we have tacitly introduced an important restriction, viz., that we consider only those curves which are met by every ordinate between \(x_0 \) and \(x_1 \) at but one point.

\(1 \) \(a \) being a real positive quantity, \(\sqrt{a} \) will always be understood to represent the positive value of the square root.
§1] First Variation

We can free ourselves from this restriction by assuming the curve in parameter-representation:

\[x = \phi(t) \quad \text{and} \quad y = \psi(t) \]

The integral which we have to minimize becomes then

\[J = 2\pi \int_{t_0}^{t_1} y \sqrt{1 + (x')^2 + (y')^2} \, dt \]

where \(x' = \phi'(t) \), \(y' = \psi'(t) \), and where \(t_0 \) and \(t_1 \) are the values of \(t \) which correspond to the two end-points.

c) It is further to be observed that our definite integral represents the area in question only when \(y \geq 0 \) throughout the interval of integration. The problem implies, therefore, the condition that the curves shall lie in a certain region of the \(x, y \)-plane (viz., the upper half-plane).

d) Our formulation of the problem tacitly assumes that there exists a curve which furnishes a minimum for the area. But the existence of such a curve is by no means self-evident. We can only be sure that there exists a lower limit for the values of the area; and the decision whether this lower limit is actually reached or not forms part of the solution of the problem.

The problem may be modified in various ways. For instance, instead of assuming both end-points fixed, we may assume one or both of them movable on given curves.

An essentially different class of problems is represented by the following example:

1 Compare chap. iv. Even in this generalized form the analytic problem is not quite so general as the original geometrical problem. For the area in question may exist and be finite, and yet not be representable by the above definite integral. This suggests an extension of the problem of the Calculus of Variations, first considered by Weierstrass. Compare §§ 31 and 44.

2 A restriction of the same nature, but from other reasons, occurs in the problems of the brachistochrone and of the geodesic; compare § 26.

3 Compare E. I A. p. 72, and II A. p. 9; J. I, No. 25; and P., No. 20.
Example II: Among all closed plane curves of given perimeter to determine the one which contains the maximum area.

If we use parameter-representation, the problem is to determine among all curves for which the definite integral

$$\int_{t_0}^{t_1} \sqrt{x'^2 + y'^2} \, dt$$

has a given value, the one which maximizes the integral

$$J = \frac{1}{2} \int_{t_0}^{t_1} (x' y' - x y') \, dt .$$

Here the curves out of which the maximizing curve is to be selected are subject—apart from restrictions of the kind which we have mentioned before—to the new condition of furnishing a given value for a certain definite integral. Problems of this kind are called "isoperimetric problems;" they will be treated in chap. vi.

The preceding examples are representatives of the simplest—and, at the same time, most important—type of problems of the Calculus of Variations, in which are considered definite integrals depending upon a plane curve and containing no higher derivatives than the first. To this type we shall almost exclusively confine ourselves.

The problem may be generalized in various directions:

1. Higher derivatives may occur under the integral.

2. The integral may depend upon a system of unknown functions, either independent or connected by finite or differential relations.

3. Extension to multiple integrals.

For these generalizations we refer the reader to C. Jordan, Cours d'Analyse, 2e éd., Vol. III, chap. iv; Pascal-(Schepp), Die Variationsrechnung (Leipzig, 1899); and Kneser, Lehrbuch der Variationsrechnung (Braunschweig, 1900), Abschnitt VI, VII, VIII.
§2. Agreements regarding notation and terminology

a) We consider exclusively real variables. The "interval \((a \ b)\)" of a variable \(x\) — where the notation always implies \(a < b\) — is the totality of values \(x\) satisfying the inequality \(a \leq x \leq b\). The "vicinity \((\delta)\) of a point \(x_1 = a_1, x_2 = a_2, \ldots, x_n = a_n\)" is the totality of points \(x_1, x_2, \ldots, x_n\) satisfying the inequalities:

\[
|x_1 - a_1| < \delta, \quad |x_2 - a_2| < \delta, \quad \ldots, \quad |x_n - a_n| < \delta.
\]

The word "domain" will be used in the same sense as the German Bereich, i. e., synonymous with "set of points" (compare E. II A, p. 44). The word "region" will be used:

(a) for a "continuum," i. e., a set of points which is "connected" and made up exclusively of "inner" points; in this case the boundary does not belong to the region ("open" region);
(b) for a continuum together with its boundary ("closed" region);
(c) for a continuum together with part of its boundary. The region may be finite or infinite; it may also comprise the whole \(n\)-dimensional space.

When we say: a curve lies "in" a region, we mean: each one of its points is a point of the region, not necessarily an inner point.

For the definition of "inner" point, "boundary point" (frontière), and "connected" (d'un seul tenant) we refer to E. II A, p. 44; J. I, Nos. 22, 31; and Hurwitz, Verhandlungen des ersten internationalen Mathematikercongresses in Zürich, p. 94.

b) By a "function" is always meant a real single-valued function.

The substitution of a particular value \(x = x_0\) in a function \(\phi(x)\) will be denoted by

\[
\phi(x)|^{x_0} = \phi(x_0);
\]

The reader is advised to proceed directly to §3 and to use §2 only for reference.
similarly
\[\phi(x, y) \bigg|_{x=x_0, y=y_0} = \phi(x_0, y_0) ; \]
also
\[\left[\phi(x) \right]^{x_1}_{x_0} = \phi(x_1) - \phi(x_0) . \]
Instead we shall also use the simpler notation
\[\phi(x) \big|_0^0, \phi(x, y) \big|_0^0, \left[\phi(x) \right]^0_0 \]
where it can be done without ambiguity, compare c).

We shall say: a function has a certain property in a domain \(S \) of the independent variables, if it has the property in question at all points of the domain \(S \), no matter whether they are interior or boundary points.

A function of \(x_1, x_2, \ldots, x_n \) has a certain property in the vicinity of a point \(x_1 = a_1, x_2 = a_2, \ldots, x_n = a_n \), if there exists a positive quantity \(\delta \) such that the function has the property in question in the vicinity (\(\delta \)) of the point \(a_1, a_2, \ldots, a_n \).

If \(L \phi(h) = 0 \), we shall say: \(\phi(h) \) is an "infinitesimal" (for \(Lh = 0 \)); such an infinitesimal will in a general way be denoted by \((h) \). Also an independent variable \(h \) which in the course of the investigation is made to approach zero, will be called an "infinitesimal."

c) Derivatives of functions of one variable will be denoted by accents, in the usual manner:
\[f''(x) = \frac{df(x)}{dx}, \quad f'''(x) = \frac{d^2f(x)}{dx^2}, \quad \text{etc.} \]

For brevity we shall use the following terminology\(^2\) for various classes of functions which will frequently occur in the sequel. We shall say that a function \(f(x) \) which is defined in an interval \((x_0, x_1)\) is

\(^1\)Or, with more emphasis, "throughout."

\(^2\)The letters \(C, D \) are to suggest "continuous," "discontinuous;" the accents the order of the derivative involved.
First Variation

of class C if $f(x)$ is continuous
of class C' if $f(x)$ and $f'(x)$ are continuous
of class $C^{(n)}$ if $f(x), f'(x), \ldots, f^{(n)}(x)$ are continuous

with the understanding concerning the extremities of the interval that the definition of $f(x)$ can be so extended beyond (x_0, x_1) that the above properties still hold at x_0 and x_1.

If $f(x)$ itself is continuous, and if the interval (x_0, x_1) can be divided into a finite number of subintervals

$$(x_0, c_1), (c_1, c_2), \ldots, (c_{n-1}, c_1),$$

such that in each subinterval $f(x)$ is of class $C'(C'')$, whereas $f'(x)$ ($f''(x)$) is discontinuous at $c_1, c_2, \ldots, c_{n-1}$, we shall say that $f(x)$ is of class $D'(D'')$. We consider class $C'(C'')$ as contained in $D'(D'')$, viz., for $n = 1$.

From these definitions it follows that, for a function of class D', the progressive1 and regressive derivatives $f'(c_r), f''(c_r)$ exist, are finite and equal to the limiting values2

$f'(c_r - 0), f''(c_r - 0)$ respectively.

d) Partial derivatives of functions of several variables will be denoted by literal subscripts (Kneser):

$$F_y(x, y, p) = \frac{\partial F(x, y, p)}{\partial y},$$

$$F_{yp}(x, y, p) = \frac{\partial}{\partial p} \left(\frac{\partial F(x, y, p)}{\partial y} \right),$$

etc.

also

$$F_y(x_0, y_0, p_0) = \left. \frac{\partial F(x, y, p)}{\partial y} \right|_{y = y_0, p = p_0}.$$

Also of a function of several variables we shall say that it is of class $C^{(n)}$ in a domain \mathfrak{D} if all its partial derivatives

up to the n^{th} order inclusive exist and are continuous in the domain \mathcal{S}.

c) The letters x, y will always be used for rectangular co-ordinates with the usual orientation of the positive axes, i.e., the positive y-axis to the left of the positive x-axis. It will frequently be convenient to designate points by numbers: 0, 1, 2, \cdots; the co-ordinates of these points will then always be denoted by x_0, y_0; x_1, y_1; x_2, y_2; \cdots respectively; their parameters, if they lie on a curve given in parameter-representation, by t_0, t_1, t_2, \cdots.

A curve\(^2\) (arc of curve)

$$y = f(x), \quad x_0 \leq x \leq x_1,$$

will be said to be of class C, C', etc., if the function $f(x)$ is of class C, C', etc., in (x_0, x_1). In particular, a curve of class D' is continuous and made up of a finite number of arcs with continuously turning tangents, not parallel to the y-axis. The points of the curve whose abscissae are the points of discontinuity C_1, C_2, \cdots, C_{n-1} of $f''(x)$, \cdots will be called its corners. At a corner the curve has a progressive and a regressive tangent, and,

$$\tan^+ a = f'(c), \quad \tan^- a = f'(c).$$

(See Fig. 1.)

f) The integral

$$J = \int F(x, y, y') \, dx$$

taken along the curve

$$\mathcal{C}: \quad y = f(x), \quad x_0 \leq x \leq x_1$$

\(^1\)When \mathcal{S} contains boundary points, an agreement similar to that in the case of one variable is necessary with respect to these points.

\(^2\)The corresponding definitions for curves in parameter-representation will be given in §24.
§3. First Variation

from the point $A (x_0, y_0)$ to the point $B (x_1, y_1)$, i. e., the integral

$$\int_{x_0}^{x_1} F(x, f(x), f'(x)) \, dx$$

will be denoted by $J_\varepsilon (AB)$ (more briefly J_ε or $J (AB)$); or by $J_{\mu, \nu}$, if the end-points are designated by numbers: μ, ν.

$g)$ The distance between the two points P and Q will be denoted by $|PQ|$, the circle with center O and radius r by (O, r) (Harkness and Morley). The angle which a vector makes with the positive x-axis will be called its \textit{amplitude}.

§3. General formulation of the problem1

$a)$ After these preliminary explanations, the simplest problem of the Calculus of Variations may be formulated in the most general way, as follows:

There is given:

1. A well-defined infinitude \mathfrak{M} of curves, representable in the form

$$y = f(x), \quad x_0 \equiv x \equiv x_1;$$

the end-points and their abscissae x_0, x_1 may vary from curve to curve. We shall refer to these curves as “admissible curves.”

2. A function $F(x, y, y')$ of three independent variables such that for every admissible curve C, the definite integral

$$J_\varepsilon = \int_{x_0}^{x_1} F(x, y, y') \, dx \tag{1}$$

has a determinate finite value.

The set\(^1\) of values \(J_{\bar{e}}\) thus defined has always a lower limit, \(K\), and an upper limit, \(G\) (finite or infinite\(^2\)). If the lower (upper) limit is finite, and if there exists an admissible curve \(\mathcal{C}\) such that
\[
J_{\bar{e}} = K, \quad (J_{\bar{e}} = G)
\]
the curve \(\mathcal{C}\) is said to furnish the absolute minimum (maximum) for the integral \(J\) (with respect to \(\mathfrak{A}\)). For every other admissible curve \(\overline{\mathcal{C}}\) we have then
\[
J_{\bar{e}} \geq J_{\overline{\mathcal{C}}}, \quad (J_{\bar{e}} \leq J_{\overline{\mathcal{C}}}).
\]

The word "extremum"\(^3\) will be used for maximum and minimum alike, when it is not necessary to distinguish between them.

Hence the problem arises: to determine all admissible curves which, in this sense, minimize or maximize the integral \(J\).

\(b\) As in the theory of ordinary maxima and minima, the problem of the absolute extremum, which is the ultimate aim of the Calculus of Variations, is reducible to another problem which can be more easily attacked, viz., the problem of the relative extremum:

An admissible curve \(\mathcal{C}\) is said to furnish a relative minimum\(^4\) (maximum) if there exists a "neighborhood \(\mathfrak{U}\) of the curve \(\mathcal{C}\)," however small, such that the curve \(\mathcal{C}\) furnishes an absolute minimum with respect to the totality \(\mathfrak{M}_{t}\) of those curves of \(\mathfrak{M}\) which lie in this neighborhood; and by a neighborhood \(\mathfrak{U}\) of the curve \(\mathcal{C}\) we understand any region\(^5\) which contains \(\mathcal{C}\) in its interior.

1. By "set" we translate the German Punktmenge, the French ensemble. J. I, No. 20.
2. The upper limit is \(+\infty\), if for every preassigned positive quantity \(A\) there exist curves \(e\) for which \(J_{\bar{e}} > A\); see E. II A, p. 9.
4. In the use of the words "absolute" and "relative" I follow Voss in E. II A, p. 80. Many authors call the isoperimetric problems "problems of relative maxima and minima."
5. For the definition of the term "region," see p. 5.
According to Stolz, the relative minimum (maximum) will be called *proper*, if there exists a neighborhood \mathfrak{U} such that in (2) the sign $> (<)$ holds for all curves \bar{C} different from C; *improper* if, however the neighborhood \mathfrak{U} may be chosen, there exists some curve \bar{C} different from C for which the equality sign has to be taken.

A curve which furnishes an absolute extremum evidently furnishes *a fortiori* also a relative extremum. Hence the original problem is reducible\(^1\) to the problem: to determine all those curves which furnish a relative minimum; and in this form we shall consider the problem in the sequel.

We shall henceforth always use the words "minimum," "maximum," in the sense of relative minimum, maximum; and we shall confine ourselves to the case of a minimum, since every curve which minimizes J, at the same time maximizes $-J$, and *vice versa*.

c) In the abstract formulation given above, the problem would hardly be accessible to the methods of analysis; to make it so, it is necessary to specify some concrete assumptions concerning the admissible curves and the function F.

For the present, we shall make the following assumptions:

A. The infinitude \mathfrak{M} of admissible curves shall be the totality of all curves satisfying the following conditions:

1. They pass through two given points $A(x_0, y_0)$ and $B(x_1, y_1)$.
2. They are representable in the form

 \[y = f(x), \quad x_0 \equiv x \equiv x_1, \]

 \(f(x) \) being a single-valued function of x.
3. They are continuous and consist of a finite number of

\(^1\) After the relative problem has been solved, it merely remains to pick out among its solutions those which furnish the smallest or largest value for J. Only if the relative problem should have an infinitude of solutions, new difficulties would arise. For a direct treatment of the problem of the absolute extremum compare Hilbert's existence proof (chap. vii): Darboux, *Théorie des surfaces*, Vol. III, p. 89; and Zermelo, *Jahresbericht der Deutschen Mathematiker-Vereinigung*, Vol. XI (1902), p. 184.
were with continuously turning tangents, not parallel to the
y-axis; i. e., in the terminology of § 2, $f(x)$ is of class D'.

4. They lie in a given region \mathbb{R} of the x, y-plane.

B. The function $F'(x, y, p)$ shall be continuous and admit continuous partial derivatives of the first, second, and third orders in a domain \mathcal{T} which consists of all points (x, y, p) for which (x, y) is a point of \mathbb{R}, and p has a finite value.

Under these assumptions the definite integral J taken along any admissible curve C is always finite and determinate, provided we define, in the case of a curve with corners, the integral as the sum of integrals taken between two successive corners. Since we suppose the end-points A and B fixed and the curves representable in the form $y = f(x)$, the curves C all lie between the two lines $x = x_0$ and $x = x_1$, with the exception of the end-points, which lie on these lines.

Hence it follows that we may, in the present case, give the following simpler definition of a minimum: An admissible curve $C: y = f(x)$ minimizes the integral J, if there

\begin{enumerate}
\item Compare § 2, a).
\item I follow here the example of Pascal, loc. cit., p. 21, and Osgood, loc. cit., p. 165. Weierstrass, Jordan, and Kneser suppose the function $F(x, y, p)$ to be analytic.
\item If we interpret p as a third co-ordinate perpendicular to the x, y-plane, \mathcal{T} is the cylinder, infinite in both directions, whose base is the region \mathbb{R}.
\item "Point" in the sense of the theory of "point-sets." Compare E. H. A. p. 44, and J. I., No. 20.
\item If the curve has no corners, this follows at once from elementary theorems on continuous functions (J. I, Nos. 60, 66). If the curve has corners, the integral J_θ has no immediate meaning. But the two integrals

$$
\int_{x_0}^{x_1} F(x, f(x), f'(x)) dx \quad \text{and} \quad \int_{x_0}^{x_1} F(x, f(x), f'(x)) dx
$$

are finite and determinate and equal to each other, and at the same time equal to the sum of integrals mentioned in the text. Compare Dini, loc. cit., § 62; § 187, 2; § 190, 9; and § 190, 2.
\item In admitting the equality sign in the inequality (2), I deviate from the conventions generally adopted in the Calculus of Variations and follow Stolz (Grundzüge der Differentialrechnung, Vol. 1, p. 199), whose definition is more consistent with the usual definition of absolute minimum. If the equality sign were omitted, it could not be said that every curve which furnishes an absolute minimum furnishes a fortiori also a relative minimum.
\end{enumerate}
exists a positive quantity \(\rho \) such that \(J_\varepsilon = J_\epsilon \) for every admissible curve \(C: y = \bar{f}(x) \) which satisfies the inequality
\[
|\bar{y} - y| < \rho \quad \text{for} \quad x_0 \leq x \leq x_1 .
\]

This means geometrically that the curve \(\bar{C} \) lies in the interior\(^1\) of the strip of the \(x, y \)-plane between the two curves
\[
y = f(x) + \rho , \quad y = f(x) - \rho
\]
on the one hand, and the two lines \(x = x_0, x = x_1 \) on the other hand. This strip we shall call "the neighborhood\(^2\) (\(\rho \)) of the curve \(C \)," the points \(A \) and \(B \) being included, the rest of the boundary excluded.

\section*{§4. Vanishing of the First Variation}

We now suppose we have found a curve \(C: y = f(x) \) which minimizes the integral
\[
J = \int_{x_0}^{x_1} F(x, y, y') \, dx
\]
in the sense explained in the last section. We further suppose, for the present,\(^3\) that \(f'(x) \) is continuous in \((x_0, x_1)\) and that \(C \) lies entirely in the interior of the region \(\mathbb{R} \).

From the last assumption it follows that we can construct\(^4\) a neighborhood (\(\rho \)) of \(C \) which lies entirely in the interior of \(\mathbb{R} \).

\(\text{Fig. 2}\)

\(1\) Except, of course, the points \(A \) and \(B \).

\(2\) Compare Osgood, loc. cit., p. 107.

\(3\) These restrictions will be dropped in §§9 and 10.

\(4\) About any point \(P \) of \(\mathbb{R} \) we can construct a circle \((P, r)\) which lies entirely in \(\mathbb{R} \), since \(P \) is an inner point of \(\mathbb{R} \). Let \(\rho_P \) be the upper limit of the values of \(x \) for which this takes place. Then \(\rho_P \) varies continuously as \(P \) describes the curve \(\mathbb{R} \) (Weierstrass, Werke, Vol. II, p. 204) and reaches therefore a positive minimum value \(\rho_0 \) (compare E. II A, p. 19 and J. I, No. 64, Cor.). If we choose \(\rho < \rho_0 \) the neighborhood (\(\rho \)) of \(\mathbb{R} \) will lie in the interior of \(\mathbb{R} \).
We then replace the curve \(C \) by another admissible curve \(\bar{C} \):
\[
\bar{y} = \bar{f}(x) ,
\]
lying entirely in the neighborhood \((\rho)\).

The increment
\[
\Delta y = \bar{y} - y = \bar{f}(x) - f(x) ,
\]
which we shall denote by \(\omega \), is called the total variation of \(y \).

Since \(C \) and \(\bar{C} \) pass through \(A \) and \(B \), we have
\[
\omega(x_0) = 0 , \quad \omega(x_1) = 0 , \quad (4)
\]
and since \(\bar{C} \) lies in \((\rho)\),
\[
|\omega(x)| < \rho \quad \text{in} \quad (x_0, x_1) . \quad (4a)
\]

The corresponding increment of the integral,
\[
\Delta J = J_{\bar{C}} - J_C ,
\]
is called the total variation of the integral \(J \); it may be written:
\[
\Delta J = \int_{x_0}^{x_1} \left[F(x, y + \omega, y' + \omega') - F(x, y, y') \right] dx .
\]

Since \(\bar{C} \) is supposed to minimize \(J \), we shall have
\[
\Delta J \leq 0 ,
\]
provided that \(\rho \) has been chosen sufficiently small.

For the next step in the discussion of this inequality two different methods have been proposed:

\(a) \) Application of Taylor's formula: If we apply Taylor's formula to the integrand of \(\Delta J \), we obtain, in the notation of \(\S 2, d) \),

1 The process of replacing \(y \) by \(\bar{y} \) is called "a variation of the curve \(y \);" the same term is frequently applied to the curve \(\bar{y} \) itself, which is sometimes also called "the varied curve," or "a neighboring curve."

2 The conditions for the applicability of Taylor's formula are fulfilled, compare E. II A, p. 77, and J. I, No. 233. \(F_y, F_{yy}, \) etc., are synonymous with \(F_x, F_{xy}, \) etc.

The method here used was first given by Lagrange. See Oeuvres, Vol. IX, p. 297. Compare also Vo Bois-Reymond, Mathematische Annalen, Vol. XV (1879), p. 292, and Pascal-Schepp, Die Variationrechnung, p. 22. Instead of Taylor's formula with the remainder-term, Weierstrass (Lectures), Kneser (Lehrbuch der Variationsrechnung, \(\S 8 \)), and C. Jordan (Cours d'Analyse, Vol. III, No. 350), who suppose \(F(x, y, p) \) to be analytic, use Taylor's expansion into an infinite series. Here, however, the question of integration by terms should be considered.
\[\Delta J = \int_{x_0}^{x_1} (F_y' \omega + F_y' \omega') \, dx + \frac{1}{2} \int_{x_0}^{x_1} (2 \tilde{F}_{yy} \omega^{\prime 2} + 2 \tilde{F}_{yy} \omega \omega' + \tilde{F}_{yy} \omega') \, dx, \]

where the arguments of \(F_y \) and \(F_y' \) are \(x, y, y' \), those of \(\tilde{F}_{yy}, \tilde{F}_{yy}' \): \(x, y + \theta \omega, y' + \theta \omega' \), \(\theta \) being a quantity between 0 and 1.

We now consider, with Lagrange, \(^1\) special \(^2\) variations of the form

\[\omega = \epsilon \eta, \quad (5) \]

where \(\eta \) is a function of \(x \) of class \(D' \) which vanishes for \(x = x_0 \) and \(x = x_1 \), and \(\epsilon \) a constant whose absolute value is taken so small that (4a) is satisfied.

Then \(\Delta J \) takes the form \(^3\)

\[\Delta J = \epsilon \left\{ \int_{x_0}^{x_1} (F_y' \eta + F_y' \eta') \, dx + (\epsilon) \right\}, \quad (6) \]

where \((\epsilon)\) denotes an infinitesimal for \(L \epsilon = 0 \).

Hence we infer that we must have

\[\int_{x_0}^{x_1} (F_y' \eta + F_y' \eta') \, dx = 0 \quad (7) \]

for all functions \(\eta \) of class \(D' \) which vanish at \(x_0 \) and \(x_1 \);

\(^1\) Oeuvres, Vol. IX, p. 298.

\(^2\) For the purpose of deriving necessary conditions, we may specialize the variations as much as convenient. It will be different when we come to sufficient conditions (compare §17).

\(^3\) Proof: We suppose first that \(\eta'(x) \) is continuous in \((x_0, x_1) \) and denote by \(\mu \) and \(\mu' \) the maxima of \(|\eta(x)| \) and \(|\eta'(x)| \) in \((x_0, x_1) \), and by \(q \) a quantity greater than the maximum of \(|f(x)| \) in \((x_0, x_1) \). Having once chosen the function \(\eta(x) \), we can then determine a positive quantity \(\delta \) such that the point \((x, y) \) lies in the neighborhood \((\rho) \) of \(e \) and that \(-q < y < q \) for every \(x \) in \((x_0, x_1) \), provided that \(|\epsilon| < \delta \). On the other hand, the three functions \(|\tilde{F}_{yy}|, |\tilde{F}_{yy}'|, |\tilde{F}_{yy}''| \) remain, in this domain, below a finite fixed quantity \(G \). Hence, by the mean-value theorem,

\[\int_{x_0}^{x_1} (2 \tilde{F}_{yy} \omega^{\prime 2} + 2 \tilde{F}_{yy} \omega \omega' + \tilde{F}_{yy} \omega') \, dx \leq \epsilon^2 G (\mu^2 + 2 \mu \mu' + \mu'') (x_1 - x_0). \]

If \(\eta'(x) \) is not continuous in \((x_0, x_1) \), apply the same reasoning to the integrals taken between two successive corners of \(\epsilon \).
for otherwise we could make ΔJ negative as well as positive by giving ϵ once negative and once positive sufficiently small values.

b) Differentiation with respect to ϵ: The same result (7) as well as formula (6) can be obtained by the remark, due to Lagrange,1 that by the substitution of $\epsilon \eta$ for ω, the integral J becomes a function of ϵ, say $J(\epsilon)$, which must have a minimum for $\epsilon = 0$. Hence we must have2 $J'(0) = 0$. If $\eta(x)$ is of class C' in (x_0, x_1), it follows from our assumptions concerning the function F' and the curve C that

\[
\frac{\partial F'(x, y(x) + \epsilon \eta(x), y'(x) + \epsilon \eta'(x))}{\partial \epsilon}
\]

is a continuous function of x and ϵ in the domain.

$x_0 \leq x \leq x_1$, $|\epsilon| \leq \epsilon_0$, ϵ_0 being a sufficiently small positive quantity, and therefore the ordinary rule3 for the differentiation of a definite integral with respect to a parameter may be applied. Hence we obtain

\[
\left. \frac{dJ(\epsilon)}{d\epsilon} \right|_{\epsilon=0} = \int_{x_0}^{x_1} \left(F_y \eta + F_{y'} \eta' \right) dx.
\]

This proves (7) and at the same time (6), since by the definition of the derivative,

\[
\Delta J = J(\epsilon) - J(0) = \epsilon \left(J'(0) + \epsilon \right).
\]

If $\eta(x)$ is of class D', decompose the integral \bar{J} in the manner described in §3, c), and then proceed as above.

c) The symbol δ: We now make use of the following permanent notation introduced by Lagrange4 (1760).

Let $\phi(x, y, y', y'', \cdots)$ be a function of x, y and some of the derivatives of y, whose partial derivatives with respect

1 Oeuvres, Vol. X, p. 400. This method has been adopted by Lindelöf-Moigno, Dienguer, and Osgood.

2 Moreover $J''(0)$ must be $\equiv 0$. This condition will be discussed in chap. ii.

3 Compare E. 11 A, p. 102; J. I, No. 83.

to y, y', y'', \ldots up to the nth order exist and are continuous in a certain domain. Then if we replace y by $\dot{y} = y + \epsilon \eta$, and accordingly y' by $\dot{y}' = y' + \epsilon \eta'$, etc., we can expand the function

$$\phi = \phi (x, y + \epsilon \eta, y' + \epsilon \eta', \ldots)$$

according to powers of ϵ and obtain an expansion of the form

$$\phi = \phi + \frac{\epsilon}{1!} \phi_1 + \frac{\epsilon^2}{2!} \phi_2 + \cdots + \frac{\epsilon^n}{n!} \phi_n + \epsilon^n (\epsilon) .$$

where (ϵ) denotes as usual an infinitesimal, and

$$\phi_1 = \phi_y \eta + \phi_y' \eta' + \cdots$$
$$\phi_2 = \phi_{yy} \eta^2 + \phi_{yy}' \eta'^2 + \cdots + 2 \phi_{yy} \eta \eta' + \cdots$$

The quantities $\epsilon \phi_1$, $\epsilon^2 \phi_2$, \ldots are called the first, second, \ldots variation of ϕ and are denoted by $\delta \phi$, $\delta^2 \phi$, \ldots respectively.

It is easily seen that

$$\delta^k \phi = \delta (\delta^{k-1} \phi) .$$

Again, if ϕ does not contain ϵ, $\delta^k \phi$ may be defined by

$$\delta^k \phi = \frac{\partial^k \phi}{\partial \epsilon^k} \bigg|_{\epsilon = 0} \epsilon^k .$$

Similarly, $\delta^k J$ is defined as the term of order k multiplied by $k!$, in the expansion of

$$\overline{J} = \int_{x_0}^{x_1} F (x, y + \epsilon \eta, y' + \epsilon \eta') \, dx$$

according to powers of ϵ, the possibility of this expansion up to terms of order k being, of course, presupposed. Accordingly

$$\delta^k J = \frac{d^k \overline{J}}{d \epsilon^k} \bigg|_{\epsilon = 0} \epsilon^k .$$
It follows immediately\(^1\) that
\[
\delta^k J = \int_{x_0}^{x_1} \delta^k F \, dx .
\]
In particular
\[
\delta J = \epsilon \int_{x_0}^{x_1} (F' \eta + F'' \eta') \, dx .
\] (8)

We may therefore formulate the result reached above as follows: For an extremum it is necessary that the first variation of the integral \(J\) shall vanish for all admissible variations of the function \(y\).

\(d)\) More general type of variations: For many investigations it is necessary to extend the important formula (6) to variations of the following more general type:\(^2\)
\[
\omega = \omega (x, \epsilon) ,
\] (5a)
where \(\omega (x, \epsilon)\) is a function of \(x\) and \(\epsilon\) which vanishes identically for \(\epsilon = 0\). We suppose that \(\omega (x, \epsilon)\) together with the partial derivatives \(\omega_x, \omega_\epsilon, \omega_{x\epsilon}\) are continuous in the domain
\[
x_0 \leq x' \leq x_1 , \quad |\epsilon| \leq \epsilon_0 ,
\]
\(\epsilon_0\) being a sufficiently small positive quantity.

Moreover, in the case when both end-points are fixed
\[
\omega (x_0, \epsilon) = 0 \quad \text{and} \quad \omega (x_1, \epsilon) = 0
\]
for every \(|\epsilon| \leq \epsilon_0\). If we denote \(\omega (x, 0)\) by \(\eta(x)\), formula (6) holds also for variations of type (5a). This can be most easily proved by the method explained under \(b)\).

For the function
\[
J (\epsilon) = \int_{x_0}^{x_1} F (x, y (x) + \omega (x, \epsilon), y' (x) + \omega_x (x, \epsilon)) \, dx
\]
must have a minimum for \(\epsilon = 0\), and therefore \(J (0) = 0\). From the above assumptions concerning \(\omega (x, \epsilon)\) it follows that differentiation under the sign is allowed and that \(\omega_{x\epsilon}\) exists and is equal\(^3\) to \(\omega_{x\epsilon}\).

\(^1\)Provided always that the limits are fixed and that the ordinary rules for the differentiation of a definite integral with respect to a parameter are applicable.

\(^2\)Such variations were already considered by Lagrange, *Oeuvres*, Vol. X, p. 400.

\(^3\)Compare E. II A, p. 73.
Hence we obtain\(^1\) also in the present case

\[
J'(0) = \int_{x_0}^{x_1} (F_y'\eta + F_y''\eta')\,dx ,
\]

which leads immediately to (6).

For variations of type (5a) the definition of the symbol \(\delta\) must be modified. In order to cover also the case of variable end-points, we suppose that \(\bar{x}_0\) and \(\bar{x}_1\) are functions of \(\varepsilon\) which reduce to \(x_0\) and \(x_1\) respectively, for \(\varepsilon = 0\). Putting then as before

\[
\bar{y} = y(x) + \omega(x, \varepsilon) , \quad \bar{y}' = y'(x) + \omega'(x, \varepsilon) ,
\]

we define\(^2\)

\[
\delta^k J = \frac{\partial^k}{\partial \varepsilon^k} \int_{x_0}^{x_1} F(x, \bar{y}, \bar{y}')\,dx \bigg|_{\varepsilon = 0} ,
\]

and similarly if \(\phi\) is a function of \(x, y, y', \ldots\) and \(\bar{x}_0, \bar{x}_1, \ldots\),

\[
\delta^k \phi = \frac{\partial^k \phi (x, \bar{y}, \bar{y}', \ldots, \bar{x}_0, \bar{x}_1)}{\partial \varepsilon} \bigg|_{\varepsilon = 0} \cdot \varepsilon^k .
\]

The definition of the symbol \(\delta\) given under \(b)\) is a special case of this general definition.

The method of differentiation with respect to \(\varepsilon\), especially when combined with the consideration of variations of type (5a), seems to reduce the problem of the Calculus of Variations to a problem of the theory of ordinary maxima and minima; only apparently, however; for, as will be seen later, the method furnishes only necessary

\(^1\) For variations of the special type (5) equation (6) may also be written

\[
\Delta J = \int_{x_0}^{x_1} (F_y'\omega + F_y''\omega')\,dx + \varepsilon (\varepsilon) .
\]

This formula remains true for variations of the more general type (5a). From the properties of \(\omega(x, \varepsilon)\) it follows that the quotients

\[
(\omega(x, \varepsilon) - \omega(x, 0))/\varepsilon \quad \text{and} \quad (\omega_x(x, \varepsilon) - \omega_x(x, 0))/\varepsilon
\]

approach for \(\varepsilon = 0\) their respective limits \(\omega_x(x, 0)\) and \(\omega_{xx}(x, 0)\) uniformly for all values of \(x\) in the interval \((\alpha, \beta)\) (compare E. II A, pp. 18, 49, 52, 65; J. I, Nos. 62, 78 and P., Nos. 45, 100). Hence it follows that

\[
\int_{x_0}^{x_1} (F_y'\omega + F_y''\omega')\,dx = \varepsilon \int_{x_0}^{x_1} (F_y'\eta + F_y''\eta')\,dx + \varepsilon (\varepsilon) ,
\]

which proves the above statement.

\(^2\) Always under the assumption that all the derivatives occurring in the process exist and are continuous.
conditions, but is inadequate for the discussion of sufficient conditions, whereas the method based upon Taylor's formula, though less elegant, furnishes not only necessary but also sufficient conditions, at least for a so-called weak minimum (compare §17, b).

c) Transformation of the first variation by integration by parts:

For the further discussion of equation (7) it is customary to integrate the second term of \(\delta J \) by parts:

\[
\delta J = \epsilon \left[\eta F_y \right]_{x_0}^{x_1} + \int_{x_0}^{x_1} \eta \left(F_y - \frac{d}{dx} F_y \right) dx \tag{9}
\]

Since \(\eta \) vanishes at \(x_0 \) and \(x_1 \), this leads to the result that for an extremum it is necessary that

\[
\int_{x_0}^{x_1} \eta \left(F_y - \frac{d}{dx} F_y \right) dx = 0 \tag{10}
\]

for all functions \(\eta \) of class \(D' \) which vanish at \(x_0 \) and \(x_1 \).

The integration by parts presupposes, however, that not only \(y' \) but also \(y'' \) exists and is continuous in \((x_0, x_1) \), and for the present we shall make this further restricting assumption\(^1\) concerning the minimizing curve.

§5. THE FUNDAMENTAL LEMMA AND EULER'S EQUATION

To derive further conclusions from the last equation we need the following theorem, which is known as the Fundamental Lemma of the Calculus of Variations:

If \(M \) is a function of \(x \) which is continuous in \((x_0, x_1) \), and if

\[
\int_{x_0}^{x_1} \eta M dx = 0 \tag{11}
\]

\(^1\)The necessity of this assumption was first emphasized by Du Bois-Reymond in the paper referred to on p. 9). If \(y'' \) does not exist, the existence of \(\frac{d}{dx} F_y \) becomes doubtful. The restriction will be dropped in §6. Discontinuities of \(y' \) of the kind here admitted do not interfere with the above results (9) and (10), since \(\eta \) itself is discontinuous. For the principles involved in the integration by parts, compare E. II A, p. 99, and J. I, Nos. 81, 84.
for all functions \(\eta \) which vanish at \(x_0 \) and \(x_1 \) and which admit a continuous derivative in \((x_0r_1)\), then

\[
M = 0 \quad (12)
\]

For suppose \(M(x') \neq 0 \), say \(> 0 \), at a point \(x' \) of the interval \((x_0r_1)\); then we can, on account\(^1\) of the continuity of \(M \), assign a subinterval \((\xi_0, \xi_1)\) of \((x_0r_1)\) containing \(x' \) and such that \(M > 0 \) throughout \((\xi_0, \xi_1)\). Now choose \(\eta \equiv 0 \) outside of \((\xi_0, \xi_1)\) and \(\eta = (x - \xi_0)^2(x - \xi_1)^2 \) in \((\xi_0, \xi_1)\); this function admits a continuous derivative in \((x_0r_1)\), vanishes at \(x_0 \) and \(x_1 \), and nevertheless makes

\[
\int_{x_0}^{x_1} \eta \, M \, dx > 0
\]

contrary to the hypothesis (11); therefore \(M(x') \neq 0 \) is impossible.\(^2\)

The conditions of this lemma are fulfilled for equation (10); for, since we suppose \(\eta'' \) to exist and to be continuous in \((x_0r_1)\), the function

\[
M = F_y - \frac{d}{dx} F_y
\]

is continuous\(^3\) in \((x_0r_1)\).

\(^1\)Compare P., No. 17.

\(^2\)This proof is due to Du Bois-Reymond (Mathematische Annalen, Vol. XV (1879), pp. 295, 300). In the same paper he proves that the conclusion \(M = 0 \) remains valid even if the equation (11) is known to hold only:

1. For all functions \(\eta \) having continuous derivatives up to the \(n \)th order, inclusive: proceed as above and choose, for \((\xi_0, \xi_1)\),

\[
\eta = (x - \xi_0)^{n+1} (\xi_1 - x)^{n+1} ;
\]

2. For all functions having all their derivatives continuous.

\(^3\)Compare J. I, No. 60, and P., No. 99.
Hence we obtain the *first necessary condition* for an extremum:

Fundamental Theorem I.

Every function \(y \) which minimizes or maximizes the integral

\[
J = \int_{x_0}^{x_1} F(x, y, y') \, dx
\]

must satisfy the differential equation

\[
F_y - \frac{d}{dx} F_y' = 0 .
\] (I)

This differential equation was first discovered by Euler in 1744, and will be referred to as Euler's (differential) equation.

§65. Du Bois-Reymond's and Hilbert's Proofs of Euler's Equation

The preceding method, which was based upon the integration by parts of §4, furnishes only those solutions of our problem which admit a continuous second derivative. The question arises: Do there exist any other solutions and if so, how can we find them?

In order to answer this question, we return to the equation

\(\delta J = 0 \)

in the original form (7) and, with Du Bois-Reymond and Hilbert, integrate the first, instead of the second, term by parts. Since \(\eta \) vanishes at both end-points, we get:

\[
\int_{x_0}^{x_1} \eta' (F_y' - \int_{x_0}^{x} F_y \, dx) \, dx = 0 .
\] (13)

1 We have proved this theorem only for functions \(y \) having a continuous second derivative. The extension to functions having only a continuous first derivative follows in §6, to functions of class \(D_t \) in §9.

2 Euler, *Methodus inveniendi lineas curvas maximi minimae proprietate gaudentes*, chap. ii, art. 21; in Stäckel's translation in Ostwald’s *Klassiker der exakten Wissenschaften*, No. 46, p. 54.

This integration by parts is legitimate, even if y'' should not exist, since it presupposes only the continuity1 of F_y and η.

We are thus led to the problem:

If $N(x)$ **be continuous in** (x_0, x_1), **and if**

$$\int_{x_0}^{x_1} \eta' N \, dx = 0$$

for all functions η **of class** C' **which vanish at** x_0 **and** x_1, **what follows with respect to** N?

The answer is that N **must be constant in** (x_0, x_1).

a) Du Bois-Reymond2 reaches this result by the following device:

Let ζ be any function which is continuous in (x_0, x_1) and satisfies the condition

$$\int_{x_0}^{x_1} \zeta \, dx = 0$$ \hspace{1cm} (15)

then the function

$$\eta = \int_{x_0}^{x} \zeta \, dx$$

is of class C' in (x_0, x_1) and vanishes for $x = x_0$ and $x = x_1$, and therefore, according to our hypothesis, satisfies (14), that is,

$$\int_{x_0}^{x_1} \zeta N \, dx = 0$$ \hspace{1cm} (16)

Thus it follows from our hypothesis that every continuous function which satisfies (15) necessarily satisfies (16) also.

Now let ζ_1 be any continuous function of x: and c the following constant:

$$c = \frac{1}{x_1 - x_0} \int_{x_0}^{x_1} \zeta_1 \, dx$$

then the function

$$\zeta = \zeta_1 - c$$

is continuous and satisfies (15), hence it must satisfy also (16), therefore.

1 The continuity of F_y follows from the continuity (compare the beginning of §4) of y' and from our assumption (B) concerning F; and η may be supposed continuous, since (9) must hold for all functions η of class D which vanish at x_0 and x_1, and therefore a fortiori for all functions η of class C which vanish at x_0 and x_1.

2 Loc. cit., p. 313.
\[\int_{x_0}^{x_1} \xi N \, dx = \int_{x_0}^{x_1} \xi_i(N - \lambda) \, dx = 0, \quad (17) \]

if we denote by \(\lambda \) the constant
\[\lambda = \int_{x_0}^{x_1} N \, dx / (x_1 - x_0). \]

But from (17) it follows by the Fundamental Lemma that\(^1\)
\[N = \lambda, \]
\(i. e., \) constant. Q. E. D.

\(b) \) Another, more direct, proof has been given by Hilbert\(^2\) in his lectures (summer 1899). He selects arbitrarily four values, \(a, \beta, a', \beta' \) satisfying the inequalities
\[x_0 < a < \beta < a' < \beta' < x_1, \]

and then builds up a function\(^3\) \(\eta \) of class \(C' \) which is equal to zero in \((x_0, a) \); increases from 0 to a positive value \(k \) as \(x \) increases from \(a \) to \(\beta \); remains constant, \(= k \) in \((\beta a') \); decreases from \(k \) to 0 as \(x \) increases from \(a' \) to \(\beta' \), and finally is equal to zero in \((\beta' x_1) \):

Substituting this function in (14), we obtain
\[\int_{x}^{\beta} \eta' N \, dx + \int_{x}^{\beta'} \eta' N \, dx = 0; \]
\(\eta' \) being positive in the first, and negative in the second, integral we can apply to both the first mean-value theorem\(^4\) which furnishes
\[k \left[N \left(a + \theta (\beta - a) \right) - N \left(a' + \theta' (\beta' - a') \right) \right] = 0, \]

where \(0 < \theta < 1 \) and \(0 < \theta' < 1 \).

Finally, let \(\beta \) and \(\beta' \) approach \(a \) and \(a' \) respectively; then it follows, since \(N \) is continuous, that

\(^1 \)This result is a special case of the isoperimetric modification of the Fundamental Lemma, see below chap. vi.

\(^3 \)Nothing more than the existence of such a function — which is a priori clear—is needed for the proof: Hilbert gives a simple example, see Whittemore's presentation.

\(^4 \)Compare E. II A, p. 97; J. I, No. 49; and P., No. 191, IV.
\[N(a) = N(a') , \]
i. e., \(N \) is constant in \((x_0 r_1)\).

c) Applying this lemma to (13) we get

\[F' = \int_{x_0}^{x} F' \, dx = \lambda , \]
a constant; or

\[F' = \lambda + \int_{x_0}^{x} F' \, dx . \tag{18} \]

The right-hand side of this equation is differentiable and its derivative is \(F'' \); hence the same must be true of the left-hand side, i. e., the function

\[F''(x, y(x), y'(x)) \equiv F''[x] \]
is differentiable in \((x_0 r_1)\) and

\[\frac{d}{dx} F'' = F'' . \]

Thus we find the important corollary to Theorem I that every solution of our problem with continuous first derivative—not only those admitting a second derivative—must satisfy Euler’s equation.

From the fact that \(F'' \) is differentiable follows the existence\(^2\) of the second derivative \(y'' \) for all values of \(x \) for which

\[F''(x, y(x), y'(x)) \equiv 0 . \tag{19} \]

For, if we put

\[y(x + h) - y(x) = k , \quad y'(x + h) - y'(x) = l , \]
then, since the theorem on total differentials\(^3\) is applicable under our assumptions, and since \(y' \) is continuous, we have

\(^1\)Hilbert’s proof can easily be extended to the case where \(N \), while finite in \((x_0 r_1)\), has a finite number of discontinuities. For, if \(a \) and \(a' \) are points of continuity, we can always choose \(\beta \) and \(\beta' \) so near to \(a \) and \(a' \) respectively that \(N \) is continuous in \((a \beta) \) and \((a' \beta') \); it follows then as above that \(N(a) = N(a') \), i. e., under the present assumptions \(N \) has the same constant value in all points of continuity. Hence it follows further that in a point of discontinuity, \(c \):

\[N(c-0) = N(c+0) . \]

\(^2\)First pointed out and emphasized by Hilbert in his lectures; see Whittemore, loc. cit.

\(^3\)Compare E. II A. pp. 71, 73; J. I, Nos. 86, 127; and P., No. 105.
\[
\frac{F_y[x+h] - F_y[x]}{h} = (F_{yy} + a) + \frac{k}{h} (F_{yy} + \beta) + \frac{l}{h} (F_{yy} + \gamma),
\]
where \(a, \beta, \gamma\) approach zero as \(h\) approaches zero. Hence it follows that if (19) is satisfied,

\[
\lim_{h \to 0} \frac{L}{h}, \quad i.e., \quad y''
\]
exists, and that

\[
y'' = \frac{F_y - y'F_{yy} - y''F_{yy}}{F_{yy}} ; (20)
\]
moresover, (20) shows that \(y''\) is continuous in \((x_0, x_1)\).

§7. MISCELLANEOUS REMARKS CONCERNING THE INTEGRATION OF EULER'S EQUATION

\textit{a)} Euler's differential equation (1) is of the second order,\(^1\) as can be seen from the developed form

\[
F_y - F_{yy} - y'F_{yy} - y''F_{yy} = 0 ; (21)
\]
its general solution contains, therefore, two arbitrary constants,

\[
y = f(x, a, \beta) . (22)
\]
The constants \(a, \beta\) have to be determined\(^2\) by the condition that the curve is to pass through the two points \(A\) and \(B\):

\[
y_0 = f(x_0, a, \beta), \quad y_1 = f(x_1, a, \beta). (23)
\]

Every solution of Euler's equation (curve as well as

\(^1\)Unless \(F_{yy}(x, y, y)\) should be identically zero. In this case Euler's differential equation degenerates either into a finite equation or into the identity \(0 = 0\) but never into a differential equation of the first order. For if \(F_{yy} \equiv 0\), \(F\) must be of the form \(L(x, y) + M(x, y)y\) and (21) reduces to \(L_y - M_x = 0\). See also below, under d).

\(^2\)This determination may be impossible; in this case there exists no solution of the problem which is of class \(C^1\) and lies in the interior of \(\mathbb{R}\).
function) is called, according to Knos, an \textit{extremal}; there
is then a double infinitude of extremals in the plane.

In the \textit{special case when F does not contain x explicitly},
a first integral of (I) can be found immediately.\footnote{Noticed already by Euler, \textit{loc. cit.}, p. 56, in St"ackel's translation.} For, if F
do not contain x explicitly, we have

$$\frac{d}{dx}(F - y' F_y) = y'(F_y - \frac{d}{dx} F_y),$$

and therefore every solution of (I) also satisfies

$$F - y' F_y = \text{const.}$$

\textit{Vice versa}, every solution of (24), except $y = \text{const.}$, also
satisfies (I).

\textit{b) Example I} (see p. 1):

$F = y \sqrt{1 + y'^2}$.

Hence

$$F_y = y \frac{1 + y'^2}{1 + y'^2}, \quad F_y' = \frac{yy'}{1 + y'^2}, \quad F_{yy} = \frac{y}{(1 + y'^2)^3},$$

and Euler's equation becomes:

$$1 \frac{1 + y'^2}{1 + y'^2} - \frac{d}{dx} \frac{yy'}{1 + y'^2} = 0 \quad (I)$$

or, after performing the differentiation,

$$1 + \left(\frac{dy}{dx}\right)^2 - y \frac{d^2y}{dx^2} = 0.$$

By putting $\frac{dy}{dx} = \mu$, the integration of this differential equation
is reduced to two successive quadratures, and the general integral
is easily found to be

$$y = a \cosh \frac{x - \beta}{a}.$$

\textit{The extremals are therefore catenaries with the x-axis for directrix.}

Since F does not contain x, a first integral could have been obtained directly by the corollary (24):

$$F - y' F_y' = \frac{y}{\sqrt{1 + y'^2}} = a.$$
If \(a \neq 0 \), this leads to the same result as above; for \(a = 0 \) we obtain \(y = 0 \), which, however, though a solution of (24), is not a solution of Euler's equation.

The general solution of (I) being found, the next step would be to determine the two constants of integration that the catenary passes through the two given points. ¹

c) Through a given point \(a, b \) in the interior of the region ² \(R \) one and but one extremal of class \(C' \) can be drawn in a given direction of amplitude ³ \(\omega \left(\pm \pm \frac{\pi}{2} \right) \), provided that

\[
F'_{y''}(a, b, b') \neq 0,
\]

where \(b' = \tan \omega \).

For, if we solve (I) with respect to \(y'' \), we obtain for \(y'' \) a function of \(x, y, y' \) which, according to our assumptions (B), is continuous and has continuous partial derivatives with respect to \(y, y' \) at all points of the domain ² \(\mathcal{T} \) which satisfy (25). Hence the statement follows from Cauchy's general existence theorem ⁴ for differential equations.

² See §3, c).

³ See §2, y'.

⁴ Suppose the functions \(f_i(x, y_1, y_2, \ldots, y_n) \) and their first partial derivatives with respect to \(y_1, y_2, \ldots, y_n \) to be continuous in the domain

\[
| x-a | \leq \delta, \quad | y_i - b_i | \leq \epsilon, \quad | y_n - b_n | \leq \eta,
\]

let \(M \) be the maximum of the absolute values of the functions \(f_i \) in this domain, and let \(l \) denote the smaller of the two quantities \(\rho \) and \(\eta M \).

Then there exists one, and but one, system of functions \(y_1(x), y_2(x), \ldots, y_n(x) \) which in the interval \(| x-a | < l \) are continuous and differentiable, satisfy the differential equations

\[
\frac{dy_i}{dx} = f_i(x, y_1, y_2, \ldots, y_n), \quad (i = 1, 2, \ldots, n)
\]

and the inequalities \(| y_i(x) - b_i | \leq \epsilon \), and take for \(x = a \) the values

\[
y_1 = b_1, y_2 = b_2, \ldots, y_n = b_n.
\]

In order to apply the theorem in the present case, replace (21) by the equivalent system.

\[
\frac{dy}{dx} = y', \quad \frac{dy'}{dx} = (F_y - F_{y'} x - y F_{y' y}') F_{y' y'} ^*.
\]
If, therefore,

\[F_{yy}(a, b, p) \neq 0 \]

for every finite value of \(p \), one extremal can be drawn from \((a, b)\) in every direction, except the direction of the \(y\)-axis. A problem for which

\[F_{yy}(x, y, p) \neq 0 \]

at every point \((x, y)\) of the region \(\mathfrak{R} \) for every finite value of \(p \), is called, according to Hilbert, a regular problem.

d) We consider next the exceptional case in which Euler’s differential equation degenerates into an identity.

Suppose the left-hand side of (21) vanishes for every system of values \(x, y, y', y'' \). Then, since \(y'' \) does not occur in the three first terms, it follows that the coefficient of \(y'' \) must vanish identically, so that we must have separately

\[F_{yy} \equiv 0, \quad F_y - F_{yx} - y'F_{yy} \equiv 0 \]

for every \(x, y, y' \). From the first identity it follows that \(F \) must be an integral linear function of \(y' \), say

\[F(x, y, y') = M(x, y) + N(x, y)y' \]

Substituting this value in the second identity, we get

\[M_y = N_x \]

the well-known integrability condition for the differential expression

\[Mdx + Ndy \]

Hence we infer: If \(M \) and \(N \) and their first partial derivatives are single-valued and continuous in a simply-connected region \(\mathfrak{S} \) of the \(x, y\)-plane, then there exists\(^1\) a function \(V(x, y) \), single-valued and of class \(C^r \) in \(\mathfrak{S} \) and such that

\[V_x = M, \quad V_y = N \]

and therefore

\[F(x, y, y') = V_x + V_y y' = \frac{d}{dx} V(x, y) \]

Hence if \(\mathfrak{C} : y = f(x) \) be any curve of class \(C^r \) drawn in \(\mathfrak{S} \) between the points \(A(x_0, y_0) \) and \(B(x_1, y_1) \) our integral \(J_c \) has the value

\[J_\delta \equiv \int_{x_0}^{x_1} F(x, y, y') \, dx = V(x_1, y_1) - V(x_0, y_0), \]

and is therefore independent of the path of integration \(C \) and depends only upon the position of the two end-points.

On account of the continuity of \(V(x, y) \), the result remains true for curves \(C \) with a finite number of corners, as is at once seen by decomposing the integral \(J \) in the usual manner.¹

Vice versa: If the value of the integral \(J_\delta \) is independent of the path of integration \(C \) as long as \(C \) remains in the interior of a region \(\mathfrak{S} \) contained in \(\mathfrak{A} \), then the function \(F \) must be of the form \(M(x, y) + N(x, y) y' \), where \(M_y = N_x \), for every point \((x, y)\) in the interior of \(\mathfrak{S} \) for which \(x_0 \lessgtr x \lessgtr x_1 \).

For let \((x_2, y_2)\) be any inner point of \(\mathfrak{S} \) whose abscissa \(x_2 \) lies between \(x_0 \) and \(x_1 \) and \(y_2 \), \(y_2' \) two arbitrarily prescribed values; then we can always draw in \(\mathfrak{S} \) a curve \(C : y = f(x) \), of class \(C^r \) which passes through \((x_0, y_0), (x_1, y_1), (x_2, y_2)\), and for which \(f'(x_2) = y_2', \ f''(x_2) = y_2'' \).

According to our hypothesis, \(\Delta J \) must vanish for every admissible variation of \(C \), whence we infer by the method of §§ 4, 5 that \(y = f(x) \) must satisfy Euler’s differential equation. The left-hand side of the latter must therefore vanish for the arbitrary system of values \(x = x_2, y = y_2, y' = y_2', y'' = y_2'' \), which proves the above statement.

We thus reach the result:²

In order that the value of the integral

\[J = \int_{x_0}^{x_1} F(x, y, y') \, dx \]

may be independent of the path of integration it is necessary and sufficient³ that Euler’s differential equation degenerate into an identity.

It is clear that in this case there exists no proper⁴ extremum of the integral \(J \).

c) We conclude these remarks by considering briefly the inverse problem: Given a doubly infinite system of curves (functions)

\[y = f(x, a, \beta), \]

¹ Compare p. 12.
³ Sufficient only if the region \(\mathfrak{S} \) is simply-connected.
⁴ Compare §3, b).
to determine a function \(F(x, y, y') \) so that the given system of curves shall be the extremals for the integral

\[
J = \int_{x_0}^{x_1} F(x, y, y') \, dx .
\]

This problem has always an infintude of solutions which can be obtained by quadratures.\(^1\)

For if

\[
y'' = G(x, y, y')
\]

is the differential equation of the second order\(^2\) whose general solution is the given function \(y = f(x, \alpha, \beta) \) (with \(\alpha, \beta \) as constants of integration), then we must so determine the function \(F(x, y, y') \) that (26) becomes identical with Euler's differential equation for \(F \), i. e., according to (21)

\[
F_y - F_{y'x} = F_{y'y} y' = G F_{y'y'} .
\]

If we differentiate (27) with respect to \(y' \), we get for \(M = F_{y'y} \) a linear partial differential equation of the first order, viz.,

\[
\frac{\partial M}{\partial x} + y' \frac{\partial M}{\partial y} + G \frac{\partial M}{\partial y'} + G_{y'} M = 0 .
\]

If

\[
a = \phi (x, y, y') , \quad \beta = \psi (x, y, y')
\]

is the solution of the two equations

\[
y = f(x, \alpha, \beta) , \quad y' = f_x (x, \alpha, \beta)
\]

with respect to \(\alpha \) and \(\beta \), and if further

\[
\theta (x, \alpha, \beta) = e \int G_{y'} (f_x, f(x, \alpha, \beta), f_x (x, \alpha, \beta)) \, dx ,
\]

and

\[
\chi (\alpha, y, y') = \theta (x, \phi (x, y, y'), \psi (x, y, y')) ,
\]

\(^1\) Darboux, Théorie des surfaces, Vol. III, Nos. 604, 605. For the analogous problem in the more general case when \(F \) contains higher derivatives, compare Hirsch, Mathematische Annalen, Vol. XLIX (1897), p. 49.

\(^2\) Obtained by eliminating \(\alpha, \beta \) between the three equations

\[
y = f(x, \alpha, \beta) , \quad y' = f_x (x, \alpha, \beta) , \quad y'' = f_{xx} (x, \alpha, \beta) ;
\]

compare, for inst., J. I, No. 166.
the general integral of (28) is found to be, according to the general theory\(^1\) of linear partial differential equations of the first order,

\[M\chi = \Phi\left(\phi(x, y, y'), \psi(x, y, y')\right), \]

where \(\Phi\) is an arbitrary function of \(\phi\) and \(\psi\).

After the function \(M\) has been found, \(F\) is obtained by two successive quadratures from the differential equation

\[\frac{\partial^2 F}{\partial y' \partial y''} = M(x, y, y'). \]

Finally the two constants of integration \(\lambda, \mu\) (which are functions of \(x\) and \(y\)), introduced by the latter process, must be so determined that \(F\) satisfies the original partial differential equation (27) from which (28) was derived by differentiation.

Example:\(^2\) To determine all functions \(F\) for which the extremals are straight lines

\[y = ax + \beta. \]

The differential equation (26) becomes, in this case,

\[y'' = 0. \]

Accordingly, we obtain

\[\phi = y', \quad \psi = y - xy', \quad \chi = \text{const}. \]

Hence

\[M = \Phi(y', y - xy'), \]

and therefore

\[F = \int_{x}^{y} (y' - t) \Phi(t, y - xt) dt + y'\lambda(x, y) + \mu(x, y). \]

The condition for \(\lambda\) and \(\mu\) becomes in this case

\[\frac{\partial\lambda}{\partial x} = \frac{\partial\mu}{\partial y}. \]

The most general expression for \(\lambda\) and \(\mu\) is therefore

\[\lambda = \frac{\partial v}{\partial y}, \quad \mu = \frac{\partial v}{\partial x}, \]

where \(v\) is an arbitrary function of \(x\) and \(y\).

\(^1\)Compare, for inst., J. III, No. 242.

\(^2\)Compare DARBoux. *loc. cit.*, No. 606.
§8. **WEIERSTRASS'S LEMMA AND THE E-FUNCTION**

Before proceeding to the consideration of so-called discontinuous solutions, we must derive a lemma, due to WEIERSTRASS,\(^1\) which is of fundamental importance for many investigations in the Calculus of Variations.

Suppose there are given, in the region \(\mathbb{R}\), an extremal \(\mathcal{C}\) of class \(C''\): \(y = f(x)\), and a curve \(\tilde{\mathcal{C}}\) of class \(C'\): \(\tilde{y} = \tilde{f}(x)\), meeting \(\mathcal{C}\) at a point \(^3\) \(2: (x_2, y_2)\). Besides there is given a point \(0: (x_0, y_0)\) on \(\mathcal{C}\), before \(2\), that is, \(x_0 < x_2\). Let \(3\) be that point of \(\tilde{\mathcal{C}}\) whose abscissa is \(x_2 + h\), \(h\) being a positive infinitesimal, and select arbitrarily a function \(\eta\) of class \(C'\) satisfying the conditions \(\eta_0 = \eta(x_0) = 0\), \(\eta_2 = \eta(x_2) \neq 0\).

Then we can so determine \(\epsilon\) that the curve
\[
\tilde{\mathcal{C}}: \quad \tilde{y} = y + \epsilon \eta,
\]
which necessarily passes through the point \(0\), also passes through the point \(3\). For this purpose we have to solve the equation
\[
f(x_2 + h) + \epsilon \eta(x_2 + h) = \tilde{f}(x_2 + h)
\]
with respect to \(\epsilon\). Since \(\tilde{f}(x_2) = f(x_2)\), we have
\[
\tilde{f}(x_2 + h) - f(x_2 + h) = (\tilde{y}_2' - y_2') h + h(\eta_2),
\]
where \(y_2' = f'(x_2)\), \(\tilde{y}_2' = \tilde{f}'(x_2)\) and \(h(\eta_2)\) is an infinitesimal for \(Lh = 0\). Hence we obtain
\[
\epsilon = h \left[\frac{\tilde{y}_2' - y_2'}{\eta_2} + h(\eta_2) \right].
\]

It is proposed to compute the difference
\[
\Delta J = J_{03} - (J_{02} + J_{23}),
\]
\(^1\)The lemma here given is a modification of the corresponding lemma given by WEIERSTRASS in his lectures (1879) for the case of parameter-representation; see §28.

\(^2\)This assumption must be made on account of the integration by parts which occurs below; compare §4.

\(^3\)For the notation compare §2, \(\epsilon\).
the integrals J_1, J_2, J_3 being taken along the curves C, C, C respectively, from the point represented by the first index to the point represented by the second.

ΔJ may be written

$$\Delta J = \int_{x_0}^{x_2} (F - F') \, dx + \int_{x_2}^{x_2+h} (\tilde{F} - \tilde{F'}) \, dx,$$

where F, F', \tilde{F} or $F'[x], \tilde{F}[x], F'[x]$ stand for $F(x,y(x),y'(x)), F'(x, \bar{y}(x), \bar{y}'(x)), F'(x, \tilde{y}(x), \tilde{y}'(x))$ respectively.

The first integral, treated by the method of §4, becomes, since C is an extremal,

$$\int_{x_0}^{x_2} (F - F') \, dx = \epsilon \eta_2 F'_{y'}[x_2] + \epsilon (\epsilon) = h \left[(\bar{y}'_2 - y'_2) F'_{y'}[x_2] + (h) \right].$$

To the second integral we apply the first mean-value theorem and obtain, on account of the continuity of $F'[x]$ and $\tilde{F}'[x],$

$$\int_{x_2}^{x_2+h} (F - \tilde{F}) \, dx = h \left[F[x_2] - \tilde{F}[x_2] + (h) \right].$$

Collecting the terms, we reach the result

$$\bar{J}_{12} - (J_{12} + \bar{J}_{23}) = h \left\{ (\bar{y}'_2 - y'_2) F'_{y'}[x_2] + F[x_2] - \tilde{F}[x_2] + (h) \right\}.$$

Similarly let 4 be that point of \bar{C} whose abscissa is $x_2 - h,$ and determine ϵ' so that the curve

$$\bar{C}: \quad \bar{y} = y + \epsilon' \eta$$

passes through 4. Then we obtain by the same process

$$\bar{J}_{14} + \bar{J}_{12} - J_{12} = - h \left\{ (\bar{y}'_2 - y'_2) F'_{y'}[x_2] + F[x_2] - \tilde{F}[x_2] + (h) \right\}.$$

If we put for brevity

$$F'(x, y, \bar{p}) - F'(x, y, \bar{p}) - (\bar{p} - p) F'_{y'}(x, y, \bar{p}) = \mathbf{E}(x, y; p, \bar{p}),$$

$$x', y', p, \bar{p}$$ being considered as four independent variables, the preceding results may be written:
\[J_{03} - (J_{02} + J_{20}) = -h \left\{ E(x_2, y_2; y'_2, \bar{y}'_2) + (h) \right\} , \]
\[J_{04} + (J_{42} - J_{02}) = +h \left\{ E(x_2, y_2; y'_2, \bar{y}'_2) + (h) \right\} . \]

We shall refer to these two formulae as Weierstrass's Lemma. The function \(E(x, y; \mu, \bar{\mu}) \) defined by (29) will play a most important part in the sequel; it is called Weierstrass's \(E \)-function.\(^1\)

The same results (30) hold if the curves 03 and 04 are of the more general type (5a):

\[\bar{y} = f(x) + \omega(x, \epsilon), \]

where the function \(\omega(x, \epsilon) \) vanishes identically for \(\epsilon = 0 \), has the continuity properties enumerated on p. 18, and satisfies besides the conditions:

\[\omega(x_0, \epsilon) \equiv 0 \quad \text{for every } \epsilon, \quad \text{and} \quad \omega_\epsilon(x_2, 0) \equiv 0. \]

For the determination of \(\epsilon \) we have, in this case, the equation:

\[f(x_2 + h) + \omega(x_2 + h, \epsilon) - \tilde{f}(x_2 + h) = 0. \]

The resulting value of \(\epsilon \) is of the same form as above. This follows from the theorem\(^2\) on implicit functions; for if

\(^1\) Compare Zermelo, Dissertation, p. 66.

\(^2\) If \(f(x, y) \) is of class \(C \) in the vicinity of \((x_0, y_0) \) and

\[f(x_0, y_0) = 0, \quad f_y(x_0, y_0) \equiv 0, \]

then a positive quantity \(k \) being chosen arbitrarily but sufficiently small, another positive quantity \(\eta \) can be determined such that for every \(x \) in the interval \((x_0 - h_k, x_0 + h_k) \) the equation \(f(x, y) = 0 \) has one and but one solution \(y \) between \(y_0 - k \) and \(y_0 + k \).

The single-valued function \(y = \psi(x) \) thus implicitly defined by the equation:

\[f(x, y) = 0, \]

is of class \(C \) in the interval \((x_0 - h_k, x_0 + h_k) \) and

\[\frac{dy}{dx} = -\frac{f_x}{f_y}. \]

Hence

\[y - y_0 = (x - x_0) \left[-\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)} + a \right], \]

where \(L a \equiv 0. \)

(Compare E, II A, p. 72; J. I, No. 91; P., No. 110).

If \(f(x, y) \) is regular in the vicinity of \((x_0, y_0) \), also the function \(y = \psi(x) \) is regular in the vicinity of \(x_0 \). (Compare E, II B, p. 103, and Harkness and Morley, Introduction to the Theory of Analytic Functions, No. 156.) For the extension of the theorem to a system of \(m \) equations between \(m + n \) unknown quantities, see the references just given.
we denote the left-hand side of the preceding equation by $F(\epsilon, \epsilon)$, this function is of class C' in the vicinity of $h = 0$, $\epsilon = 0$; further: $F(0, 0) = 0$ and finally $F(\epsilon(0, 0) = 0$.

Incidentally we notice here the formula

$$\overline{J_{o2}} - J_{o2} = \int_{x_0}^{x_2} (F' - F) \, dx + \int_{x_2}^{x_2-h} \bar{F} \, dx$$

which holds for negative as well as for positive values of h. Hence it follows that if the arc 02 of the extremal \mathcal{C} minimizes the integral J, the end-point 0 being fixed while the end-point 2 is movable on the curve \mathcal{C}, then the co-ordinates of the point 2 must satisfy the condition

$$F + (\bar{y}' - y') F_{y} = 0 .$$

("Condition of transversality," compare the detailed treatment of the problem with variable end-points in §23.)

§31. DISCONTINUOUS SOLUTIONS

We must now free ourselves from the restriction imposed upon the minimizing curve at the beginning of §4, viz., $\partial \mathcal{C} \cap y'$ should be continuous in $(x_0 r_1)$, and we propose to determine in this section all those solutions of our problem which present corners—so-called "discontinuous solutions."

a) In the first place, the theorem holds that also discontinuous solutions must satisfy Euler's differential equation.

Suppose for simplicity that the minimizing curve \mathcal{C} has only one corner $C(x_2, y_2)$ between A and B. According to §3, c) the integral J_6 is then defined by

$$J_6 = \int_{x_0}^{x_2-0} F(x, y, y') \, dx + \int_{x_2}^{x_1} F(x, y, y') \, dx$$

1The assumption that the curve shall lie entirely in the interior of the region \mathcal{R} will still be retained in this section.

2The results can be extended at once to the case of several corners.
the notation indicating that \(y'(x_2) \) is defined in the first integral by \(y'(x_2 - 0) \), in the second by \(y'(x_2 + 0) \).

The theorem in question is most easily proved by the method of partial variation, which is very useful in many investigations of the Calculus of Variations:

We consider first such special\(^1\) variations \(A'D'C' \) of type (5) as leave the arc \(C'B \) unchanged and vary only \(A'C \). To such variations all the conclusions of §§4–6 can be applied, and it follows as before that for the interval \((x_0, x_2 - 0)\) Euler’s equation must hold. The same result follows for \((x_2 + 0, x_1)\) from the consideration of variations which leave \(A'C \) unchanged; hence it is true for the whole interval \((x_0, x_1)^2\).

b) A discontinuous solution with one corner is therefore composed of two extremals involving in general different constants of integration:

\[
y = f(x, a, \beta_1) \quad \text{in } (x_0, x_2 - 0), \\
y = f(x, a, \beta_2) \quad \text{in } (x_2 + 0, x_1).
\]

For the determination of \(x_2 \) and of the constants of integration we have in the first place the initial conditions

\[
y_0 = f(x_0, a, \beta_1) , \\
y_1 = f(x_1, a, \beta_2) ;
\]

further the condition that \(y \) is continuous at \(x_2 \):

\[
f(x_2, a, \beta_1) = f(x_2, a, \beta_2) ;
\]

and finally two further conditions which are furnished by the following theorem due to Weierstrass and Erdmann:\(^3\)

\(^1\) Compare the remark on p. 15, footnote 2.

\(^2\) With the same understanding as in (31) concerning the meaning of \(y' \) at the corner.

\(^3\) Weierstrass, Lectures at least as early as 1877; Erdmann, Journal für Mathematik, Vol. LXXXII (1877), p. 21. Another demonstration has been deduced by
Theorem: At every corner of a minimizing curve the two limiting values of \(F_y \) are equal:

\[
F_y^{x_2^+0} = F_y^{x_2^0}\tag{32}
\]

and likewise

\[
F - y' F_y^{x_2^+0} = F - y' F_y^{x_2^0}\tag{33}
\]

To prove (32) consider a variation \(AB\) of type (5) for which the function \(\eta \) is of class \(C' \) in \((x_0, x_1)\) and \(\eta(x_2) = 0 \). The integral \(\Delta J \) breaks up into two integrals taken between the limits \((x_0, x_2 - 0)\) and \((x_2 - 0, x_1)\) respectively. Applying to each of these the methods of \(\S 4 \) we find that also in this case \(\delta J = 0 \), and further we obtain \(^2\) from (9), since (I) is satisfied:

\[
\delta J = \epsilon \eta(x_2) \left(F_y(x_2 - 0) - F_y(x_2 + 0) \right),
\]

where \(F_y[x] \) stands again for \(F(y, f(x), f'(x)) \). Since \(\delta J = 0 \), (32) is proved.

The proof of (33) follows from Weierstrass's Lemma (30) if we identify the arcs \(AC \) and \(CB \) of Fig. 5 with the arcs 02 and 21 of Fig. 4, respectively, and consider successively the variations 031 and 04231 of the arc 021. The corresponding values of the total variations \(\Delta J \) are given by the two equations (30), the values of \(y_2', \bar{y}_2' \) being in the present case

\[
y_2' = y'(x_2 - 0) = \bar{y}_2' \; ; \quad \bar{y}_2' = y'(x_2 + 0) = \bar{y}_2'.
\]

Hence it follows that for an extremum it is necessary that

\(^1\) For the notation compare \(\S 2, b \).

\(^2\) The integration by parts is legitimate since by the method of \(\S 6 \) the existence of \(\frac{d}{dx} F_y \) is established for each of the two segments \((x_0, x_2 - 0)\) and \((x_2 + 0, x_1)\).
and on account of (32) this is equivalent to (33).

c) Example I: To minimize the integral

\[J = \int_{x_0}^{x_1} \left(y' + 1 \right)^2 y'' dx \]

Here

\[
F_y = 0, \quad F_y' = 4y'' + 6y'^2 + 2y', \\
F' - y'F_y = -3y'^4 - 4y'^3 - y'^2.
\]

Hence a first integral of Euler's differential equation is

\[4y'^2 + 6y'^2 + 2y' = \text{const.} \]

therefore

\[y = ax + \beta. \]

i.e., the extremals are straight lines, and the line AB joining the two given points is a possible continuous solution.

In order to obtain all discontinuous solutions with one corner, we have to find all solutions \(p_1, p_2 \) of the two equations

\[
4p_1^2 + 6p_2^2 + 2p_1 = 4p_2^2 + 6p_2^2 + 2p_2, \\
-3p_1^4 - 4p_1^3 - p_1^2 = -3p_2^4 - 4p_2^3 - p_2^2,
\]

where

\[p_1 = y'(c - 0) \quad \text{and} \quad p_2 = y'(c + 0) \quad \text{and} \quad p_1 \neq p_2. \]

Dividing out by \(p_1 - p_2 \) and putting

\[p_1 + p_2 = u, \quad p_1^2 + p_1p_2 + p_2^2 = w \]

we get

\[
2w + 3u + 1 = 0 \\
-3u^2 + 6uw + 4w + u = 0.
\]

These equations have one real solution, \(u = -1, w = 1 \), from which we obtain

\[p_1 = 0, \quad p_2 = -1, \]

or

\[p_1 = -1, \quad p_2 = 0. \]

1A special case of the example given by Erdmann, loc. cit., p. 24.
Every discontinuous solution must therefore be composed of straight lines making the angles 0 or \(\frac{3\pi}{4} \) with the positive \(x \)-axis. If the slope \(m = (y_1 - y_0)/(x_1 - x_0) \) of the line \(AB \) lies between 0 and \(-1\), there are indeed two such solutions, \(AC_1B \) and \(AC_2B \) with one corner and an infinity with \(n \geq 2 \) corners.

Since \(F = y''^2 + (y' + 1)^2 \), these discontinuous solutions furnish for \(J \) the value zero and therefore the absolute minimum.\(^1\)

\(d) \) In many cases the impossibility of discontinuous solutions can be inferred from the following

Corollary: If \((x_2, y_2)\) is a corner of a minimizing curve, then the function

\[
F_{y'y'}(x_2, y_2, p)
\]

must vanish for some finite value of \(p \).

For the function

\[
\phi(p) = F_{y'y'}(x_2, y_2, p)
\]

is a continuous function of \(p \) admitting a finite derivative for all finite values of \(p \); further, if we put

\[
y'(x_2 - 0) = p_1, \quad y'(x_2 + 0) = p_2,
\]

we have \(p_1 \neq p_2 \), and, according to (32),

\[
\phi(p_1) = \phi(p_2).
\]

Hence by Rolle’s Theorem the derivative

\[
\phi'(p) = F_{y'y'}(x_2, y_2, p)
\]

must vanish for some value of \(p \) between \(p_1 \) and \(p_2 \).

If therefore the problem is a “regular problem,” i. e., if

\[
F_{y'y'}(x, y, p) = 0
\]

for every point in the interior of \(\mathbb{R} \) and for all finite values

\(^1\)The minimum is, however, “improper” (compare §3, b), because in every neighborhood of \(AC_1B \) (or \(AC_2B \)) broken lines can be drawn joining \(A \) and \(B \), whose segments have alternately the slopes 0 and \(-1\). For such a curve \(\Delta J = 0 \).

\(^2\)Compare also Whittemore, loc. cit., p. 136.
§10. **First Variation**

of \(p \), we infer that no discontinuous solutions are possible in the interior of \(\mathbb{R} \).

Example I (see p. 1): \(F = y \sqrt{1 + y'^2} \), \(\mathbb{R} \) is the upper half-plane \((y \geq 0) \). Here

\[
F'_{y'} = \frac{y}{(1 + y'^2)^{3/2}}
\]

is \(\neq 0 \) in the interior of \(\mathbb{R} \), and consequently no discontinuous solutions are possible in the interior \(^2 \) of \(\mathbb{R} \).

§10. **Boundary Conditions**

In all the preceding developments it was assumed\(^3\) that the minimizing curve should lie entirely in the interior of the region \(\mathbb{R} \). But there may also exist solutions of the problem as formulated in §3 which have points in common with the boundary of \(\mathbb{R} \). To determine these solutions is the object of the present section.

For this investigation it is convenient to make use of the idea of a *point by point variation* of a curve which played an important part in the earlier history of the Calculus of Variations.

Between the points of the two curves

\[C : \quad y = f(x), \]

and

\[\overline{C} : \quad y = y + \Delta y \]

we may establish a one-to-one correspondence by letting two points correspond which have the same abscissa \(x \). And we may think of the second curve as being derived from the first by a continuous deformation in which each individual point moves along its ordinate according to some law, for instance, if in

\[y + u \Delta y \]

we let \(u \) increase from 0 to 1.

A point of \(C \) whose abscissa is \(x' \), is called a point of *free variation* if \(\Delta y(x') \) may take any sufficiently small value; otherwise, a point of *unfree variation*.

For a curve \(\overline{C} \) which lies entirely in the interior of \(\mathbb{R} \) all points except the end-points are points of free variation,\(^4\) and this freedom was essential in the conclusions of §§4 and 5.

1. Compare §1, c).
2. Compare the next section.
3. See the beginning of §4.
4. In our formulation of the problem, §3.
This is not true for a curve which has points in common with the boundary. For simplicity let us suppose that the boundary of \(\mathcal{K} \) contains an arc \(\mathcal{C} \) representable in the form
\[
\tilde{y} = \tilde{f}(x) .
\]
\(\tilde{f}(x) \) being of class \(C'' \). In order to fix the ideas suppose that \(\mathcal{K} \) lies above \(\mathcal{C} \). Then if \(\mathcal{C} \) has a point \(P \) in common with \(\mathcal{C} \), the variation of \(P \) is unfree and restricted by the condition
\[
\Delta y \equiv 0 .
\]
(34)

Suppose the minimizing curve \(0231 \) has the segment \(23 \) in common with the boundary.

Then the method of partial variation applied to \(02 \) and to \(31 \) shows that these two arcs must be extremals.

Consider next a variation of type (5) which leaves \(02 \) and \(31 \) unchanged and varies only \(23 \). Since \(\Delta y = \epsilon \eta \) must be \(\equiv 0 \), \(\eta \) cannot change sign and if we choose \(\eta \equiv 0 \) then \(\epsilon \) must be taken positive; hence we can no longer infer from (6) that \(\delta J = 0 \), but only that
\[
\delta J \equiv 0 .
\]
(35)

After the integration by parts of §4 we obtain therefore
\[
\int_{x_2}^{x_3} \eta \left(F_y - \frac{d}{dx} F_\eta \right) dx \equiv 0
\]
for all functions \(\eta \) of class \(D \) which vanish at \(x_2 \) and \(x_3 \) and satisfy besides the condition
\[
\eta \equiv 0 .
\]

The lemma of §5, slightly modified, leads in the present case to the

\[1 \text{ Moreover at the end-points 2 and 3 the following condition must be satisfied: } \]
\[E(x_2, y_2; y_2', \tilde{y}_2') = 0; \quad E(x_3, y_3; y_3', \tilde{y}_3') = 0 . \]

The proof follows easily from Weierstrass's Lemma (see Fig. 7). Compare also the treatment of the problem in parameter-representation, §29. The question of sufficient conditions for one-sided variations has recently been considered by Bliss in a paper read before the Chicago section of the American Mathematical Society. He finds that for a so-called regular problem (§7, c) the arc \(23 \) of the curve \(\mathcal{C} \) furnishes a
Theorem:¹ If the minimizing curve has a segment 23 in common with the boundary of \mathcal{R}, then along this segment the following condition must be satisfied:

\[
F_y - \frac{d}{dx} F_y' \geq 0, \quad \text{if } \mathcal{R} \text{ lies above } 23, \quad (36a)
\]

\[
F_y - \frac{d}{dx} F_y' \leq 0, \quad \text{if } \mathcal{R} \text{ lies below } 23. \quad (36b)
\]

smaller value for the integral J than any other curve of class D joining the two points 2 and 3, lying in a certain neighborhood of the arc 23 and satisfying the condition $\Delta y \equiv 0$, provided that the condition

\[
F_y - \frac{d}{dx} F_y' > 0
\]

is fulfilled along the arc 23.

The proof is based upon the construction of a "field" (see §§19, 20, 21) of extremals each one of which is tangent to the curve σ and lies entirely on one side of σ.

¹ Of the properties specified above.
CHAPTER II

THE SECOND VARIATION

§11. LEGENDRE'S CONDITION

The integration of Euler's differential equation and the subsequent determination of the constants of integration yield in general a certain number of curves C as the only possible solutions of our problem; that is, if there exist at all curves which minimize the integral J, they must be contained among these curves.

We have now to examine each one of these curves separately and to decide whether it actually furnishes a minimum or not.

We confine ourselves in this investigation to curves which lie entirely in the interior of the region \mathcal{R} and have no corners.

a) Generalities concerning the second variation.

We suppose then we have found an extremal

$$C_0: \quad y = f_0(x), \quad x_0 \leq x \leq x_1$$

of class C' which passes through the two points A and B, and which lies entirely in the interior of the region \mathcal{R}.

Then we replace, as in §4, the curve C_0 by a neighboring curve

$$\bar{y} = y + \omega$$

and apply to the increment ΔJ Taylor's formula, stopping.

1. By the initial conditions (23), the corner conditions (32) and (33), and the boundary conditions.

2. The number may be infinite (see Example III, p. 40); but it may also be impossible so to determine the constants as to satisfy the conditions imposed upon them: this happens, for instance, in Example I for certain positions of the two given points; see the references given on p. 28.

3. If F is an analytic function, regular in the domain \mathfrak{C}, expansion into an infinite series may be used instead.
however, at the terms of the third order. If we put for brevity
\[
\begin{align*}
F_{yy}(x, f_0(x), f'_0(x)) &= P \\
F_{yy'}(x, f_0(x), f'_0(x)) &= Q \\
F_{y'y}(x, f_0(x), f'_0(x)) &= R
\end{align*}
\] (2)
and remember that \(\delta J = 0\), since \(C_0\) is an extremal, we obtain
\[
\Delta J = \frac{1}{2} \int_{x_0}^{x_1} (P\omega^2 + 2Q\omega\omega' + R\omega'^2) \, dx + \int_{x_0}^{x_1} (\omega, \omega')_3 \, dx ,
\] (3)
(\(\omega, \omega')_3\) being a homogeneous function of dimension three of \(\omega, \omega'\).

Considering again special variations of the type \(\omega = \epsilon\eta\) and reasoning as in §4, we obtain
\[
\Delta J = \epsilon^2 \left[\frac{1}{2} \int_{x_0}^{x_1} (P\eta^2 + 2Q\eta\eta' + R\eta'^2) \, dx + (\epsilon) \right] ,
\] (4)
where (\(\epsilon\)) is again an infinitesimal.

Hence we infer the theorem:

For a minimum (maximum) it is necessary that the second variation be positive (negative) or zero:
\[
\delta^2 J \geq 0 \quad (\leq 0)
\] (5)
for all functions \(\eta\) of class \(D'\) which vanish at \(x_0\) and \(x_1\).

For according to the definition given in §4, c),
\[
\delta^2 J = \epsilon^2 \int_{x_0}^{x_1} (P\eta^2 + 2Q\eta\eta' + R\eta'^2) \, dx .
\] (5a)
The same result can also be obtained by the method of differentiation with respect to \(\epsilon\), explained in §4, b); see p. 16, footnote 2.

From our assumptions concerning the functions \(F(x, y, p)\) and \(f_0(x)\) it follows\(^1\) that the three functions \(P, Q, R\) are continuous in the interval \((x_0, x_1)\). We suppose in the sequel that they are not all three identically zero in \((x_0, x_1)\).

\(^1\)Compare J. I, No. 80, and P., No. 99.
b) Legendre’s condition.

For the discussion of the sign of the second variation. Legendre\(^1\) uses the following artifice: He adds to the second variation the integral

\[
e^2 \int_{x_0}^{x_1} (2\eta' w + \eta^2 w') \, dx,
\]

where \(w\) is an arbitrary function of \(x\) of class \(C'\) in \((x_0 x_1)\). This integral is equal to zero;\(^2\) for it is equal to

\[
e^2 \int_{x_0}^{x_1} \frac{d}{dx} (\eta^2 w) \, dx = e^2 \left[\eta^2 w \right]_{x_0}^{x_1},
\]

and \(\eta\) vanishes at \(x_0\) and \(x_1\).

He thus obtains \(\delta^2 J\) in the form

\[
\delta^2 J = e^2 \int_{x_0}^{x_1} \left[\left(P + w' \right) \eta^2 + 2 (Q + w) \eta' \eta' + R \eta'^2 \right] \, dx.
\]

And now he determines the arbitrary function \(w\) by the condition that the discriminant of the quadratic form in \(\eta, \eta'\) under the integral shall vanish, i.e.

\[
\left(Q + w \right)^2 - R \left(P + w' \right) = 0 .
\]

This reduces \(\delta^2 J\) to the form

\[
\delta^2 J = e^2 \int_{x_0}^{x_1} R \left(\eta' + \frac{Q + w}{R} \right)^2 \, dx,
\]

from which he infers that \(R\) must not change sign in \((x_0 x_1)\) and that \(\delta^2 J\) has then always the same sign as \(R\).

These conclusions are, however, open to objections. For, as Lagrange\(^3\) had already remarked, Legendre’s transformation tacitly presupposes that the differential equation

\(^2\) This holds true also when \(\eta\) has discontinuities of the kind which we have admitted (§3, c)); compare p. 12, footnote 5), and remember that \(\eta\) and \(w\) are continuous in \((x_0 x_1)\).

\(^3\) In 1797; see Œuvres, Vol. IX, p. 303.
(6) has an integral which is finite and continuous in the interval \((x_0 r_1)\), and that \(R\) does not vanish in \((x_0 r_1)\).

Nevertheless, by a slight modification\(^1\) of the reasoning, the first part of Legendre’s conclusion can be rigorously proved, i. e., the

Fundamental Theorem II: For a minimum (maximum) it is necessary that

\[
R(x) \equiv F_{y'} \left(x, f_0(x), f'_0(x)\right) \equiv 0 (\equiv 0) \text{ in } (x_0 r_1). \tag{II}
\]

For, suppose \(R(c) < 0\) for some value \(c\) in \((x_0 r_1)\); then we can assign a subinterval \((\xi_0 \xi_1)\) of \((x_0 r_1)\) for which the following two conditions are simultaneously fulfilled:

1. \(R(x) < 0\) throughout \((\xi_0 \xi_1)\):

2. There exists a particular integral \(w\) of (6) which is of class \(C'\) in \((\xi_0 \xi_1)\).

For, since \(R(x)\) is continuous in \((x_0 r_1)\) and \(R(c) < 0\), we can determine a vicinity \((c - \delta, c + \delta)\) of \(c\) in which \(R(x) < 0\). Hence it follows that if we write the differential equation (6) in the form

\[
\frac{dw}{dx} = -P + \frac{(Q + w)^2}{R}, \tag{6a}
\]

the right-hand side, considered as a function of \(x\) and \(w\), is continuous and has a continuous partial derivative with respect to \(w\) in the vicinity of the point \(x = c, w = w_0, w_0\) being an arbitrary initial value for \(w\).

Hence there exists, according to Cauchy’s existence theorem,\(^2\) an integral of (6) which takes for \(x = c\) the value \(w = w_0\), and which is of class \(C'\) in a certain vicinity \((c - \delta', c + \delta')\) of \(c\). The interval \((\xi_0 \xi_1)\) in question is the smaller of the two intervals \((c - \delta, c + \delta)\) and \((c - \delta', c + \delta')\).

This point being established, we choose for \(\eta\) a function which is identically zero outside of \((\xi_0 \xi_1)\), and equal to

\(^1\)The proof in the text follows Weierstrass’s exposition, Lectures, 1873.

\(^2\)Compare p. 28, footnote 4.
(x - \xi_0) (x - \xi_1) in (\xi_0\xi_1). The function \eta thus defined furnishes an admissible variation of the curve C_0, since it is of class D' in (x_0x_1), and vanishes at x_0 and x_1.

For this particular function \eta, \delta^2 J becomes

$$\delta^2 J = \varepsilon^2 \int_{\xi_0}^{\xi_1} (P\eta^2 + 2Q\eta' + R\eta'^2) \, dx.$$

To this integral Legendre's transformation is applicable. Accordingly

$$\delta^2 J = \varepsilon^2 \int_{\xi_0}^{\xi_1} R \left(\eta' + \frac{Q + \eta''}{R} \right)^2 \, dx.$$

The function \eta' + \frac{Q + \eta''}{R} \eta is certainly not identically zero throughout (\xi_0\xi_1); for it is different from zero for \(x = \xi_0\) and \(x = \xi_1\).

Hence if R(e) were negative, a variation of C_0 could be found for which \(\delta^2 J < 0\), which is impossible if C_0 minimizes the integral J. Therefore \(R(x) \geq 0\) in (x_0x_1). Q. E. D.

Leaving aside the exceptional case 1 in which R(x) has zeros in the interval (x_0x_1), we assume in the sequel that for the extremal C_0 the condition

$$R > 0 \quad \text{in} \quad (x_0x_1) \quad \text{(II')}$$

is fulfilled.

A consequence of this assumption is that not only \(f_0'(x)\) but also \(f_0''(x)\) is continuous in (x_0x_1), as follows immediately from equation (20) at the end of §6. Hence we infer that not only the functions P, Q, R themselves but also their first derivatives are continuous in (x_0x_1).

Example 2 I (see p. 27): \(F = y \sqrt{1 + y'^2}\); hence

1 An example of this exceptional case is considered by ErDmanX, Zeitschrift für Mathematik und Physik, Vol. XXIII (1878), p. 309, viz.,

\[F = y^2 \cos^2 x \quad \text{and} \quad x_0 < \frac{\pi}{2} < x_1. \]

2 All the square roots are to be taken positive, see p. 2, footnote 1.
§11] Second Variation

\[F_{yy} = 0 \], \quad \frac{F_{yy}}{1 + y'^2}, \quad \frac{y}{(1 + y'^2)^2}.

Further
\[\mathcal{C}_n: \quad y = a_0 \cosh \frac{x - \beta_0}{a_0}, \]
hence
\[P = 0, \quad Q = \tanh \frac{x - \beta_0}{a_0}, \quad R = \frac{a_0}{\cosh^2 \frac{x - \beta_0}{a_0}}. \]

Since we suppose \(y > 0 \), it follows that \(a_0 > 0 \) and therefore \(R > 0 \) for every \(x \).

c) Jacobi's form of Legendre's differential equation.

We have now to examine the second part of Legendre's conclusion, viz., that, if \(R > 0 \) throughout \((r_0 r_1)\), then \(\delta^2 J \equiv 0 \) for all admissible functions \(\eta \).

The conclusion is correct, as follows immediately from the preceding developments, whenever there exists an integral of the differential equation (6) which is finite and continuous throughout \((r_0 r_1)\); it is wrong, as will be seen in §16, if no such integral exists.

It is therefore necessary to enter into a discussion of the differential equation (6). For this purpose Jacobi\(^2\) reduces the differential equation (6) to a homogeneous linear differential equation of the second order by the substitution\(^3\)
\[w = -Q - R \frac{n'}{n}, \quad (8) \]
which transforms (6) into
\[(P - Q') u - \frac{d}{dx}(R u') = 0. \quad (9) \]

We shall refer to this differential equation as Jacobi's differential equation and shall denote its left-hand side by \(\Psi(u) \):

\(^1\) Since \(R \neq 0 \), the continuity of \(w \) implies the continuity of \(w' \), compare (6a).

\(^3\) Notice that also the derivatives of \(Q, R \) exist and are continuous, as shown above.
If we write (9) in the form
\[\frac{d\epsilon u}{dx^2} + \frac{R'}{R} \frac{du}{dx} + \frac{Q'}{R} u = 0, \]
the coefficients are continuous in \((x_0^r_1)\). Hence it follows, according to the general existence theorem\(^1\) on linear differential equations, that every integral of (10) is continuous and admits continuous first and second derivatives in \((x_0^r_1)\).

Hence we can infer that if the condition: \(R>0\) in \((x_0^r_1)\) is satisfied and if the differential equation (9) has an integral \(u\) which is different from zero throughout \((x_0^r_1)\), then \(\delta^2 J \geq 0\) for every admissible function \(\eta\) not identically zero.

For if \(u\) is such an integral, then (8) furnishes an integral \(w\) of (6) of class \(C'\) in \((x_0^r_1)\), and therefore \(\delta^2 J \equiv 0\). In order to show that the equality sign must be excluded, we introduce \(u\) instead of \(w\) in (7), and obtain
\[\delta^2 J = \epsilon^2 \int_{x_0}^{x_1} R \frac{(\eta'u - \eta u')^2}{u^2} dx. \]
This shows that \(\delta^2 J\) can be equal to zero only when \(\eta'u - \eta u' \equiv 0\) throughout \((x_0^r_1)\), i.e., when \(\eta = \text{Const.}\), which is impossible since \(\eta\) vanishes at \(x_0\) and \(x_1\), and \(u\) does not.

If, on the contrary, every integral of (9) vanishes at least at one point of \((x_0^r_1)\), Legendre's transformation is not applicable to the whole interval. We shall see (in \(\S\) 16) that in this case \(\delta^2 J\) can, in general, be made negative.

\(^1\)Compare E. II A, p. 194, and Picard, Traité d'Analyse, Vol. III, pp. 91, 92. If \(F\) and consequently also \(P, Q, R\) are analytic functions, the existence theorems for analytic differential equations may be used instead. For linear differential equations in particular, see Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Vol. I, p. 21.
§12. Jacobi's Transformation of the Second Variation

The proof of the statement made at the end of the preceding section is based upon a second transformation of $\delta^2 J$ due to Jacobi. 1

a Let (ξ_0, ξ_1) be either the interval (x_0, x_1) itself or a sub-interval of (x_0, x_1), and let η be identically zero outside of (ξ_0, ξ_1), and in (ξ_0, ξ_1) equal to some function of class C'' which vanishes at ξ_0 and ξ_1.

Then if we denote by 2Ω the quadratic form of η, η':

$$2\Omega = P \eta^2 + 2Q \eta \eta' + R \eta'^2,$$

and apply Euler's theorem on homogeneous functions, we may write $\delta^2 J$ in the form

$$\delta^2 J = \epsilon^2 \int_{\xi_0}^{\xi_1} \left(\frac{\partial \Omega}{\partial \eta} + \eta \frac{\partial \Omega}{\partial \eta'} \right) d\nu.$$

The second term can be integrated by parts since η'' is continuous, and we obtain

$$\delta^2 J = \epsilon^2 \left\{ \left[\frac{\partial \Omega}{\partial \eta} \right]_{\xi_0}^{\xi_1} + \int_{\xi_0}^{\xi_1} \eta \left(\frac{\partial \Omega}{\partial \eta} - \frac{d}{dx} \frac{\partial \Omega}{\partial \eta'} \right) d\nu \right\}.$$

1. Journal für Mathematik, Vol. XVII (1857), p. 68. Jacobi derives (5) as well as the integration of (4) from the remark that $\delta^2 J = \delta (\delta J)$, hence

$$\delta^2 J = \epsilon^2 \left\{ \left[\frac{\partial \Omega}{\partial \eta} \right]_{\xi_0}^{\xi_1} + \int_{\xi_0}^{\xi_1} \eta \delta F' \left(\frac{d}{dx} \right) M dx \right\},$$

where

$$M = F_{\eta'} \frac{dF'}{dx}.$$

But

$$\delta M = \Psi (\delta \eta) = \epsilon \Psi (\eta).$$

Jacobi's paper, which is not confined to the simple case which we are here considering, but which also treats the case in which the function F contains higher derivatives of y of any order, marks a turning point in the history of the Calculus of Variations. It gives, however, only very short indications concerning the proofs; the details of the proofs have been supplied in a series of articles by Delaunay, Spitzer, Hesse and others (see the list given by Pascal, loc. cit., p. 63). Among these commentaries on Jacobi's paper, the most complete is that by Hesse (Journal für Mathematik, Vol. LIV (1857), p. 255), whose presentation we follow in this section.

Jacobi's results have been extended to the most general problem involving simple definite integrals by Clebsch and A. Mayer (see the references given in Pascal, loc. cit., pp. 64, 65, and C. Jordan, Cours d'Analyse, Vol. III, Nos. 373-94).
But η vanishes at ξ_0 and ξ_1, and

$$\frac{\partial \Omega}{\partial \eta} - \frac{d}{dx} \frac{\partial \Omega}{\partial \eta'} = (P - Q') \eta - \frac{d}{dx} (R \eta') = \Psi (\eta).$$

Hence we obtain Jacobi's expression for the second variation:

$$\delta^2 J = \epsilon^2 \int_{\xi_0}^{\xi_1} \eta \Psi (\eta) \, dx,$$

which leads at once to the following result:

*If there exists an integral u of the differential equation (9) which vanishes at two points ξ_0 and ξ_1 of $(x_0 x_1)$, we can make $\delta^2 J = 0$, viz., by choosing

$$\eta = \begin{cases} u & \text{in } (\xi_0 \xi_1), \\ 0 & \text{outside of } (\xi_0 \xi_1). \end{cases}$$

b) In the sequel we shall need an extension of formula (12) to the case when η is of class D''. Let c_1, c_2, \ldots, c_n be the points of discontinuity of η' or η''. Then the integral for $\delta^2 J$ must be broken up into a sum of integrals from ξ_0 to c_1, from c_1 to c_2, etc., before the integration by parts is applied. Hence we obtain in this case

$$\delta^2 J = \epsilon^2 \left\{ \sum_{i=1}^{n} \left[\eta \frac{\partial \Omega}{\partial \eta'} \right]_{c_{i-1} c_i} + \int_{\xi_0}^{\xi_1} \eta \Psi (\eta) \, dx \right\}.$$

or, if we substitute for $\frac{\partial \Omega}{\partial \eta'}$ its value and remember that η, Q, R are continuous at c_1, c_2, \ldots, c_n:

$$\delta^2 J = \epsilon^2 \left\{ \sum_{i=1}^{n} \eta(c_i) R(c_i) \left[\eta'(c_i - 0) - \eta'(c_i + 0) \right] + \int_{\xi_0}^{\xi_1} \eta \Psi (\eta) \, dx \right\}.$$

(12a)

c) From (12) a second proof\(^*\) of (11) can be derived: this proof is based upon the following property of the differen-

\(^*\)It will be seen later on that it follows from this result that, in general, there can be no extremum in this case, see §§14 and 16.

\(^*\)Due to Jacobi, see the references on p. 51, footnote 1. in particular to Hesse.
tial operator Ψ: If u and v are any two functions of class C'', then

$$u \Psi (v) - v \Psi (u) = - \frac{d}{dx} R(uv' - u'v) \quad . \quad (13)$$

Hence if u satisfies the differential equation

$$\Psi (u) = 0 \quad ,$$

we get

$$u \Psi (v) = - \frac{d}{dx} R(uv' - u'v) \quad ,$$

and if we put

$$v = pu \quad , \quad v' = \eta \quad ,$$

p being any function of class C'', and multiply by p, we obtain

$$(pu) \Psi (pu) = - p \frac{d}{dx} (Rp'u^2) \quad ,$$

$$= - \frac{d}{dx} (Rpp'u^2) + R(p'u')^2 \quad . \quad (14)$$

But since

$$Pv^2 + 2Qrv' + Rev'' = v \Psi (v) + \frac{d}{dx} v(Qr + Rv')$$

we obtain from (14):

$$P(pu)^2 + 2Q(pu) \frac{d(pu)}{dx} + R \left(\frac{d(pu)}{dx} \right)^2$$

$$= R(p'u)^2 + \frac{d}{dx} \left(p^2u(Qu + Ru') \right) \quad . \quad (15)$$

Now suppose moreover that u is different from zero throughout (ξ_0, ξ_1). Then we may substitute in (15) for the arbitrary function p the quotient

$$p = \frac{\eta}{u} \quad ;$$

and since η vanishes at ξ_0 and ξ_1, also p will vanish at
\[\delta^2 J = \varepsilon^2 \int_{\xi_0}^{\xi_1} \frac{R(u' - \eta u')^2}{u'^2} \, dx. \] (11a)

§13. JACOBI'S THEOREM

By the developments of the last two sections, the decision regarding the sign of the second variation is reduced to the discussion of Jacobi’s differential equation (9). It is therefore a theorem of fundamental importance, discovered by Jacobi\(^2\) in 1837, that the general solution of the differential equation \(\Psi(u) = 0\) can be obtained by mere processes of differentiation, as soon as the general solution of Euler’s differential equation is known.

a) Assumptions\(^3\) concerning the general solution \(f(x, a, \beta)\) of Euler’s differential equation:

We suppose for this investigation that the extremal \(\xi_0\) is derived from the general solution by giving the constants \(a, \beta\) the special values \(a_0, \beta_0\), so that

\[f_u(x) = f(x, a_0, \beta_0). \]

Further, we suppose that the function \(f(x, a, \beta)\), its first

1 Notice that in the present proof we have to suppose \(\eta\) to be of class \(C^2\) in \((\xi_0, \xi_1)\). It can, however, be easily proved that the result is true also for functions \(\eta\) of class \(C\) and even \(D\), in accordance with the results of §11, c). This follows from the fact that \(p''\) does not occur in the identity (15) and that \(p^2u (Qu + Ru)\) is continuous even at the points of discontinuity of \(\eta\) or \(\eta''\).

2 See the reference on p. 51, footnote.

3 If the interval \((\alpha, \beta)\) is sufficiently small, these assumptions are a consequence of our previous assumptions concerning the function \(F\) (p. 12), the extremal \(\xi_0\) (p. 44) and the function \(R\) (p. 48). This follows from the theorems concerning the dependence of the general solution of a system of differential equations upon the constants of integration; compare Painlevé in E. II A, pp. 195 and 200, and the references there given to Picard, Bendixson, Peano, Nicoletti, and V. Escherich; also Nicoletti, Atti della R. Acc. dei Lincei Rendiconti, 1895, p. 816.

For the case when \(F\) is an analytic function, compare E. II A, p. 202, and Knese, Lehrbuch, §27.

For certain special investigations concerning the “conjugate points,” the additional assumption is necessary that also \(f_{aa}, f_{ab}, f_{bb}\) exist and are continuous in \(A\); compare p. 59, footnote 1, and p. 62, footnote 4.
§13 Second Variation

partial derivatives and the cross-derivatives $f_{x\alpha}, f_{x\beta}$ are continuous, and that f_{xx} exists in a certain domain:

$$\mathbf{A} : \quad X_0 \equiv x \equiv X_1, \quad |a - a_0| \equiv d, \quad |\beta - \beta_0| \equiv d,$$

where $X_0 < x_0, X_1 > x_1$ and d is a positive quantity.

From these assumptions, together with our previous assumptions concerning the function F, the assumption that C_0 lies in the interior of the region \mathbf{A} and the assumption that $R(x) > 0$ in (x_0, x_1) it follows:

1. That also the partial derivatives $f_{x\alpha}, f_{x\beta}$ exist, are continuous and equal to $f_{x\alpha}, f_{x\beta}$ respectively, throughout \mathbf{A}:

2. That if we replace in the first and second partial derivatives of F the arguments y, y' by $f(x, a, \beta), f_x(x, a, \beta)$, these partial derivatives are changed into functions of x, a, β which are continuous and have continuous first partial derivatives with respect to a and β;

3. That

$$F_{yy}(x, f(x, a, \beta), f_x(x, a, \beta)) > 0,$$

the last two statements being true throughout the domain \mathbf{A} provided that the quantity d and the differences $x_0 - X_0, X_1 - x_1$ be taken sufficiently small;

4. The quantities $d, x_0 - X_0, X_1 - x_1$ being so selected, it follows further from equation (20) in §6 that also the partial derivatives $f_{xx}, f_{x\alpha}, f_{x\beta}$ exist and are continuous in \mathbf{A}.

b) The general integral of Jacobi’s differential equation (9) can now be obtained according to Jacobi (loc. cit.) as follows:

If we substitute in Euler’s differential equation for y the general integral $f(x, a, \beta)$ we obtain

2Since $R(x)$ has a positive minimum value in (x_0, x_1) and $F_{yy}(x, f(x, a, \beta), f_x(x, a, \beta))$ is uniformly continuous in \mathbf{A}.
Calculus of Variations

Chap. II

\(F_y(x, f(x, a, \beta), f_x(x, a, \beta)) \)

\[-d \frac{d}{dx} F_y(x, f(x, a, \beta), f_x(x, a, \beta)) = 0 ,\]

an identity which is satisfied for all values of \(x, a, \beta \) in the domain \(\mathfrak{A} \) and which may therefore be differentiated with respect to \(a \) or \(\beta \). On account of the preceding assumptions, the order of differentiation with respect to \(x \) and \(a \) (or \(\beta \)) may be reversed\(^1\) and we obtain

\[
\left(F_{yy} - \frac{d}{dx} F_{y'y} \right) f_a - \frac{d}{dx} \left(F_{y'y} f_a \right) = 0 ,
\]

\[
\left(F_{yy} - \frac{d}{dx} F_{y'y} \right) f_\beta - \frac{d}{dx} \left(F_{y'y} f_\beta \right) = 0 ,
\]

where the accents denote again differentiation with respect to \(x \).

If we give in (17) to \(a, \beta \) the particular values \(a = a_0, \beta = \beta_0 \) and remember the definition of \(P, Q, R \) in §11 equation (2), we obtain

Jacobi's Theorem: If

\(y = f(x, a, \beta) \)

is the general solution of Euler's differential equation, then the differential equation

\(\Psi (u) \equiv (P - Q'') u - \frac{d}{dx} (Ru') = 0 \)

admits the two particular integrals

\[
\begin{align*}
 v_1 &= f_a (x, a_0, \beta_0) \\
 v_2 &= f_\beta (x, a_0, \beta_0) .
\end{align*}
\]

Corollary.\(^2\) The two particular integrals \(v_1 \) and \(v_2 \) are, in general, linearly independent.

For, in order that \(v_1 \) and \(v_2 \) may be linearly independent.

\(^1\) From the existence and continuity of \(\frac{d}{dx} (F_{y'y} f_{a,x}) \) and \(\frac{d}{dx} F_{y'y} \), follows the existence and continuity of \(f_{a,x} \) on account of (16).

\(^2\) See Pascal, loc. cit., p. 75.
it is necessary and sufficient that their "Wronskian determinant"\(^1\)

\[
P(x) = \begin{vmatrix} p_1(x) & p_2(x) \\ p_1'(x) & p_2'(x) \end{vmatrix}
\]

be not identically zero.

On the other hand, since \(f(x, a, \beta)\) is supposed to be the general solution of Euler’s differential equation, it must be possible so to determine \(a\) and \(\beta\) that \(y\) and \(y'\) take arbitrarily prescribed values \(y_2\) and \(y'_2\) for a given non-singular value of \(x\), say \(x_2\).

The two functions \(f(x_2, a, \beta)\) and \(f_x(x_2, a, \beta)\) of \(a, \beta\) must therefore be independent, and consequently\(^2\) their Jacobian

\[
\frac{\partial (f, f_x)}{\partial (a, \beta)} = \begin{vmatrix} f_a & f_\beta \\ f_{xa} & f_{x\beta} \end{vmatrix}
\]

cannot be identically zero for all values of \(a, \beta\). But for \(a = a_0, \beta = \beta_0\), this Jacobian is identical with the determinant \(D(x)\), since \(f_{ax} = f_{xa}, f_{\beta x} = f_{x\beta}\), and therefore \(r_1\) and \(r_2\) are linearly independent, except, possibly, for singular systems of values \(a_0, \beta_0\), \(i. e.\), for singular positions of the two given points \(A\) and \(B\).

We exclude in the sequel such exceptional cases and assume that \(r_1\) and \(r_2\) are linearly independent. Then the general integral of Jacobi’s differential equation is

\[
u = C_1r_1 + C_2r_2 ,
\]

\(C_1, C_2\) being two arbitrary constants.

§14. Jacobi’s Criterion

By Jacobi’s theorem the further discussion of the sign of \(\delta^2 J\) is reduced to the question: Under what conditions is it possible so to determine the two constants \(C_1, C_2\) that the function \(u = C_1r_1 + C_2r_2\) shall not vanish in \((x_0r_1)\)?

\(^1\) Compare E. II \(\lambda\), p. 261, and J. III, No. 122.

\(^2\) Compare P., No. 122, IV and J. I, No. 94.
In order to answer this question, we construct the expression

$$\Delta (x, x_0) = v_1(x) v_2(x_0) - v_2(x) v_1(x_0) ;$$

(20)

it is a particular integral of (9) and vanishes for $x = x_0$; if it vanishes at all for values of $x > x_0$, let x'_0 be the zero next\(^3\) greater than x_0, so that

$$\Delta (x'_0, x_0) = 0 ,$$

$$\Delta (x, x_0) \neq 0 \text{ for } x_0 < x < x'_0 ,$$

(21)

Then it follows from a well-known theorem on homogeneous linear differential equations of the second order due to Sturm\(^2\) that every integral of (9) independent of $\Delta (x, x_0)$ vanishes at one and but one point between x_0 and x'_0.

We have now to distinguish two cases:

Case I: $x'_0 \equiv x_1$.

Then every integral of (9) vanishes at some point of $(x_0 x_1)$ and we obtain according to §12, (a) the

Theorem: If $x'_0 \equiv x_1$, it is possible to make $\Phi^2 J = 0$ by a proper choice of the function η.

\(^2\) If u_1, u_2 are two linearly independent integrals of

$$\frac{d^2u}{dx^2} + p \frac{du}{dx} + qu = 0 ,$$

where p and q are functions of x, then between two consecutive zeros of u_1 there is contained one and but one zero of u_2, provided that these zeros are comprised in an interval in which p and q are continuous.” See Sturm, “Mémoire sur les équations différentielles du second ordre” (*Journal de Liouville*, Vol. I (1836), p. 131); also Sturm, *Cours d’Analyse*, 12th ed., Vol. II, No. 669. The theorem follows easily from the well-known formula

$$u_1 \frac{du_2}{dx} - u_2 \frac{du_1}{dx} = Cc - \int p \cdot dx ,$$

(22)

where C is a constant $\neq 0$. From the same formula it follows that u_1 and u_2 cannot vanish at the same point, and that u_1 and $\frac{du_1}{dx}$ cannot vanish at the same point.

It seems that Weierstrass was the first who used Sturm’s theorem in this connection. Hesse (*loc. cit.*, p. 277) reaches the same results in a less elegant way by making use of the relation (22).

\(^3\) Compare Addenda at end of book.
For instance, by taking \(\eta = \Delta (x, x_0) \) in \((x_0, x_1')\) and identically zero in \((x_0', x_1)\).

Hence Jacobi inferred that an extremum is impossible if \(x_0' \leq x_1 \); for, \(\delta J \) and \(\delta^3 J \) being zero, the sign of \(\Delta J \) depends upon the sign of \(\delta^3 J \) which can be made negative as well as positive by choosing the sign of \(\epsilon \) properly. This conclusion is, however, legitimate only after it has been ascertained\(^1\) that the particular variation which causes \(\delta^3 J \) to vanish does not at the same time make \(\delta^3 J = 0 \).

Case II: \(x_0' > x_1 \) or else \(x_0' \) non-existent.

In this case the particular integral

\[
\Delta (x, x_1) = v_1 (x) r_2 (x_1) - r_2 (x) r_1 (x_1)
\]

of (9) is linearly independent of \(\Delta (x, x_0) \) since \(\Delta (x_0, x_0) = 0 \), whereas

\[
\Delta (x_0, x_1) = - \Delta (x_1, x_0) \neq 0
\]

Hence it follows from Sturm's theorem that \(\Delta (x, x_1) \neq 0 \) for \(x_0 \leq x < x_1 \), and therefore also (on account of the continuity of \(\Delta (x, x_1) \)) for \(x_0 - \delta \leq x < x_1 \), \(\delta \) being a sufficiently small positive quantity. Now choose \(x^0 \) between \(x_0 - \delta \) and \(x_0 \) and so near to \(x_0 \) that\(^2\) \(X_0 < x^0 < x_0 \). Then we can apply Sturm's theorem to the two particular integrals \(\Delta (x, x_1) \) and

\[
\Delta (x, x^0) = v_1 (x) r_2 (x^0) - r_2 (x) r_1 (x^0)
\]

and obtain the result that

\[
\Delta (x, x^0) \neq 0 \quad \text{in} \quad (x_0, x_1)
\]

\(\text{FIG. 9}\)

\(^1\)The value of \(\delta^3 J \) for this particular function \(\eta \) has been computed by Erdmann (Zeitschrift für Mathematik und Physik, Vol. XXII (1877), p. 327). He finds, in the notation of §15

\[
\delta^2 J = - \delta^2 R (x_0') \phi \phi (x_0', \gamma_0) \phi \gamma (x_0', \gamma_0)
\]

\(R (x_0') \) and \(\phi \phi (x_0', \gamma_0) \) are always different from zero; and \(\phi \gamma (x_0', \gamma_0) \) is also different from zero except when the envelope of the set (28) has a cusp at \(x_1' \) or degenerates into a point. With the exception of these two cases then, Jacobi's result is correct. Compare also §16.

\(^2\)See §13, a). On account of (16), \(R(x) > 0 \) and, therefore, \(r_1 (x) \) and \(r_2 (x) \) are continuous not only in \((x_0, x_1)\) but also in the larger interval \((X_0, X_1)\).
We obtain, therefore, according to §11 c), the

Theorem: If \(R > 0 \) throughout \((x_0, x_1)\), and either \(x_1 < x'_0 \) or \(x'_0 \) non-existent, then \(\delta J \) is positive for all admissible functions \(\eta \).

Hence Jacobi inferred that in this case a minimum actually exists, and this was generally believed until Weierstrass showed the fallacy of the conclusion (1879) (see §17).

The above two theorems constitute "Jacobi's Criterion."

The value \(x'_0 \) is called the conjugate of the value \(x_0 \); and the point \(A' \) of the extremal \(\xi_0 \) whose abscissa is \(x'_0 \), the conjugate of the point \(A \) whose abscissa is \(x_0 \).

§15. Geometrical Interpretation of the Conjugate Points

Jacobi\(^1\) has given a very elegant geometrical interpretation of the conjugate points, which is based upon the consideration of the set of extremals through the point \(A \).

a) This set is defined by the two equations

\[
\begin{align*}
y &= f(x, a, \beta), \\
y &= f(x, a, \beta).
\end{align*}
\]

The second equation is satisfied by \(a = a_0, \beta = \beta_0 \); and at least one of the two partial derivatives

\[
f_a(x, a_0, \beta) = r_1(x) \quad \text{and} \quad f_\beta(x, a_0, \beta) = r_2(x)
\]

is \(\neq 0 \) since \(r_1(x) \) and \(r_2(x) \) are two independent integrals of (9) and \(R(x_0) \neq 0 \) (see p. 58, footnote 2). According to the theorem\(^2\) on implicit functions we can therefore solve (25) either with respect to \(a \) or with respect to \(\beta \). But we obtain a more symmetrical result if we express \(a \) and \(\beta \) in terms of a third parameter \(\gamma \).

If we choose, for instance,

\[^1\text{Loc. cit., and Vorlesungen über Dynamik, p. 46; also Hesse, loc. cit., p. 258.}\]

\[^2\text{Compare p. 35, footnote 2.}\]
and denote by γ_0 the value
$$\gamma_0 = f_x(x_0, a_0, \beta_0),$$
we can solve\footnote{All the conditions of the theorem on implicit functions are fulfilled at the point $a = a_0$, $\beta = \beta_0$, $\gamma = \gamma_0$. In particular, the Jacobian of the two functions $f(x_0, a, \beta) - y_0$ and $f_x(x_0, a, \beta) - \gamma$ with respect to a and β is ± 0 for $a = a_0$, $\beta = \beta_0$, $\gamma = \gamma_0$; its value being $D(x_0) = r_1(x_0) r_2(x_0) - r_2(x_0) r_1(x_0)$, which is different from zero, since r_1, r_2 are linearly independent and x_0 is a non-singular point of the differential equation (9).} the two equations (25) and (26) with respect to a and β, and obtain a unique solution
$$a = a(\gamma), \quad \beta = \beta(\gamma),$$
which is continuous in the vicinity of the point $\gamma = \gamma_0$ and satisfies the condition
$$a_0 = a(\gamma_0), \quad \beta_0 = \beta(\gamma_0).$$
Moreover the functions $a(\gamma)$, $\beta(\gamma)$ admit, in the vicinity of γ_0, continuous first derivatives.

Hence it follows that if we put
$$f(x, a(\gamma), \beta(\gamma)) = \phi(x, \gamma),$$
the function $\phi(x, \gamma)$, its first partial derivatives and the derivatives$^2 \phi_{x,x}, \phi_{x,\gamma}$ will be continuous in the domain
$$X_0 \subseteq x \subseteq X_1, \quad |\gamma - \gamma_0| \leq d_1,$$
d_1 being a sufficiently small positive quantity. Furthermore, the equation
$$y_0 = \phi(x_0, \gamma)$$
is satisfied for all sufficiently small values of $|\gamma - \gamma_0|$. The equation
$$y = \phi(x, \gamma)$$
represents, therefore, the set of extremals through A in a certain vicinity of the extremal \mathcal{C}_0, the latter itself being represented by
$$\mathcal{C}_0: \quad y = \phi(x, \gamma_0).$$

By differentiation with respect to γ we get

2 Also $\phi_{y\gamma}$ will be continuous if f_{aa}, $f_{a\beta}$, $f_{\beta a}$ are continuous in \mathbf{A}.\footnote{Also $\phi_{y\gamma}$ will be continuous if f_{aa}, $f_{a\beta}$, $f_{\beta a}$ are continuous in \mathbf{A}.}
\[
\phi_\gamma (x', \gamma) = f_a (x', \alpha, \beta) \frac{da}{d\gamma} + f_b (x', \alpha, \beta) \frac{db}{d\gamma},
\]
and therefore, on putting \(\gamma = \gamma_0 \),
\[
\phi_\gamma (x', \gamma_0) = \frac{-r_2 (x_0) r_1 (x) + r_1 (x_0) r_2 (x)}{r_1 (x_0) r_2 (x) - r_2 (x_0) r_1 (x_0)}.
\]
The functions \(\phi_\gamma (x, \gamma_0) \) and \(\Delta (x, x_0) \) differ, therefore, only by a constant factor:
\[
\phi_\gamma (x, \gamma_0) = C \Delta (x, x_0), \quad C \neq 0 \quad (30)
\]
and consequently the conjugate value \(x'_0 \) may also be defined as the root next greater than \(x_0 \) of the equation
\[
\phi_\gamma (x, \gamma_0) = 0 \quad (30a).
\]
From (30) and the properties of \(\Delta (x, x_0) \) it follows further that
\[
\phi_{x'x} (x_0, \gamma_0) \neq 0 \quad \phi_{x'x} (x'_0, \gamma_0) \neq 0 \quad (31)
\]
\[b)\] According to the preceding results, the co-ordinates \(x'_0, y'_0 \) of the conjugate point \(A' \) satisfy the two equations
\[
\Phi (x'_0, y'_0, \gamma_0) \equiv \phi (x'_0, \gamma_0) - y'_0 = 0,
\]
\[
\Phi_\gamma (x'_0, y'_0, \gamma_0) \equiv \phi_\gamma (x'_0, \gamma_0) = 0,
\]
and the determinant
\[
\begin{vmatrix}
\Phi_x & \Phi_y \\
\Phi_{x'x} & \Phi_{y'y}
\end{vmatrix}
\]
is different from zero for \(x = x'_0, y = y'_0, \gamma = \gamma_0 \), its value being \(\phi_{x'x} (x_0, \gamma_0) \). Hence we obtain, according to the theory of envelopes, the following geometrical interpretation:

1 The same results concerning \(\phi (x, \gamma) \) hold if, instead of the particular parameter \(\gamma \) chosen above, we introduce another parameter \(\gamma \) connected with \(\gamma \) by a relation of the form
\(\gamma = \chi (\gamma_0) \),
where \(\chi (\gamma) \) and its first derivative are continuous in the vicinity of \(\gamma_0 \), and \(\chi (\gamma_0) \neq 0 \).

3 Compare p. 58, footnote 2.

4 Compare E. III D, p. 47. The proof presupposes the continuity of \(\Phi_x, \Phi_y, \Phi_\gamma, \Phi_{x'x}, \Phi_{y'y} \) in the vicinity of the point \(x = x'_0, y = y'_0, \gamma = \gamma_0 \). These
Consider the extremal
\[y = \phi(x, \gamma_0) \]
and a neighboring extremal of the set (28):
\[y = \phi(x, \gamma_0 + k) \]
Then if \(|k|\) be chosen sufficiently small, the curve \(\mathcal{C}\) will meet \(\mathcal{C}_0\) at one and but one point \(P\) in the vicinity of \(A'\). And as \(k\) approaches zero, the point \(P\) approaches \(A'\) as limiting position. Hence we have the

\[\text{Theorem: The conjugate } A' \text{ of the point } A \text{ is the point where the extremal } \mathcal{C}_0 \text{ meets for the first time the envelope of the set of extremals through } A. \]

\(d\) Example IV: \(F = g(y')\), a function of \(y'\) alone.

The extremals are straight lines; the set of extremals (28) is the pencil of straight lines through \(A\); hence there exists no conjugate point.

The same result follows analytically: The general solution of Euler's equation is
\[y = ax + \beta, \]

conditions are satisfied in our case provided that \(x_0^*\) lies in the interval \((X_0, X_1)\), and provided that we suppose that not only the derivatives mentioned on p. 55, but also \(f_{a\alpha}, f_{a\beta}, f_{\beta\beta}\) are continuous in \(A\) (compare p. 54, footnote 3).

\[\text{This means: If we choose a positive quantity } \delta \text{ arbitrarily but sufficiently small, and denote by } M_1 \text{ and } M_2 \text{ the points of } \bar{e}_0 \text{ whose abscissae are } x_0 - \delta \text{ and } x_0 + \delta \text{ then another positive quantity } \sigma \text{ can be determined such that every extremal } \bar{e} \text{ for which } |k| < \sigma \text{ meets } \bar{e}_0 \text{ at one and but one point } P \text{ between } M_1 \text{ and } M_2. \]

Compare p. 35, footnote 2.

If, on the contrary, \(x_2\) be any value in the interval \((X_0, X_1)\) for which
\[\phi_\gamma(x_2, \gamma_0) \neq 0, \]

then two positive quantities \(\delta\) and \(\sigma\) can be determined such that no extremal \(\bar{e}\) for which \(|k| < \sigma\) meets \(\bar{e}_0\) between the points whose abscissae are \(x_2 - \delta\) and \(x_2 + \delta\).

\[\text{For in this case the difference} \]
\[\phi(x_2 + h, \gamma_0 + k) - \phi(x_2 + h, \gamma_0) = k\phi_\gamma(x_2 + h, \gamma_0 + \theta k), \]

where \(0 < \theta < 1\) is different from zero for all sufficiently small values of \(|h|\) and \(|k|\)
and

$$\Delta(x, x_0) = x - x_0.$$

Example I (see p. 27): From the general solution of Euler’s equation

$$y = a \cosh \frac{x - \beta}{\alpha}$$

we get

$$\Delta(x, x_0) = \sinh r \cosh v_0 - \sinh v_0 \cosh r + (r - v_0) \sinh v \sinh v_0,$$

where

$$r = \frac{x - \beta}{\alpha}, \quad v_0 = \frac{x_0 - \beta}{\alpha}.$$

Hence we obtain (if $\nu_0 \neq 0$) for the determination of x_0' the transcendental equation

$$\coth v - r = \coth v_0 - v_0.$$

(32)

Since the function $\coth v - r$ decreases from $+\infty$ to $-\infty$ as v increases from $-\infty$ to 0, and from $+\infty$ to $-\infty$ as v increases from 0 to $+\infty$, the equation (32) has, besides the trivial solution $r = v_0$, one other solution v_0', and v_0 and v_0' have opposite signs.

Hence if $v_0 > 0$, i.e., if A lies on the ascending branch of the catenary, there exists no conjugate point: $\Delta(x, x_0) \neq 0$ for every $x > x_0$. The same result follows for $v_0 = 0$.

If, on the contrary, $v_0 < 0$, i.e., if A lies on the descending branch of the catenary, there always exists a conjugate point A' situated on the ascending branch. It can be determined geometrically by the following property, discovered by Lindelöf:

The tangents to the catenary at A and at A' meet on the x-axis.

For the abscissae of the points of intersection of these two tangents with the x-axis are

$$X = x_0 - a_0 \coth \frac{x_0 - \beta_0}{a_0},$$

and

$$X' = x_0' - a_0 \coth \frac{x_0' - \beta_0}{a_0},$$

and they are equal on account of (32).

\section*{Second Variation}

\section*{§16. Necessity of Jacobi's Condition}

It has already been pointed out that the two theorems of §14 which constitute Jacobi's Criterion, though giving important information concerning the sign of the second variation, contain neither a necessary nor a sufficient condition for a minimum or maximum.

But at least a necessary condition can be derived from the first of the two theorems by a slight modification of the reasoning: If \(x_0' < x_1 \), then \(\delta^2 J \) can be made not only zero but even negative.

This was first proved by Weierstrass in his lectures: the first published proof is due to Erdmann.\footnote{Zeitschrift für Mathematik und Physik, Vol. XXIII (1878), p. 367. Schieffer's proof (Mathematische Annalen, Vol. XXV (1885), p. 548), is not essentially different from Erdmann's.}

Weierstrass writes the second variation in the form

\[\delta^2 J = \epsilon^2 \left\{ \int_{x_0}^{x_1} (P + k) \eta^2 + 2 (\eta \eta' + R \eta^2) \, dx - k \int_{x_0}^{x_1} \eta^2 \, dx \right\}, \]

\(k \) being a small positive constant, and applies to the first integral Jacobi's transformation:

\[\delta^2 J = \epsilon^2 \left\{ \int_{x_0}^{x_1} \eta \mathcal{W}(\eta) \, dx - k \int_{x_0}^{x_1} \eta^2 \, dx \right\}, \]

where

\[\mathcal{W}(\eta) = \left((P + k) - Q \right) \eta - \frac{d}{dx}(R \eta'). \]

Then he shows that there exist admissible functions \(\eta \) which satisfy the differential equation \(\mathcal{W}(\eta) = 0 \). For such a function \(\eta \), \(\delta^2 J \) is evidently negative.

H. A. Schwarz (Lectures, 1898-99) uses the following function \(\eta \):

\[\eta = \begin{cases} \Delta(x, x_0) + k \omega & \text{in } (x_0, x_1) \\ k \omega & \text{in } (x_0, x_1') \end{cases}, \]

where \(k \) is a small constant and \(\omega \) is a function of class \(C^1 \) which vanishes at \(x_0 \) and \(x_1 \) but not at \(x_0' \). The corresponding value of \(\delta^2 J \) is of the form:

\[\delta^2 J = \epsilon^2 \left\{ 2k R (x_0') \Delta(x_0', x_0) \omega (x_0') + k^2 \eta^2 \right\}, \]

which can be made negative by a proper choice of \(k \). (Compare Sommerfeld, Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. VIII (1900), p. 199.)

All these proofs presuppose \(x_0' < x_1' \); for the case \(x_0' = x_1 \), so far as it is not covered by Erdmann's formula (23) for \(\delta^2 J \), compare Kneser, Mathematische Annalen, Vol. L (1897), p. 30, and Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p. 166. This case will be treated in parameter-representation in chap. v, §38.
Take x'_2 so that

\[x'_0 < x'_2 < x_1 \quad \text{and} \quad \Delta (x'_2, x_0) \neq 0 \]

and put

\[
\begin{align*}
u &= \Delta (x, x_0) , \\
v' &= \rho \Delta (x, x'_2) ,
\end{align*}
\]

where $\rho = +1$ or -1; u and v are particular integrals of (9) and linearly independent; hence the relation (22) holds and takes the following form for the differential equation (9):

\[R (uv' - u'v) = K , \quad (33) \]

K being a constant different from zero.

We choose ρ so that $K > 0$; this is always possible, for, if v is replaced by $-v$, K is changed into $-K$.

Further, since also u and $u - v$ are linearly independent, it follows from Sturm's theorem (see p. 58, footnote 2) that $u - v$ vanishes for one value of x, say $x = c$, between x_0 and x'_0; hence

\[u(c) = v(c) . \]

Now define η as follows:

\[\eta = \begin{cases} u & \text{in } (x'_0, c) , \\
v & \text{in } (c, x'_2) , \\
0 & \text{in } (x'_2, x_1) . \end{cases} \]

This function η fulfils the conditions under which the formula (12a) for $\delta^2 J$ holds, and since $\Psi(\eta) = 0$ for each of the three segments, formula (12a) becomes:

\[\delta^2 J = \varepsilon^2 R (uv' - v'v) \big|_c^e , \]

which may be written, since $u(c) = v(c)$:

\[\delta^2 J = -\varepsilon^2 R (uv' - u'v) \big|_c^e = -\varepsilon^2 K , \]

and this is negative according to our agreements concerning the sign of v.

Thus we have proved the

Fundamental Theorem III: The third necessary condition for a minimum (maximum) is that
\[\Delta(x, x_0) = 0 \]

(III)

for all values of \(x \) in the open interval \(x_0 < x < x_1 \).

Corollary: The same condition may also be written

\[x_1 \equiv x_0', \text{ or else } x_0' \text{ non-existent}, \]

(III)

i.e., if the end-point \(B \) lies beyond the conjugate point \(A' \), there is no minimum or maximum.

We shall refer to this condition as **Jacobi's condition**.
CHAPTER III

SUFFICIENT CONDITIONS

§17. SUFFICIENT CONDITIONS FOR A "WEAK MINIMUM"¹

We suppose henceforth that for our extremal \(C_0 \) the conditions

\[
R > 0 \quad \text{(II')}
\]

\[
\Delta (x, x_0) = 0 \quad \text{for } x_0 < x \geq x_1 \quad \text{(III')}
\]

are fulfilled, and we ask: Are these conditions sufficient for a minimum?

a) It seems so, and until rather recently it was generally believed to be so: For the reasoning of §11 shows that after an admissible function \(\eta \) has been chosen, \(\Delta J \) will be positive for all sufficiently small values of \(|\epsilon| \); hence within the set of curves with parameter \(\epsilon \):

\[
\bar{y} = y + \epsilon \eta
\]

(1)

the curve \(C_0 \) does furnish a minimum. On the other hand, every curve \(C \) may be considered as an individual of such a set, and therefore it seems as if we must actually have a minimum.

But a closer analysis shows that the conclusion is wrong. For all we have proved so far is this: After a function \(\eta \) has been selected we can assign a positive quantity² \(\rho_\eta \) such that \(\Delta J > 0 \) for every \(|\epsilon| < \rho_\eta \). And if

¹Compare for this section Scheffer, "Über die Bedeutung der Begriffe Maximum und Minimum in der Variationsrechnung," Mathematische Annalen, Vol. XXVI (1886), p. 197. This paper has been of the greatest importance in clearing up the fundamental conceptions in the Calculus of Variations.

²Notice the equality sign which distinguishes (III') from (III); for the case \(x_1 = x_0 \), which we omit here, compare the references on p. 65, footnote.

³The notation \(\rho_\eta \) indicates that \(\rho \) depends on the function \(\eta \); compare E. H. Moore, Transactions of the American Mathematical Society, Vol. I (1900), p. 500.
we denote by \(m \) the maximum of \(|\eta|\) in \((u, v_r)\) and put \(k = m\rho \), we have
\[
|\Delta y| < k
\]
for all curves of the set (1) for which \(|\epsilon| < \rho\); and vice versa, if we draw in the neighborhood \((k) \) of \(C_0 \) any curve of this particular set, the corresponding \(\epsilon \) satisfies the inequality \(|\epsilon| < \rho\) and therefore \(\Delta J > 0 \).

Now consider the totality of all admissible functions \(\eta \); the corresponding set of values \(k \) has a lower limit \(k_0 \equiv 0 \). If it could be proved that \(k_0 > 0 \), then we could infer that \(\Delta J > 0 \) for every admissible variation \(\eta \) for which \(|\Delta y| < k_0\), and we would actually have a minimum. But it cannot be proved that \(k_0 > 0 \) and therefore we cannot infer that \(C_0 \) minimizes \(J \).

It is even a priori clear that the method which we have followed so far can never lead to a proof of the sufficiency of this or any other set of conditions.

For, if we apply Taylor’s expansion (either infinite or with the remainder term) to the difference
\[
\Delta F = F(x, y + \Delta y, y' + \Delta y') - F(x, y, y')
\]
and integrate, we can only draw conclusions concerning the sign of \(\Delta J \) from the sign of the first terms, if not only \(|\Delta y|\) but also \(|\Delta y'|\) remains sufficiently small, or geometrically: if for corresponding points of \(C_0 \) and \(C \) not only the distance but also the difference of the directions of the tangents is sufficiently small.

b) If there exists a positive quantity \(k \) such that \(\Delta J \equiv 0 \) for all admissible variations for which
\[
|\Delta y| < k \quad \text{and} \quad |\Delta y'| < k
\]
Kneser (Lehrbuch, §17) says that the curve \(C_0 \) furnishes a “Weak Minimum,” from which he distinguishes the mini-

1First emphasized by Weierstrass.
minimum as we have defined\(^1\) it according to Weierstrass, as "Strong Minimum." If a curve furnishes a strong minimum, it always furnishes a fortiori also a weak minimum, but not vice versa.

If we adopt temporarily this terminology, we can enunciate the following

Theorem: An extremal \(\xi_0 \) for which the conditions
\[
R > 0 \quad (\text{II}')
\]
\[
\Delta (x, x_0) = 0 \quad \text{for} \quad x_0 < x < x_1 \quad (\text{III}')
\]
are fulfilled, furnishes at least a "weak minimum" for the integral \(J \).

The first proof of this theorem was given by Weierstrass (Lectures, 1879), the first published proof by Scheffer (loc. cit., 1886). The following proof is due to Kneser:\(^2\)

We return to equation (3) of §11 which we write in the form:
\[
\Delta J = \frac{1}{2} \int_{x_0}^{x_1} \left(P \omega^2 + 2 Q \omega' + R \omega'^2 \right) dx + \frac{1}{2} \int_{x_0}^{x_1} \left(L \omega^2 + N \omega'^2 \right) dx,
\]
where \(\omega = \Delta y \), and \(L, N \) are infinitesimals in the following sense: corresponding to every positive quantity \(\sigma \) another positive quantity \(\rho_\sigma \) can be assigned such that:
\[
|L| < \sigma, \quad |N| < \sigma \quad \text{in} \quad (x_0, x_1),
\]
provided that
\[
|\omega| < \rho_\sigma \quad \text{and} \quad |\omega'| < \rho_\sigma \quad \text{in} \quad (x_0, x_1).
\]

By Legendre's transformation,\(^3\) the first integral may be thrown into the form:
\[
\frac{1}{2} \int_{x_0}^{x_1} \left[R \left(\omega' + \frac{Q + \omega'}{R} \right)^2 + \left(P + w' - \frac{(Q + w')^2}{R} \right) \omega^2 \right] dx.
\]

\(^1\) Compare §3, b).
\(^2\) Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. VI (1899), p. 95. The theorem can also be proved by means of Weierstrass's Theorem (§20); compare Kneser, Lehrbuch, §§20-22.
\(^3\) Compare §11, b).
§17 \textbf{Sufficient Conditions}

Since the conditions (II') and (III') are fulfilled, there exist solutions of the differential equation

$$P + \frac{dw}{dx} - \frac{(Q + w)^2}{R} = 0,$$

which are of class C' in (x_0r_1); hence it follows that, provided the constant c be taken sufficiently small, there also exist integrals of the differential equation

$$P + \frac{dw}{dx} - \frac{(Q + w)^2}{R} = c^2,$$

(2)

which are of class C' in (x_0r_1); let w be such an integral, and introduce

$$\zeta = \omega' + \frac{Q + w}{R} \omega$$

instead of ω'. Then ΔJ takes the form

$$\Delta J = \frac{1}{2} \int_{x_0}^{x_1} \left[(c^2 + \lambda) \omega^2 + 2\mu \omega \zeta + (R + v) \zeta^2 \right] dx,$$

where λ, μ, v are infinitesimals in the same sense as L and N. But this may be written

$$\Delta J = \frac{1}{2} \int_{x_0}^{x_1} \left[(R + v) \left(\zeta + \frac{\mu}{R + v} \omega \right)^2 + \left(c^2 + \lambda - \frac{\mu^2}{R + v} \right) \omega^2 \right] dx,$$

and since λ, μ, v are infinitesimals, we can choose a positive quantity k so that $R + v > 0$ and $\frac{c^2}{R + v} - \frac{\lambda - \mu^2}{R + v} > 0$ in (x_0r_1), and consequently $\Delta J > 0$, provided that $|\omega| < k$ and $|\omega' < k$. Q. E. D.

\textit{Remark:} We have given this theorem chiefly for its historical interest: It marks the farthest point which the Calculus of Variations had reached before Weierstrass's

1This follows from the connection between Legendre's and Jacobi's differential equations; see equation (8) in §11, b).

2According to a theorem due to Poincaré (\textit{Mécanique céleste}, Vol. I, p. 58; compare also E. II A, p. 265, and Picard, \textit{Traité}, etc., Vol. III, p. 157). A similar theorem was given by Weierstrass in his lectures in connection with his proof of the necessity of Jacobi's condition, see p. 63, footnote.
epoch-making discoveries concerning the sufficient conditions for a "strong minimum."

After these discoveries, only a secondary importance attaches itself to the "weak minimum;" for the restriction imposed upon the derivative in the "weak minimum" is indeed a very artificial\(^1\) one, only suggested and justified by the former inability of the Calculus of Variations to dispense with it.

c) The terms "weak" and "strong" are sometimes also applied to the variations. A variation containing a parameter \(\epsilon\)

\[
\Delta y = \omega (x, \epsilon)
\]

is called weak if not only

\[
\lim_{\epsilon \to 0} L \omega (x, \epsilon) = 0 \quad \text{but also} \quad \lim_{\epsilon \to 0} L \omega_x (x, \epsilon) = 0
\]

uniformly in \((x_0, r_1)\), strong if this condition is not satisfied.

The variations of the form

\[
\Delta y = \epsilon \eta ,
\]

as well as the more general variations which we have mentioned in §4, (d), are weak variations.

Weierstrass gives the following example\(^2\) of a strong variation:

\[
\Delta y = \epsilon \sin \left(\frac{(x - x_0) \pi}{\epsilon^n}\right),
\]

\(n\) a positive integer; here the condition

\[
\lim_{\epsilon \to 0} L \Delta y = 0
\]

\(^1\)Especially if we think of geometrical problems, for instance, the problem of the shortest curve on a given surface between two points.

For the more general problem, however, where higher derivatives occur under the integral sign, such restrictions are of greater importance; compare Zermelo, Dissertation, pp. 26-31.

\(^2\)The following modification of Weierstrass's example has the advantage of vanishing at both end-points:

\[
\Delta y = \frac{1}{m} \sin \left(\frac{(x - x_0) m \pi}{x_1 - x_0}\right),
\]

\(m\) and \(n\) being positive integers.
is satisfied, but not the condition
\[\lim_{\epsilon \to 0} \Delta y' = 0. \]

Other examples of strong variations will occur in §§18 and 22.

§18. INSUFFICIENCY OF THE PRECEDING CONDITIONS FOR A STRONG MINIMUM, AND FOURTH NECESSARY CONDITION

From the introductory remarks of the previous section, it follows that we have no reason to expect that the conditions (I), (II'), (III') are sufficient for a minimum in the sense in which we have defined it according to Weierstrass (a "strong minimum" in Kneser's terminology).

a) As a matter of fact the three conditions (I), (II') and (III') are not sufficient for a strong minimum, and it is easy to construct examples which prove this statement:

Example III' (see p. 39):

\[F = y'2(y' + 1)^2. \]

Here \(\xi_0 \) is the straight line joining the two given points \(A \) and \(B \), say

\[\xi_0 : \quad y = mx + n. \]

Further:

\[R = 2(6m^2 + 6m + 1), \]

\[\Delta(x, x_0) = x - x_0; \]

hence \(x_0' \) non-existent. Let \(m_1, m_2 \) be the two roots of the equation

\[6m^2 + 6m + 1 = 0, \]

viz.,

\[m_1 = \frac{1}{2} \left(-1 + \frac{1}{\sqrt{3}} \right) = -0.2113 \ldots \]

1The first example of this kind was the problem of the solid of revolution of least resistance; already Legendre had shown that the resistance can be made as small as we please by a properly chosen zigzag line; see Legendre, loc. cit., p. 73, in Stackel's translation, and Pascal, loc. cit., p. 113.

\[m_2 = \frac{1}{2} \left(-1 - \frac{1}{4} \right) = -0.7887 \ldots \]

then

\[R > 0 \quad \text{if} \quad m > m_1 \quad \text{or} \quad m < m_2 , \]

\[R < 0 \quad \text{if} \quad m_2 < m < m_1 . \]

In the former case, the first three necessary conditions for a minimum, in the latter for a maximum, are satisfied. Nevertheless, if

\[-1 < m < 0 ,\]

neither a maximum nor a minimum takes place. For, in this case, if any neighborhood (\(\rho \)) of \(C \) be given, however small, we can always join \(A \) and \(B \) by a broken line \(C \) made up of segments of straight lines of slope 0 and \(-1\), and contained in (\(\rho \)). But for such a broken line \(\int J = 0 \), whereas for \(C \) the integral \(J \) is positive. This proves that \(C \) cannot furnish a minimum. That it cannot furnish a maximum will be seen later, in § 18, c).

FIG. 13

Example V: To minimize

\[J = \int_{x_0}^{x_1} (y'^2 + y^2) \, dx , \]

the given end-points having the co-ordinates \((x_0, y_0) = (0, 0), (x_1, y_1) = (1, 0)\).

The extremals are straight lines, and \(C \) is the segment (0 1) of the \(x \)-axis. Further,

\[R = 2 , \]

\[\Delta (x, x_0) = x - x_0 . \]

Hence the conditions (I), (II'), (III') for a minimum are satisfied. Nevertheless \(\Delta J \) can be made negative. For, if we choose for \(C \) the broken line \(APB \), the co-ordinates of \(P \) being \((1 - p, q)\), where \(0 < p < 1 \), and \(q > 0 \), we obtain

\[\Delta J = \frac{q^2}{p(1 - p)} \left(1 + \frac{q}{1 - p} - \frac{q}{p} \right) . \]
Any neighborhood \((\rho)\) of \(C_0\) being given, choose \(q < \rho\); then \(\rho\) can always be taken so small that \(\Delta J < 0\).

b) The insufficiency of the preceding three conditions being thus established, further conditions must be added before we can be certain that the curve \(C_0\) minimizes the integral \(J\).

A fourth necessary condition was discovered by Weierstrass in 1879 and derived by him in the following manner:

Through an arbitrary point \(2 : (x_2, y_2)\) of \(C_0\) we draw arbitrarily a curve \(\tilde{C}: \tilde{y} = \tilde{f}(x)\), of class \(C'\).

Denoting by \(4\) that point of \(\tilde{C}\) whose abscissa is \(x_2 - h\), \(h\) being a small positive quantity, we draw, as in §8, a curve \(\bar{C}: \bar{y} = y + \epsilon\eta\) of class \(C'\) from 0 to 4 and replace the arc \(02\) of \(C_0\) by the curve \(042\).

By taking \(h\) sufficiently small we can make the curve \(042\) lie in the neighborhood \((\rho)\) of \(C_0\).

For this variation of \(C_0\) we obtain in the notation of §8:

\[
\Delta J = J_{04} + J_{42} - J_{02}.
\] (3)

But according to §8, equation (30), this is equal to

\[
\Delta J = h \mathbf{E}(x_2, y_2; y_2', \bar{y}_2') + h(h).
\] (4)

where \((h)\) denotes as usual an infinitesimal, and the \(\mathbf{E}\)-function is defined by

\[
\mathbf{E}(x, y; p, \bar{p}) = F(x, y, \bar{p}) - F(x, y, p) - (\bar{p} - p) F_y(x, y, p).
\]

Hence follows the

Fundamental Theorem IV: The fourth necessary condition for a minimum (maximum) is that
Calculus of Variations

(Chap. III)

\[\mathcal{E}(x, y; y', \tilde{p}) \equiv 0 \quad (\equiv 0) \tag{IV} \]

along\(^1\) the curve \(\mathcal{C}_0 \) for every finite value of \(\tilde{p} \).

We shall refer to this condition as Weierstrass's condition.

c) Applying Taylor's formula to the difference

\[F(x, y, \tilde{p}) - F(x, y, p) \]

we obtain the following important relation\(^2\) between the \(\mathcal{E} \)-function and \(F_{y'y'} \):

\[\mathcal{E}(x, y; p, \tilde{p}) = \frac{(\tilde{p} - p)^2}{2} F_{y'y'}(x, y, p^*) \tag{5} \]

where

\[p^* = p + \theta (\tilde{p} - p) ; \quad 0 < \theta < 1 \ . \]

This proves

Corollary I: Condition (IV) is always satisfied if for every point \((x, y)\) on \(\mathcal{C}_0 \) and for every finite value of \(\tilde{p} \)

\[F_{y'y'}(x, y, \tilde{p}) \equiv 0 \ . \tag{IIa} \]

Furthermore, if we define the function\(^3\) \(\mathcal{E}_1(x, y; p, \tilde{p}) \) by the equation

\[\mathcal{E}_1(x, y; p, \tilde{p}) = \frac{\mathcal{E}(x, y; p, \tilde{p})}{(\tilde{p} - p)^2} \tag{6} \]

when \(\tilde{p} \neq p \), and by

\[\mathcal{E}_1(x, y; p, p) = \mathcal{E}(x, y; p, \tilde{p}) = \frac{1}{2} F_{y'y'}(x, y, p) \tag{6a} \]

when \(\tilde{p} = p \), we obtain

Corollary II: Condition (IV) is equivalent to the condition

\[\mathcal{E}_1(x, y; y', \tilde{p}) \equiv 0 \tag{IVa} \]

along \(\mathcal{C}_0 \) for every finite \(\tilde{p} \).

d) Zermelo\(^4\) has given the following geometrical

\(^1\)I. e., if \((x, y)\) is any point of \(\mathcal{C}_0 \) and \(y' \) the slope of \(\mathcal{C}_0 \) at \((x, y)\).

\(^2\)Due to Zermelo, loc. cit., p. 67.

\(^3\)Compare Zermelo, loc. cit., p. 60.

\(^4\)Loc. cit., p. 67.
interpretation of the relation between the E-function and $F'_{y'y}$:

Let $F'(\tilde{p})$ denote the function $F'(x, y, p)$ considered as a function of p alone, x, y being regarded as constant, and consider the curve

$$u = F'(p). \quad (7)$$

Draw the tangent P_0T at the point P_0 whose abscissa is $p = y'$; and let P and Q be the points of intersection with the line $p = \tilde{p}$ of the curve and of the tangent P_0T respectively.

Then

$$E(x, y; y', \tilde{p}) = F'(\tilde{p}) - F'(y') - (\tilde{p} - y') F''(y')$$

is represented by the vector QP, and the condition

$$E(x, y; y', \tilde{p}) \equiv 0 \quad (IV)$$

means therefore geometrically that the curve (7) lies entirely above—or at least not below—the tangent P_0T.

In order that (IV) may hold it is therefore:

\(a\) Necessary that the curve shall turn its convex side downward at $p = y'$, i. e., that

$$F'''(y') \equiv 0.\quad (II)$$

This is our old condition (II), which is consequently contained in the new condition (IV).

\(b\) Sufficient that the curve shall everywhere turn its convex side downward, i. e., that

$$F''(p) \equiv 0 \quad (IIa)$$

for every p, which is the above condition (IIa).

But neither is the first condition sufficient, nor the second necessary.

\(c\) Example I (see p. 49):

$$F = y \sqrt{1 + y''^2};$$
hence
\[F_{yy}(x, y, \mu) = \frac{y}{1 + \mu^2} \]

Since \(y > 0 \) along the catenary, condition (Ila), and therefore also (IV), is satisfied.

Example III (see pp. 39, 73):
\[F' = y'^2(y' + 1)^2 \]
hence
\[\mathbf{E}(x, y; y', \mu) = (\mu - y')^2 \left[\mu^2 + 2\mu(y' + 1) + 3y'^2 + 4y' + 1 \right] \]
\(C_a \) is the straight line joining the two points 0 and 1, say: \(y = m x + n \); hence along \(C_a \), \(y' = m \).

The quadratic in \(\mu \)
\[\mu^2 + 2\mu(m + 1) + 3m^2 + 4m + 1 \]
is always positive if \(m(m + 1) > 0 \); it can change sign if \(m(m + 1) < 0 \); and it reduces to a complete square if \(m(m + 1) = 0 \).

Hence we obtain the result:
If \(m \geq 0 \) or \(m \leq -1 \), condition (IV) is satisfied; if \(-1 < m < 0 \), condition (IV) is not satisfied, and the line 01 furnishes no extremum, in accordance with the results of §18, a).

Example V (see p. 74):
\[F' = y'^2 + y'^3 \]
hence along the curve \(C_b : y = 0 \) we have
\[\mathbf{E}(x, y; y', \mu) = \mu^2(1 + \mu) \]
which can change sign at every point of \(C_b \). Condition (IV) is therefore not satisfied.

§19. Existence of a "Field of Extremals"

Before we can take up the question of sufficient conditions, we must introduce the important concept of a "field of extremals."

a) Definition of a "field."
Consider any one-parameter set of extremals\(^1\)
\[y = \phi(x, \gamma) \] \hspace{1cm} (8)

\(^1\)Here the symbol \(\phi(x, \gamma) \) is used in a more general sense than in §15.
in which our extremal \mathcal{C}_0 is contained, say for $\gamma = \gamma_0$. Suppose $\phi(x, \gamma)$, its first partial derivatives and the derivatives $\phi_{,x}, \phi_{,x\gamma}$ to be continuous functions of x and γ in the domain

$$X_0 \equiv x \equiv X_1, \quad |\gamma - \gamma_0| \leq d_0,$$

d_0 being a positive quantity and X_0, X_1 having the same signification as in §11. Let k denote a positive quantity less than d_0, and \mathcal{S}_k the set of points (x, y) furnished by (8) as x and γ take all the values in the domain

$$\mathcal{B}_k: \quad x_0 \leq x \leq x_1, \quad |\gamma - \gamma_0| \leq k.$$

\mathcal{S}_k may also be defined as the strip of the x, y-plane swept out by the extremals (8) as γ increases from $\gamma_0 - k$ to $\gamma_0 + k$, x being restricted to the interval (x_0, x_1).

Then \mathcal{S}_k is called the "field of extremals about the arc $\mathcal{C}_0"$ if through every point (x, y) of \mathcal{S}_k there passes but one extremal of the set (8) for which $|\gamma - \gamma_0| \leq k$.

This means analytically that there exists a single-valued function

$$\gamma = \phi(x, y)$$

such that

$$y = \phi(x, \phi(x, y)),$$

and

$$|\phi(x, y) - \gamma_0| \leq k$$

for every (x, y) in \mathcal{S}_k.

In addition to this principal property we shall include in the definition of a field the further conditions that the inverse function $\psi(x, y)$ shall be of class C^* in \mathcal{S}_k, and that it shall be possible to choose a positive quantity ρ so small that the domain \mathcal{S}_k contains the neighborhood (ρ) of the extremal \mathcal{C}_0.

b) With respect to the existence of a field the following theorem holds:

*Whenever

$$\phi_{,x}(x, \gamma_0) \equiv 0 \quad \text{throughout} \quad (x_0, x_1),$$

\footnote{According to Kneser, *Lehrbuch*, §14; the notion of a field is due, in a more special sense, to Weierstrass; in its most general sense to H. A. Schwarz, *Werke*, Vol. I, p. 225. Compare also Osgood, *loc. cit.*, p. 112.}
k can be taken so small that the extremals (8) furnish a field \mathcal{F}_k about ξ_0.

Proof. From (10) it follows that $\phi(y(x, \gamma_0))$—being continuous in (x_0r_1)—cannot change sign in (x_0r_1). In order to fix the ideas suppose that

$$\phi(y(x, \gamma_0)) > 0 \quad \text{in} \quad (x_0r_1).$$

Then it follows, according to well-known theorems on continuous functions, that k can be taken so small that

$$\phi(y(x, \gamma)) > 0 \quad \text{in} \quad \mathcal{F}_k.$$

Hence if we give x any fixed value x_2 contained in (x_0r_1) and let γ increase from γ_0-k to γ_0+k, $\phi(x_2, \gamma)$ increases continually from $\phi(x_2, \gamma_0-k)$ to $\phi(x_2, \gamma_0+k)$ and therefore passes once and but once through every intermediate value.

Hence if γ_2 be any value of γ in (γ_0-k, γ_0+k) and we put $\phi(x_2, \gamma_2) = y_2$, then the equation $y_2 = \phi(x_2, \gamma)$ has in (γ_0-k, γ_0+k) no other solution but $\gamma = \gamma_2$, which means geometrically that through the point (x_2, y_2)—which is any point of \mathcal{F}_k—there passes but one extremal of the set (8) for which $|\gamma - \gamma_0| \leq k$.

The existence of the single-valued function $\gamma = \psi(x, y)$ being thus established, the existence and continuity of its first partial derivatives follows from the theorem on implicit functions, since

$$\phi_y(x, \gamma) = 0 \quad \text{in} \quad \mathcal{F}_k.$$
At the same time we see that the set of points S_k is identical with the strip of the x, y-plane bounded by the two non-intersecting curves
\[y = \phi(x, \gamma_0 - k) \quad \text{and} \quad y = \phi(x, \gamma_0 + k) \]
on the one hand, and the two lines $x = x_0$ and $x = x_1$ on the other hand.

Finally, a neighborhood (ρ) of the arc C_0 can be assigned which is wholly contained in S_k.

For each of the two continuous functions
\[\phi(x, \gamma_0 + k) - \phi(x, \gamma_0) \quad \text{and} \quad \phi(x, \gamma_0) - \phi(x, \gamma_0 - k) \]
has a positive minimum value in $(x_0, y_1)\); hence if ρ be the smaller of these two minimum values, the neighborhood (ρ) of C_0 is entirely contained in S_k.

The region S_k has therefore the three characteristic properties of a “field,” and the above theorem is proved.

Corollary I: The slope at a point (x, y) of the unique extremal of the field passing through (x, y) is likewise a single-valued function of x, y, which we denote by $p(x, y)$. It is defined analytically by the two equations
\[p(x, y) = \phi_x(x, \gamma) , \quad \gamma = \psi(x, y) , \quad (13) \]
which show at the same time that $p(x, y)$ has continuous first partial derivatives in S_k.

In case $\phi(x, \gamma)$ is regular in B_k, also $p(x, y)$ is regular in S_k.

Corollary II: The slope $p(x, y)$ satisfies the following partial differential equation of the first order:\!
\[(\rho_x + pp_y) F_{y'y} + p F_{yy} + F_{yy} = 0 \quad . \quad (14) \]

the arguments of the partial derivatives of F being $x, y, p(x, y)$.

\[^1 \text{This corollary forms part of Hilbert's proof of Weierstrass's theorem; see below, \S 21, and the references there given.} \]
Proof: From (13) we obtain by differentiation
\[p_x = \phi_{xx} + \phi_{xy} \gamma_x, \quad p_y = \phi_{xy} \gamma_y; \]
hence if we make use of (12) we get
\[p_x + p_y = \phi_{xx}. \]
But since \(\phi(x, \gamma) \) satisfies Euler's equation for every value of \(\gamma \), we have, for every value of \(x \) and \(\gamma \),
\[\phi_{xx} F_{y'y'} + \phi_{x} F_{yy} + F_{yy} - F_y = 0, \]
the arguments of the partial derivatives of \(F \) being \(x, \phi(x, \gamma), \phi_x(x, \gamma) \). Hence, if we express \(\gamma \) in terms of \(x, y \) by means of (9), we obtain (14).

\(c \) Application to the set of extremals through the point \(A \).

We can now establish the following

Theorem: If for the extremal \(\mathcal{C}_0 \) the conditions
\[
R > 0, \quad (II') \\
\Delta(x, x_0) = 0 \quad \text{for} \quad x_0 < x \leq x_1, \quad (III')
\]
are fulfilled, and if a point \(\bar{A} \) be chosen on the continuation\(^2\) of \(\mathcal{C}_0 \) beyond \(A \), but sufficiently near to \(A \), then the set of extremals through \(\bar{A} \) furnishes a field about \(\mathcal{C}_0 \).

It is only necessary to choose the point \(\bar{A} (x_3, y_3) \) so near to \(A \) that

1. \(x_0 < x_3 < x_0 \).
2. \(\Delta(x, x_3) = 0 \) in \((x_0, x_1) \).

The possibility of such a choice of \(x_3 \) has been established in \(§14 \).

Under these circumstances, it follows by the method employed in \(§15 \) that there exists a set of extremals through \(\bar{A} \):
\[
y = \phi(x, \gamma), \quad (15)
\]
\(^1\)The introduction of the set of extremals through \(\bar{A} \) instead of the set through \(A \), which considerably simplifies the proofs, is due to Zermelo, Dissertation, pp. 87, 88; compare also Kneser, Lehrbuch, §§14, 17 and Osgood, loc. cit., p. 115.
\(^2\)Compare the assumptions in \(§13 \ a \).
where $\phi(x, \gamma)$, its first partial derivatives and the derivatives ϕ_{xx}, ϕ_{xy} are continuous in the domain

$$X_0 \equiv x \equiv X_1, \quad |\gamma - \gamma_0| \equiv d_0,$$

d_0 being a sufficiently small positive quantity.

Moreover

$$\phi_y(x, \gamma_0) \equiv 0 \quad \text{in} \quad (x_0, x_1),$$

since, corresponding to equation (30) of §15, we have in the present case

$$\phi_y(x, \gamma_0) = C \cdot \Delta(x, x_0),$$

where C is a constant different from zero.

Hence the set of extremals through Δ satisfies the conditions of the lemma given under b) and furnishes therefore indeed a field about \mathfrak{C}_0.

1 Notice that in §15 the symbol $\phi(x, \gamma)$ was used with a slightly different meaning, viz., for the set of extremals through Δ.

2 To the set of extremals through the point Δ itself the lemma cannot be applied, since for this set $\phi_y(x_0, \gamma_0) = 0$. Nevertheless it can be proved that in this case through every point of \mathfrak{S}_k, except the point Δ itself, a unique extremal of the set can be drawn. For in the present case we have: $\phi(x_0, \gamma) \equiv y_0$ for every γ and therefore $\phi_y(x_0, \gamma) \equiv 0$. Hence it follows that if we define

$$\chi(x, \gamma) = \begin{cases} \phi_y(x, \gamma)/(x - x_0), & \text{when } x \neq x_0, \\ \phi_{xx}(x_0, \gamma), & \text{when } x = x_0, \end{cases}$$

the function $\chi(x, \gamma)$ is continuous in the domain: $X_0 \equiv x \equiv X_1, |\gamma - \gamma_0| \equiv d_0$, and $\chi(x, \gamma_0) \equiv 0$ in (x_0, x_1), also for $x = x_0$, since $\phi_{xx}(x_0, \gamma_0) \equiv 0$ according to equation (31) of §15. We can therefore take k so small that $\chi(x, \gamma) \equiv 0$ in the domain: $X_0 \equiv x \equiv X_1, |\gamma - \gamma_0| \equiv k$. Hence it follows that $\phi_y(x, \gamma)$ has the same sign throughout the domain: $x_0 < x \equiv X_1, |\gamma - \gamma_0| \equiv k$. The further reasoning proceeds then as under b).

It should also be noticed that in the present case it is impossible to inscribe in \mathfrak{S}_k a neighborhood (ρ) of x_0, since the width of \mathfrak{S}_k approaches zero as x approaches x_0.

We shall say that the set of extremals through Δ forms an improper field about x_0.

The inverse function $\psi(x, y)$ and the slope $p(x, y)$ are in this case single-valued and of class C in \mathfrak{S}_k except at the point (x_0, y_0) where they are indeterminate. But if the point (x, y) approaches the point (x_0, y_0) along a curve \mathfrak{C} of class C lying entirely in \mathfrak{S}_k, then both functions approach determinate finite limiting values. The limit of $\psi(x, y)$ is the parameter γ of that extremal of the set which is tangent to \mathfrak{C} at (x_0, y_0); the limit of $p(x, y)$ is the slope of the curve \mathfrak{C} at (x_0, y_0).
§20. WEIERSTRASS'S THEOREM

We are now prepared to prove a fundamental theorem whose discovery by Weierstrass in 1879 marks a turning-point in the history of the Calculus of Variations. It gives an expression for the total variation of the integral \(J \) in terms of the E-function, from which sufficient conditions for an extremum can be derived.

(a) The gist of Weierstrass’s method can be best understood from a simple example, in which the difficulties concerning the existence of a field, which complicate the proof of Weierstrass’s theorem in the general case, can be entirely avoided.

Example VI: In order to prove that the straight line\(^1\) 01 actually minimizes the integral

\[
J = \int_{x_0}^{x_1} \sqrt{1 + y'^2} \, dx,
\]

we draw from the point 0 to the point 1 any curve \(\overline{C} \):

\[
\overline{C} : \quad \overline{y} = f(x),
\]

not coinciding with the straight line 01. We suppose for simplicity that \(\overline{C} \) is of class \(C' \).

Through an arbitrary point

\(2 : (x_2, y_2) \) of \(\overline{C} \) we can draw one and but one extremal of the set of extremals through the point 0, viz., the straight line 02.

We now consider the integral \(J \) taken from 0 along the straight line 02 to 2 and from 2 along the curve \(C \) to 1, that is, we form, in the notation of §2,\(^f\) \(J_{02} + J_{21} \),

the stroke always indicating\(^2\) integration along the curve \(\overline{C} \).

\(^1\) For the notation compare §2, c).

\(^2\) Notation according to Weierstrass; Kneser, on the contrary, uses the stroke to indicate integration along an extremal.
§20] **Sufficient Conditions** 85

The value of this integral is a single-valued function of x_2, which will be denoted by $S(x_2)$. As the point 2 describes the curve \overline{C} from 0 to 1, $S(x_2)$ varies continuously\(^1\) from the initial value

$$S(x_0) = \bar{J}_{01} \quad \text{(along } \overline{C})$$

to the end value

$$S(x_1) = J_{01} \quad \text{(along } C_0).$$

Hence the total variation

$$\Delta J = \bar{J}_{01} - J_{01}$$

is expressible in terms of the function $S(x)$ in the form

$$\Delta J = - \left[S(x_1) - S(x_0) \right];$$

and we shall have proved that $\Delta J \equiv 0$ if we can show that $S(x_2)$ always decreases or at least does not increase as x_2 increases from x_0 to x_1.

For this purpose we form the derivative of $S(x_2)$.

The integral J_{02} is the length of the straight line 02:

$$J_{02} = \sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2};$$

hence

$$\frac{dJ_{02}}{dx_2} = \frac{(x_2 - x_0) + (y_2 - y_0) \bar{f}'(x_2)}{1 (x_2 - x_0)^2 + (y_2 - y_0)^2},$$

since

$$y_2 = \bar{f}(x_2).$$

If we denote the slopes of the straight line 02 and of the curve C at 2 respectively by p_2 and \bar{p}_2, i.e.,

$$p_2 = \frac{y_2 - y_0}{x_2 - x_0}, \quad \bar{p}_2 = \bar{f}'(x_2),$$

the previous result may be written

$$\frac{dJ_{02}}{dx_2} = \frac{1 + p_2\bar{p}_2}{1 + p_2^2},$$

On the other hand,

$$\bar{J}_{21} = \int_{x_2}^{x_1} \sqrt{1 + \bar{f}''(x)^2} \, dx,$$

\(^1\)See the explicit expressions for J_{02} and \bar{J}_{21} below.
and therefore \[\frac{dJ}{dx_1} = -1 \left(1 + \frac{\bar{p}_2}{1 + p_2^2} \right) \]

Hence we obtain the result \[\frac{dS(x_2)}{dx_2} = -1 \left(1 + \frac{\bar{p}_2}{1 + p_2^2} \right) \left(1 - \frac{1 + p_2\bar{p}_2}{1 + p_2^2} \right) \]

from which we easily infer that

\[\frac{dS(x_2)}{dx_2} < 0 \quad \text{if} \quad \bar{p}_2 \neq p_2, \]

\[\frac{dS(x_2)}{dx_2} = 0 \quad \text{if} \quad \bar{p}_2 = p_2. \]

The latter alternative cannot take place\(^1\) all along the curve \(C \). Hence it follows that \[\Delta J > 0. \]

The reasoning can easily be extended to the case in which the curve \(C \) has a finite number of corners.

It is thus proved that the straight line \(01 \) furnishes a proper\(^2\) absolute\(^2\) minimum for the integral \(J \).

The preceding construction may be modified\(^3\) as follows:

On the continuation of the line \(C_0 \) beyond the point \(0 \) choose a point \(5 \), and replace in the preceding construction the line \(02 \) by the line \(52 \). Accordingly the function \(S(x_2) \) is now defined by:

\[S(x_2) = J_{52} + J_{21}, \]

and therefore

\[S(x_0) = J_{50} + J_{01}, \quad S(x_1) = J_{51} = J_{50} + J_{01}. \]

Hence we have again

\[\Delta J = -\left[S(x_1) - S(x_0) \right]. \]

\(^1\) If \(\bar{p}_2 = p_2 \) for every \(x_2 \) in \((x_0x_1) \) it would follow that \(f(x) \) satisfies the differential equation

\[f(x) - y_0 = (x - x_0)f(x), \]

and therefore \(\bar{e} \) must be a straight line through \(0 \), which could be no other than the line \(e_0 \), since \(\bar{e} \) is to pass through \(1 \).

\(^2\) Compare §3, a) and b).

\(^3\) Compare p. 82, footnote 1.
For the derivative of $S(x_2)$ we obtain the same expression as before, if we let, in the present case, ρ_2 denote the slope of the extremal 52.

b) We now proceed to the general case. We suppose that for the extremal \mathcal{C}_0 the conditions (II') and (III') are fulfilled. Then we construct as in §19, d) a field \mathcal{S}_k about \mathcal{C}_0 by means of the set of extremals (15) through the point \mathcal{A}, chosen as indicated in §19, d) on the continuation of \mathcal{C}_0 beyond \mathcal{A}. Since the extremal \mathcal{C}_0 is supposed to lie in the interior\(^1\) of the region \mathcal{R}, we can take k so small that \mathcal{S}_k is entirely contained in \mathcal{R}.

For our present purpose it will be convenient to use the numbers 0, 1, 5 to denote the points A, B, \mathcal{A} respectively. Let now $\overline{\mathcal{C}}$ be any curve of class C' joining the two points 0 and 1 (see Fig. 19), and lying wholly in the field \mathcal{S}_k, and let 2 be an arbitrary point of $\overline{\mathcal{C}}$. Through the point 2 we can draw one and but one extremal of the field, i.e., one extremal of the set (15) for which $|\gamma - \gamma_0| \leq k$; let it be denoted by

$$\mathcal{C}_2: \quad y = \phi(x, \gamma_2).$$

We then consider the integral J taken from 5 to 2 along \mathcal{C}_2 and from 2 to 1 along $\overline{\mathcal{C}}$, and denote its value by $S(x_2)$:

$$S(x_2) = J_{52} + J_{21} = \int_{x_0}^{x_2} F \, dx + \int_{x_1}^{x_2} \bar{F} \, dx,$$

the arguments of F being

$$x, \quad y = \phi(x, \gamma_2), \quad y' = \phi_x(x, \gamma_2),$$

those of \bar{F}:

$$x, \quad \bar{y} = \bar{f}(x), \quad \bar{y}' = \bar{f'}(x).$$

For $x_2 = x_0$ and $x_2 = x_1$, $S(x_2)$ takes the values\(^2\)

$$S(x_0) = J_{50} + J_{01}, \quad S(x_1) = J_{51},$$

\(^1\)See §11.

\(^2\)Properly speaking, $S(x_2)$ is not defined for $x_2 = x_1$. But in order that $S(x_2)$ may be continuous also at $x_2 = x_1$, we must define $S(x_1) = S(x_1 - 0)$; and $S(x_1 - 0)$ is easily seen to be equal to J_{51}.\[18x515]§20\] **Sufficient Conditions** 87
so that

$$\Delta J = J_{n1} - J_{n1} = - \left[S(x_1) - S(x_0) \right]. \quad (18)$$

The function \(S(x_2) \) is continuous and admits in \((x_0, x_1)\) a
derivative whose value is

$$S'(x_2) = - E(x_2, y_2; p_2, \bar{p}_2), \quad (19)$$

where \(\bar{p}_2 \) denotes the slope of \(\bar{C} \), \(p_2 \) that of \(C_2 \), at the point 2.

Weierstrass\(^1\) reaches these results in the following way:

Let 3 denote that point of \(\bar{C} \) whose abscissa is \(x_2 + h \),
h being a small positive quantity; and let

$$\bar{C}_3; \quad y = \phi(x, \gamma_2 + \epsilon)$$

be the unique extremal of the field which passes through the
point 3. Then

$$S(x_2 + h) - S(x_2) = (J_{31} + \bar{J}_{21}) - (J_{22} + \bar{J}_{21}) = J_{31} - (J_{22} + \bar{J}_{21}).$$

But this is precisely the difference which has been computed\(^2\)
in \(\S \S 8 \), equation (30), the curves \(\bar{C}_2, \bar{C}_3, \bar{C} \) corresponding to
the curves there denoted by \(C, \bar{C}, \bar{C} \). Accordingly we obtain

$$S(x_2 + h) - S(x_3) = - h \left[E(x_2, y_2; p_2, \bar{p}_2) + (h) \right], \quad (20)$$

\((h)\) denoting an infinitesimal.

Similarly, if 4 be that point of \(\bar{C} \) whose abscissa is
\(x_2 - h \), we obtain

$$S(x_2 - h) - S(x_2) = J_{34} + \bar{J}_{42} - J_{52},$$

which, according to the lemma of \(\S 8 \), is equal to

$$S(x_2 - h) - S(x_2) = + h \left[E(x_2, y_2; p_2, \bar{p}_2) + (h) \right]. \quad (20a)$$

Hence the derivative of \(S \) exists and its value is indeed
given by (19).

\(^1\) Lectures, 1879; the proof here given is Weierstrass’s original proof with the
necessary adaptations to the case where \(x \) is the independent variable, and with
the substitution of the set of extremals through \(5 \) for the set through \(0 \).

\(^2\) In applying the lemma of \(\S 8 \) to the present case, we have to make use of the
remarks on p. 18 and p. 35. The variation

$$\Delta y = \phi(x, \gamma_2 + \epsilon) - \phi(x, \gamma_2)$$

is indeed a variation of the type (5a) of \(\S 4, d \).
§201

Sufficient Conditions

89

As the point 2 describes the curve \(\overline{C} \) from 0 to 1, the function \(E(x_2, y_2; p_2, \overline{p}_2) \) varies continuously. For, on the one hand the \(E \)-function is a continuous function of its four arguments, provided that the point \((x, y)\) remains in the region \(\mathfrak{R} \), and the field \(\mathfrak{S}_k \) is contained in \(\mathfrak{R} \); on the other hand, \(y_2 = \overline{f}(x_2) \) and \(\overline{p}_2 = f'(x_2) \) are continuous in \((x_0, x_1)\) and the slope \(p_2 \) of \(\overline{C}_2 \) at 2 is, according to §18, \(b \), a continuous function of \(x_2, y_2 \).

Integrating (19) between the limits \(x_0 \) and \(x_1 \), and remembering (18), we obtain therefore for the total variation \(\Delta J \) the expression

\[
\Delta J = \int_{x_0}^{x_1} E(x_2, y_2; p_2, \overline{p}_2) \, dx_2 .
\]

We shall refer to this important formula as "Weierstrass's theorem."

The theorem remains true for curves \(\overline{C} \) of class \(D' \). For, suppose the curve \(\overline{C} \) to have a corner at the point 2. Then (20) and (20a) still hold if we understand by \(\overline{p}_2 \) the progressive and regressive derivatives of \(f(x_2) \) respectively. The function \(S(x) \) is therefore continuous at \(x_2 \) and admits a progressive and a regressive derivative. Hence it follows that (21) still holds when \(\overline{C} \) has a finite number of corners.

c) Instead of first computing the increments \(S(x_2 \pm h) - S(x_2) \), Kneser (Lehrbuch, §20) and Osgood (loc. cit., p. 116) compute directly the derivative \(S'(x_2) \) by applying the theorem on the differentiation of a definite integral with respect to a parameter. Supposing for simplicity that \(\overline{C} \) is of class \(C' \), it follows from the properties of the function \(\phi(x, \gamma) \) that \(S(x_2) \) is continuous and differentiable in the

1 The theorem remains true also for the "improper field" \(\mathfrak{S}_k \) formed by the set of extremals through the point 0, and for a curve \(\overline{c} \) which lies entirely in this field \(\mathfrak{S}_k \). For formula (19) holds also in this case at every point of \(\overline{c} \) with the exception of the point 0. Integrating (19) from \(x_0 + h \) to \(x_1 \), and passing to the limit \(h = 0 \), we obtain (21) since \(p_2 \) approaches a determinate finite limit; compare footnote 2, p. 83.

2 Compare E. II A, p. 100, and Dini, §194.
interval \((x_0, x_1)\) and that the derivative can be obtained by applying to the definite integrals \(J_{52}\) and \(J_{21}\) the ordinary rules\(^1\) for the differentiation of a definite integral with respect to a parameter and with respect to the limits.

Accordingly we obtain in the first place

\[
\frac{dJ_{21}}{dx_2} = - F(x_2, y_2, p_2) .
\]

In differentiating the integral

\[
J_{52} = \int_{x_0}^{x_2} F(x, \phi(x, \gamma_2), \phi_x(x, \gamma_2)) \, dx ,
\]

we must remember that \(\gamma_2\) is a function of \(x_2\) defined by the equation

\[
\phi(x_2, \gamma_2) = \bar{f}(x_2) ,
\]

which expresses the fact that the curves \(C_2\) and \(\bar{C}\) both pass through the point 2.

Accordingly we obtain:

\[
\frac{dJ_{52}}{dx_2} = F(x_2, y_2, p_2) + \int_{x_0}^{x_2} \left(F_y \phi_\gamma + F_y \phi_x \phi_\gamma \right) \frac{d\gamma_2}{dx_2} \, dx ,
\]

the arguments of \(\phi_\gamma, \phi_x \phi_\gamma\) being \(x, \gamma_2\).

From our assumptions concerning \(\phi(x, \gamma)\) it follows that

\[
\phi_x \phi_\gamma(x, \gamma_2) = \phi_y (x, \gamma_2).
\]

Applying then to the second term under the integral sign the integration by parts of §4, and remembering that the function \(y = \phi(x, \gamma_2)\) is an integral of Euler's differential equation

\[
F_y - \frac{d}{dx} F_y' = 0 ,
\]

we obtain the result:

\[
\frac{dJ_{52}}{dx_2} = F(x_2, y_2, p_2) + \frac{d\gamma_2}{dx_2} \left[F_y' (x_2, y_2, p_2) \phi_\gamma (x_2, \gamma_2) \right. \\
- \left. F_y' (x_5, y_5, p_5) \phi_\gamma (x_5, \gamma_2) \left] ,
\]

where \(p_5 = \phi_x (x_5, \gamma_2)\).

\(^1\)Compare E. II A, p. 102, and J. I, No. 83.
But since the extremals of the set (15) all pass through the point $5: (x_5, y_5)$, we have

$$y_5 = \phi (x_5, \gamma)$$

for every γ; hence

$$\phi_\gamma (x_5, \gamma) = 0$$

for every γ, and therefore in particular

$$\phi_\gamma (x_5, \gamma_5) = 0.$$

On the other hand, if we differentiate (23) with respect to x_2, we get

$$\phi_\gamma (x_2, \gamma_2) \frac{d\gamma_2}{dx_2} = \bar{p}_2 - p_2;$$

therefore

$$\frac{dJ_{x_2}}{dx_2} = F (x_2, y_2, p_2) + (\bar{p}_2 - p_2) F_y (x_2, y_2, p_2). \quad (24)$$

Combining (22) and (24) we obtain again the fundamental formula (19).

§21. HILBERT'S PROOF OF WEIERSTRASS'S THEOREM

Weierstrass's theorem can be extended\(^1\) to any set of extremals constituting a field about the arc \mathcal{E}_0, i.e.,

Whenever the extremal \mathcal{E}_0 can be surrounded by a field, the total variation $\Delta J = J_{\bar{\gamma}} - J_{\gamma_0}$ for any admissible curve $\bar{\mathcal{C}}$ lying wholly in the field, is expressible by Weierstrass's formula:

$$\Delta J = \int_{x_0}^{x_1} E(x, \bar{y}; p, \bar{p}) dx,$$

where (x, \bar{y}) is a point of $\bar{\mathcal{C}}$, \bar{p} the slope of $\bar{\mathcal{C}}$ at (x, \bar{y}), and p the slope at (x, \bar{y}) of the unique extremal of the field passing through (x, \bar{y}).

\(^1\)The extension seems to be due to H. A. Schwarz, who has given the generalized theorem in a course of lectures in 1898-99.
The following elegant proof of the generalized theorem is due to Hilbert.¹

Suppose \(\mathcal{S}_k \) is a field of extremals about our extremal \(\mathcal{C}_0 \). In \(\mathcal{S}_k \) we draw any curve \(\mathcal{C} \) of class \(D' : y = f(x) \), joining \(A \) and \(B \). Now let \(p(x, y) \) be an arbitrary function of \(x, y \) which is of class \(C' \) in \(\mathcal{S}_k \), and consider the integral

\[
J^* = \int_{x_0}^{x_1} \left[F'(x, y, p(x, y)) \right. \\
+ \left. (y' - p(x, y)) F_{y'}(x, y, p(x, y)) \right] \, dx
\]

(25)
taken along the curve \(\mathcal{C} \) from \(A \) to \(B \). The value of \(J^* \) will, in general, depend upon the choice of the curve \(\mathcal{C} \); we ask:

How must we choose the function \(p(x, y) \) in order that the value of \(J^* \) may be independent of the choice of the curve \(\mathcal{C} \) and dependent only upon the position of the two end-points \(A \) and \(B \)?

Our integral \(J^* \) is of the form

\[
\int_{x_0}^{x_1} \left[M(x, y) + N(x, y) y' \right] \, dx,
\]

and it has been seen in \(\S 7, d \) that the necessary and sufficient² condition that such an integral should be independent of the path of integration is that

\[
M_y = N_x.
\]

In the present case we have

\[
M(x, y) = F'(x, y, p) - p F_{y'}(x, y, p),
\]

\[
N(x, y) = F_{y'}(x, y, p);
\]

hence

\[
M_y = F_y' - p (F_{y'y} + p_y F_{y'y'}),
\]

\[
N_x = F_{y'y} + p_x F_{y'y'}.
\]

²Notice that the region \(\mathcal{S}_k \), to which the curves \(\mathcal{C} \) are confined, is simply connected.
Sufficient Conditions

§21

Hence, in order that the value of the integral \(J^* \) may be independent of the path of integration \(C \), it is necessary and sufficient that the function \(p(x, y) \) satisfy the partial differential equation

\[
(p_x + pp_y) F_{yy} + p F_{yy} + F_{yx} - F_y = 0 ,
\]

the arguments of the partial derivatives of \(F \) being \(x, y, p(x, y) \).

But this differential equation is identical with the differential equation (14) which is satisfied by the slope at \((x, y)\) of the extremal of the field passing through \((x, y)\). Hence the value of \(J^* \) will be independent of the choice of the curve \(C \), if we select for the function \(p \) the slope just defined. In the sequel \(p \) will have this special meaning.

The invariance of the integral \(J^* \) being established, we select for the curve \(C \) first the extremal \(C_0 \); then we have all along \(C_0 \):

\[
y' = p(x, y) ,
\]

because \(C_0 \) is the unique extremal of the field which passes through a point of \(C_0 \). Therefore (25) reduces to

\[
J^* = \int_{x_0}^{x_1} F(x, y, y') \, dx = J_{C_0} .
\]

On the other hand, if we select for \(C \) any curve \(\bar{C} \) of class \(D' \), different from \(C_0 \), and joining \(A \) and \(B \), we get

\[
J^* = \int_{x_0}^{x_1} \left[F(x, \bar{y}, \bar{p}) + (\bar{p} - p) F_y(x, \bar{y}, \bar{p}) \right] \, dx ,
\]

where \(\bar{p} = \bar{y}' \) denotes the slope of \(\bar{C} \) at the point \((x, \bar{y})\). Both values of \(J^* \) being equal on account of the invariance of \(J^* \), we obtain an expression for \(J_{C_0} \) in terms of a definite integral taken along \(C \). This expression we use in forming the total variation

\[
\Delta J = J_{C} - J_{C_0} .
\]

Then we obtain
\[\Delta J = \int_{x_0}^{x_1} \left[F(x, \bar{y}, \bar{p}) - F(x, \bar{y}, p) - (\bar{p} - p) F_{y'}(x, \bar{y}, p) \right] \, dx, \]

which is the desired extension of Weierstrass's theorem, since the integrand is equal to \(E(x, \bar{y}; p, \bar{p}) \).

§22. SUFFICIENT CONDITIONS FOR A STRONG MINIMUM

Weierstrass's theorem leads now immediately to sufficient conditions for a strong minimum:

\(a \) Suppose there exists a field \(\mathcal{S}_k \) about \(C_0 \) such that at every point of \(\mathcal{S}_k \)

\[E(x, y; p(x, y), \bar{p}) \equiv 0 \tag{27} \]

for every finite value of \(\bar{p} \), \(p(x, y) \) denoting again the slope at \((x, y)\) of the extremal of the field passing through \((x, y)\).

Then it follows from Weierstrass's theorem that \(\Delta J \equiv 0 \) for every curve \(C \) of class \(D' \) drawn in \(\mathcal{S}_k \) from \(A \) to \(B \), and moreover that \(\Delta J > 0 \) unless

\[E(x, \bar{y}; p(x, \bar{y}), \bar{y}') = 0 \tag{28} \]

all along the curve \(\bar{C} \).

From the definition of the \(E \)-function it follows that (28) holds at a point \((x, \bar{y})\) of \(\bar{C} \) whenever

\[\bar{y}' = p(x, \bar{y}), \]

i. e., whenever the extremal through \((x, \bar{y})\) is tangent to \(\bar{C} \) at \((x, \bar{y})\). This can, however, not take place at every point of \(\bar{C} \) unless \(\bar{C} \) completely coincides with \(C_0 \). For\(^2\) the value of the parameter \(\gamma \) of the extremal of the field passing through that point of \(\bar{C} \) whose abscissa is \(x \), is determined by the equation

\[\bar{f}(x) = \phi(x, \gamma), \]

\(^1\)Compare for this section also HEDRICK, Bulletin of the American Mathematical Society, Vol. IX (1901), p. 11.

\(^2\)This proof is due to KNESER, Lehrbuch, §22; see also OSGOOD, loc. cit., p. 118.
from which we derive by differentiation
\[\bar{f}'(x) = \phi_x(x, \gamma) + \phi_y(x, \gamma) \frac{dy}{dx}, \]
or according to (13)
\[\bar{y}' - p(x, \bar{y}) = \phi_y(x, \gamma) \frac{dy}{dx}. \]
But according to (11), \(\phi_y(x, \gamma) \neq 0 \); if therefore \(\bar{y}' = p(x, \bar{y}) \) at every point of \(\mathcal{C} \), we should have
\[\frac{dy}{dx} = 0 \quad \text{throughout } (x_i, x_i), \]
or \(\gamma = \text{const.}, i.e., \mathcal{C} \) would itself be an extremal of the field, which could be no other than \(\mathcal{C}_0 \), since \(\mathcal{C} \) passes through the point \((x_1, y_1)\) and \(\mathcal{C}_0 \) is the only extremal of the field which passes through \((x_1, y_1)\).

Hence, if instead of (27) the stronger condition\(^1\)
\[E_1(x, y; p(x, y), \bar{p}) > 0 \quad (29) \]
is satisfied at every point \((x, y)\) of \(\mathcal{S}_k \) and for every finite \(\bar{p} \), it follows that \(\Delta J > 0 \) for every admissible curve \(\mathcal{C} \) drawn in the field \(\mathcal{S}_k \).

In the terminology of §3 we have therefore the result that whenever (27) is satisfied, \(\mathcal{C}_0 \) furnishes a minimum for the integral \(J \); if moreover (28) is satisfied\(^2\) the minimum is a "proper minimum."

Example III (see pp. 73, 78):
\[F = y'^2 (y' + 1)^2. \]
The set of straight lines
\[y = m.x + \gamma \]
parallel to the extremal \(AB \) furnishes evidently a field about \(\mathcal{C}_0 \), and for this field
\[p(x, y) = m. \]
Therefore

\(^1\)Compare (6) and (6a).

\(^2\)It is even sufficient that (27) and (29) be satisfied in a neighborhood \((\rho)\) of \(\mathcal{C}_0 \) inscribed in \(\mathcal{S}_k \); the same remark applies later on to \((11b)\).
\[E(x, y; p(x, y), \tilde{p}) = (\tilde{p} - m)^2 \left[\tilde{p}^2 + 2\tilde{p}(m + 1) + 3m^2 + 4m + 1 \right] . \]

When \(m > 0 \) or \(m < -1 \), condition (29) is fulfilled, and therefore the straight line \(AB \) actually minimizes the integral

\[J = \int_{x_0}^{x_1} y'^2 (y' + 1)^2 \, dx \]

in these two cases.

b) The sufficient conditions thus immediately following from Weierstrass's theorem are, however, in general inconvenient for applications, and it is therefore important to remark that they can be replaced, under certain additional assumptions either concerning the curves \(\mathcal{C} \) or concerning the function \(F \), by simpler conditions.

From the relation (5) between the \(E \)-function and \(F_y y' \), it follows that both conditions (27) and (29) are always satisfied when

\[F_{yy}(x, y, \tilde{p}) > 0 \quad (\text{IIb}') \]

at every point \((x, y) \) of \(\mathcal{F}_k \) and for every finite value of \(\tilde{p} \).

Hence if we remember the theorem concerning the existence of a field (§19, b)), we can state the following theorem:

Fundamental Theorem V: If the extremal \(\mathcal{C}_0 \) : \(AB \) does not contain the conjugate point to \(A \), and if further

\[F_{yy}(x, y, \tilde{p}) > 0 \quad (\text{IIb}') \]

at every point \((x, y) \) of a certain neighborhood of \(\mathcal{C}_0 \) for every finite value of \(\tilde{p} \), then \(\mathcal{C}_0 \) actually minimizes the integral

\[J = \int_{x_0}^{x_1} F(x, y, y') \, dx . \]

Corollary: The minimum is moreover a "proper minimum," i.e., \(\Delta J > 0 \) for every admissible variation of the curve \(\mathcal{C}_0 \) in a certain neighborhood of \(\mathcal{C}_0 \).

1 It is even sufficient that (27) and (29) be satisfied in a neighborhood (\(\rho \)) of \(\mathcal{C}_0 \) inscribed in \(\mathcal{F}_k \); the same remark applies later on to (IIb').

2 See Osgood, *loc. cit.* p. 118; compare, however, below, the remark on p. 90, footnote 1.
§22]

Sufficient Conditions

For a so-called regular problem (compare §7, c)) it is therefore sufficient for an extremum that the arc \(AB\) does not contain the conjugate to the point \(A\).

Example VII: \(^1\)

\[
F = g(x, y) \sqrt{1 + y'^2},
\]

\(g(x, y)\) being a function of \(x\) and \(y\) alone, of class \(C'''\) in a certain region \(\mathbb{R}\). Here

\[
F_{yy}(x, y) = \frac{g(x, y)}{(1 + y'^2)^{3/2}}.
\]

Hence every extremal \(AB\) which lies in the interior of \(\mathbb{R}\) and which does not contain the conjugate point to \(A\), furnishes a minimum provided that \(g(x, y) > 0\) along \(AB\). For \(g(x, y)\) being continuous in a certain neighborhood of \(AB\) and positive along \(AB\), will also be positive in a certain neighborhood of \(AB\), so that \((IIb')\) is satisfied.

This covers the case of Examples I and VI, in which

\[
g(x, y) = y, \quad \text{and} \quad 1
\]

respectively; and also the case of the "brachistochrone" in which

\[
g(x, y) = \frac{1}{y - y_0 + k}.
\]

All three functions are positive along the respective extremals.

On account of the extension of Weierstrass's theorem given in §21, Theorem V may be replaced by the following:

If the extremal \(\mathcal{E}_0\) can be surrounded by a field and if Condition \((IIb')\) is fulfilled, then \(\mathcal{E}_0\) actually minimizes the integral \(J\).

Frequently the existence of some particular field about the arc \(\mathcal{E}_0\) is geometrically evident; in such cases the second form of the theorem is more convenient.

\(^1\)Geometrical Interpretation (ERDMANN): Let a straight line move perpendicularly to the \(x, y\)-plane along the curve \(y = f(x)\) from \(A\) to \(B\). The area of that portion of the cylindrical surface thus generated which lies between the \(x, y\)-plane and the surface \(z = g(x, y)\) is equal to

\[
\int_{x_0}^{x_1} g(x, y) \sqrt{1 + y'^2} \, dx.
\]
Example VIII: To minimize the integral
\[J = \int_{x_0}^{x_1} \frac{1}{y} \left(1 + \frac{y'^2}{y} \right) dx, \]
the admissible curves being confined to the upper half-plane \((y > 0)\).

Here the extremals are semi-circles having their centers on the \(x\)-axis. If
\[y = 1 - (x - a_0)^2 + \gamma^2 \]
is the particular semi-circle passing through the two given points, the set of concentric circles
\[y = 1 - (x - a_0)^2 + \gamma^2 \equiv \phi(x, \gamma) \]
evidently furnishes a field about \(C_0\). Moreover \((IIb')\) is fulfilled throughout the upper half-plane. Hence the semi-circle through the two given points actually minimizes the integral \(J\).

Remark: Though the above theorem is the one which is most important for applications, it should be observed that it assumes much more than is necessary. Indeed, the condition \((IIb')\) is by no means necessary, not even the milder condition
\[F_{yy}(x, y, \tilde{p}) \leq 0 \quad (IIa) \]
at every point \((x, y)\) of \(C_0\) and for every finite \(\tilde{p}\).

This is illustrated by Example III (see pp. 73, 78, 95). For here
\[F_{yy}(x, y, \tilde{p}) = 2(6\tilde{p}^2 + 6\tilde{p} + 1) \]
can take negative as well as positive values at every point \((x, y)\), and nevertheless, as we have seen above, a minimum takes place when \(m > 0\) or \(m < -1\).

c) **Question of necessary and sufficient conditions.**

From Weierstrass’s results concerning the sufficient conditions for the problem in parameter-representation (see §28), one is led to expect that the conditions \(^2\) (I), (III'),

\(^1\) Given by Osgood, *loc. cit.*, pp. 109, 115, where also a geometrical interpretation will be found.

\(^2\) The accent indicates the omission of the equality sign in conditions (III) and (IVA); compare pp. 65, 76. (IV') may be omitted, since it is contained in (IVA'); compare §18, equation (6a).
§22

Sufficient Conditions

(IVA') are sufficient for a minimum. Leaving aside the exceptional case when in one of the inequalities (III), (IVA) the equality sign takes place, we should then have reached a system of necessary and sufficient conditions.

The analogy of the problem in parameter-representation is, however, misleading in this case. As a matter of fact the three conditions (I), (III'), (IVA') are not\(^1\) sufficient for a minimum without some additional assumptions, not even if (IVA') be replaced by the stronger condition

\[F_{y'y'}(x, y, \tilde{p}) > 0 \quad \text{(IVA') \ at every point} \ (x, y) \ \text{of} \ \mathcal{C}_0 \ \text{for every finite value of} \ \tilde{p}. \]

To prove this statement it suffices to construct a single example in which the conditions in question are fulfilled and in which, nevertheless, no minimum takes place. Such an example is the following:

Example IX:\(^2\) To minimize the integral

\[J = \int_0^1 \left[a y'^2 - 4 b y y'^3 + 2 b x y'^4 \right] dx , \]

\(a, b\) being two positive constants, with the initial conditions

\[y = 0 \quad \text{for} \quad x = 0 , \quad \text{and} \quad y = 0 \quad \text{for} \quad x = 1 . \]

Here Euler's equation reduces to

\[- y'' F_{y'y'} = 0 , \]

where

\[F_{y'y'} = 2 a - 24 b y y' + 24 b x y'^2 . \]

The only extremal through the two given points \(A(0, 0)\) and \(B(1, 0)\) is the straight line:

\[\mathcal{C}_u: \quad y = 0 . \]

\(^1\)This statement seems to contradict directly the theorem given in Osgood's article, *loc. cit.*, p. 118. But it is to be remembered that Osgood makes (p. 108) the assumption that \(F_{y'y'}(x, y, \tilde{p}) \neq 0 \) in a certain neighborhood of \(\tilde{c}_0 \). This assumption, together with (IVA'), is equivalent to (IIb').

The set of extremals through \(A \) is the pencil of straight lines through \(A \); hence there exists no conjugate point, and condition (III') is fulfilled.

Further

\[
E_i(x, y; y', \tilde{\rho}) = (a - 8by' + 6bxy'^2) + \tilde{\rho} (-4by + 4bxy') + 2b\tilde{\rho}^2 ;
\]

hence along \(\mathcal{C}_0 \):

\[
E_i(x, f_0(x); f'_0(x), \tilde{\rho}) = a + 2b\tilde{\rho}^2 > 0 .
\] (IVa')

The three conditions (I), (III'), (IVa') are therefore satisfied, even the stronger condition

\[
F_{y'y'}(x, f_0(x), \tilde{\rho}) = 2a + 24b\tilde{\rho}^2 > 0 .
\] (IIa')

Nevertheless the line \(\mathcal{C}_0 \) does not minimize the integral \(J \).

For, if we replace the line \(AB \) by the broken line \(APB \), the co-ordinates of \(P \) being \(x = h > 0 \) and \(y = k \), the total variation of \(J \) is easily found to be

\[
\Delta J = k^2 \left[-\frac{bk^2}{h^2} + \frac{a}{h} + a + 3bk^2 \right] + (h) ,
\]

where \((h)\) is an infinitesimal.

Now let \(\rho > 0 \) be given, as small as we please, then choose \(|k| < \rho \) and let \(h \) approach zero, keeping \(k \) fixed. Then since \(h > 0 \) it follows that \(\Delta J < 0 \) for all sufficiently small values of \(h \), which proves that the line \(AB \) does not minimize the integral \(J \).

The complete solution of the general problem which we have considered in these three chapters would require the establishment of a system of necessary and sufficient conditions. The above example shows that it will be necessary to add a fifth necessary condition before the complete solu-
tion of the problem is reached. We have therefore to con-
clude this chapter with the statement of a gap in the theory
so far as it has been already developed.¹

d) We add a table of the various conditions which have
occurred in the problem to minimize the integral

\[J = \int_{x_0}^{x_1} F(x, y, y') \, dx , \]

the end-points being fixed:

1) The minimizing curve \(C_0 : y = f_0(x) \) must satisfy the differential equation

\[F_y - \frac{d}{dx} F_{y'} = 0 \quad (I) \]

(*Euler's equation, p. 22; assumptions concerning its general
solution, p. 54.)*

2) \(F_{yy} (x, f_0(x), f_0'(x)) \equiv 0 \), in \((x_0 x_1) \) . \quad (II)

(*Legendre's condition, p. 47*)

\[F_{yy} (x, f_0(x), \tilde{p}) \equiv 0 \quad (IIa) \]

in \((x_0 x_1) \) for every finite \(\tilde{p} \) (pp. 76 and 98).

\[F_{yy} (x, y, \tilde{p}) \equiv 0 \quad (IIb) \]

¹If we modify the problem by the addition of a slope restriction, i.e., by subjecting the admissible curves to the further condition that their slope shall not exceed a finite fixed quantity, say

\[|y'| \leq G , \]

then the three conditions (I), (III), (IVA) are sufficient for a minimum.

For the function

\[F_1 (x, \phi(x, \gamma); \phi_x (x, \gamma), \tilde{p}) \]
is continuous in the domain

\[D_k : \quad x_0 \equiv x \equiv x_1 , \quad |\gamma - \gamma_0| \equiv k , \quad |\tilde{p}| \equiv G , \]

and positive for \(\gamma = \gamma_0 \).

Since the domain \(D_k \) is closed, it follows from the theorem on uniform continuity that we can take \(k \) so small that

\[F_1 (x, \phi(x, \gamma); \phi_x (x, \gamma), \tilde{p}) > 0 \]

throughout the domain \(D_k \), which proves the above statement.
for every \((x, y)\) in a certain neighborhood of \(C_0\) and for every finite \(\tilde{p}\) (p. 96).

3) \(x_1 = x_0'\)

\((\text{III})\)

\(x_0'\) being the conjugate of \(x_0\). \((\text{Jacobi's condition, pp. 58, 59, 67.})\)

4) \(E(x, f_0(x); f_0'(x), \tilde{p}) \equiv 0\)

\((\text{IV})\)

in \((x_0, r_1)\) for every finite \(\tilde{p}\). \((\text{Weierstrass's condition, p. 76.})\)

\(E_1(x, f_0(x); f_0'(x), \tilde{p}) \equiv 0\)

\((\text{IVa})\)

in \((x_0, r_1)\) for every finite \(\tilde{p}\) (p. 76).

The omission of the equality sign in \((\text{II})-(\text{IVa})\) is indicated by an accent.

Conditions (I), (II), (III) are necessary, conditions (I), (II'), (III') are sufficient, for a weak minimum.

Conditions (I), (II), (III), (IV) are necessary, conditions (I), (II'), (III') are sufficient, for a strong minimum.

\(\S 23.\) The Case of Variable End-Points

We have so far always supposed that the two end-points

\(^1\)Three essentially different methods have been proposed for the discussion of problems with variable end-points:

1. \(\text{The method of the Calculus of Variations proper:}\) It consists in computing \(\delta J\) and \(\delta^2 J\) either by means of Taylor's formula or by the method of differentiation with respect to \(\epsilon\), explained in \(\S 4\), b) and d), and discussing the conditions \(\delta J = 0, \delta^2 J \equiv 0\). The method was first used by \(\text{Lagrange (1788); see Oeuvres, Vol. I, pp. 338, 339.}\) He gives the general expression for \(\delta J\) when the end-points are variable, viz.:

\[\delta J = \int_{x_0}^{x_1} \delta y \left(F_y - \frac{d}{dx} F_{y'} \right) dx + \left[F^\delta x + F_y \delta y \right]_0^1,\]

and derives the conditions arising from \(\delta J = 0\).

The second variation for the case of variable end-points was first developed by \(\text{Erdmann (Zeitschrift für Mathematik und Physik, Vol. XXIII (1878), p. 364).}\) He finds

\[\delta^2 J = \int_{x_0}^{x_1} \frac{R(u \delta^2 y - u' \delta y)^2}{u^2} dx + \left[F^\delta^2 x + F_y \delta^2 y + 2F_y' \delta \delta y + 2F_y' \delta \delta y' + \frac{df}{dx} \delta x^2 + \left(F_y y' y'' + F_y y' u' \right) \delta y^2 \right] \]

where \(u\) is an integral of \(\text{Jacobi's differential equation.}\) By considering such spe-
of the required curve are fixed. In this section we propose to consider the modification of the problem in which one of the end-points, say 0, is fixed, whilst the other, 1, is movable on a given curve \(\tilde{C} \).

Suppose the curve

\[
\tilde{C}_0: \quad y = f_0(x), \quad x_0 \leq x \leq x_1,
\]

— which we suppose to be of class \(C' \) and to lie in the interior of the region \(\mathbb{R} \) — minimizes the integral \(J \) with these

cial variations for which \(\delta y = C \alpha \), he makes the integral vanish and thus reduces the question to the discussion of the sign of the remaining function of the variations \(\delta x_1, \delta y_1, \delta^2 x_1, \delta^2 y_1 \). These variations are connected by relations which depend upon the special nature of the initial conditions. For instance, for the initial conditions considered in the text the expression for \(\delta^2 J \) reduces to the expression (33) for \(J''(x_1) \) multiplied by \(\delta x_1 \).

For the general integral

\[
J = \int_{x_0}^{x_1} F(x, y_1, y_2, \ldots, y_n, y_1', y_2', \ldots, y_n') \, dx,
\]

where \(y_1, y_2, \ldots, y_n \) are connected by a number of finite or differential relations, the second variation in the case of variable end-points was studied by A. Mayer, *Leipziger Berichte* (1886), p. 43; for the integral in parameter-representation

\[
J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt
\]

2. The method of Differential Calculus: This method is explained in a general way in Dienger's *Grundriss der Variationsrechnung* (1877). It decomposes the problem into two problems by first considering variations which leave the end-points fixed, and then variations which vary the end-points, the neighboring curves considered being themselves extremals. The second part of the problem reduces to a problem of the theory of ordinary maxima and minima. This method has been used by A. Mayer in an earlier paper on the second variation in the case of variable end-points for the general type of integrals mentioned above (*Leipziger Berichte* (1884), p. 99). It is superior to the first method not only on account of its greater simplicity and its more elementary character, but because — by utilizing the well-known sufficient conditions for ordinary maxima and minima — it leads, in a certain sense, to sufficient conditions if combined with Weierstrass's sufficient conditions for the case of fixed end-points. For these reasons I have adopted this method in the text.

3. Kneser's method: This method, which has been developed by Kneser in his *Lehrbuch*, is based upon an extension of certain well-known theorems on geodesics. It leads in the simplest way to sufficient conditions, but must be supplemented by one of the two preceding methods for an exhaustive treatment of the necessary conditions. A detailed account of this method will be given in Chapter v.
initial conditions. Then we must have \(\Delta J \leq 0 \) for every curve \(\mathcal{C} \) of class \(D' \) which begins at the point 0 and ends at a point of the curve \(\mathcal{C} \) and which lies moreover in a certain neighborhood\(^1\) \(\mathcal{U} \) of \(\mathcal{C}_0 \).

\(a) \) Among the totality of these "admissible curves" we consider in the first place those which end at the point 1. For these also the inequality \(\Delta J \leq 0 \) must hold, and therefore all the conditions which we have found to be necessary in the case of fixed end-points must be fulfilled in the present case.

The arc \(\mathcal{C}_0 \) must therefore be an extremal. Legendre's condition

\[
F_{yy} \leq 0 \tag{II}
\]

must be satisfied along \(\mathcal{C}_0 \), and the conjugate point 0' to 0 must not lie between 0 and 1.

We suppose in the sequel that the arc \(\mathcal{C}_0 \) is an extremal, that the condition

\[
F_{yy}(x, y, \tilde{p}) > 0 \tag{IIb'}
\]

is fulfilled at every point \((x, y)\) of a certain neighborhood of \(\mathcal{C}_0 \) for every finite value of \(\tilde{p} \) and that the arc \(\mathcal{C}_0 \) does not contain the conjugate point 0' (Condition III').

\(b) \) Further necessary conditions are obtained by considering variations which do vary the end-point 1. Various methods\(^2\) have been proposed for this purpose. The following elementary method reduces the further discussion to a problem of ordinary maxima and minima:

If the extremal \(\mathcal{C}_0 \) minimizes the integral \(J \) in the sense explained above, then \(\mathcal{C}_0 \) must, in particular, furnish a smaller

1 Compare §3, b); we may for instance choose for \(\mathcal{U} \) the special neighborhood (\(\rho \)) used in the problem with fixed end-points (§3, c)), increased by a semi-circle of radius \(\rho \) with the point 1 for center.

2 Compare footnote 1, p. 102.
value than (or at most the same value as) every extremal which can be drawn from the point 0 to the curve \(\tilde{C} \) and which lies in a certain neighborhood of \(C_0 \).

And since under the above assumptions (IIb') and (III') each of these extremals—(when its end-points are considered as fixed)—minimizes the integral \(J \), it seems¹ self-evident that also the converse is true.

Let then

\[y = \phi(x, \gamma) \]

(30)

represent the set of extremals through the point 0, and let \(\gamma_0 \) denote again the value of \(\gamma \) which corresponds to \(C_0 \). From the above assumptions (IIb') and (III') it follows that this set furnishes for \(| \gamma - \gamma_0 | \leq k \) an (improper) field² \(\mathcal{S}_k \) about the arc \(C_0 \) if \(k \) is taken sufficiently small.

Hence, if \(2 : (x_2, y_2) \) be any point of the curve \(\tilde{C} \) in a certain vicinity of the point 1, then there passes one and but one extremal

\[C_2 : \quad y = \phi(x, \gamma_2) \]

of the field through the point 2. The parameter \(\gamma_2 \) is a single-valued function of \(x_2, y_2 \) of class \(C' \); \(\gamma_2 = \psi(x_2, y_2) \).

If

\[\tilde{y} = \tilde{f}(x) \]

is the equation of the given curve, which we suppose to be of class \(C'' \), then \(y_2 = \tilde{f}(x_2) \) and \(\gamma_2 = \psi(x_2, \tilde{f}(x_2)) \).

Hence the integral \(J \) taken along the extremal \(C_2 \) from the point 0 to the point 2 is a single-valued function of \(x_2 \), say

¹It will be seen under e) how far this conclusion is correct.
²Compare p. 83, footnote 2. In the present case the field \(\mathcal{S}_k \) consists of all points \((x, y)\) furnished by (30), when \(x, \gamma \) are restricted to the domain \(x_0 \equiv x \equiv X_1, \quad | \gamma - \gamma_0 | \equiv k \), where \(X_1 \) is some value greater than \(x_1 \); \(k \) is supposed to be taken so small that (IIb') holds throughout \(\mathcal{S}_k \) and that \(\phi(y)(x, \gamma) \equiv 0 \) throughout the domain \(x_0 \leq x \equiv X_1, \quad | \gamma - \gamma_0 | \equiv k \).
\[J(x_2) = \int_{x_0}^{x_2} F(x, \phi(x, \gamma), \phi_x(x, \gamma)) \, dx \]

And this function \(J(x_2) \) must have a minimum for \(x_2 = x_1 \). Therefore we must have

\[J'(x_1) = 0, \quad J''(x_1) \geq 0. \]

(31)

c) The derivative of the integral \(J(x_2) \) has already been computed\(^1\) in §20, c) (equation (24)). Accordingly

\[J'(x_2) = F(x_2, y_2, p_2) + (\bar{p}_2 - p_2) F_{y'}(x_2, y_2, p_2), \]

(32)

where \(p_2 = \phi_x(x_2, \gamma_2) \) is the slope of the extremal \(\mathcal{C}_2 \), and \(\bar{p}_2 = \bar{f}'(x_2) \) the slope of the curve \(\bar{\mathcal{C}} \), at the point 2.

Hence we obtain the result:

The co-ordinates \(x, y \) of the movable end-point must satisfy the condition\(^2\)

\[F(x_1, y_1, y_1') + (\bar{y}_1' - y_1') F_{y'}(x_1, y_1, y_1') = 0, \]

(33)

where \(y_1' \) and \(\bar{y}_1' \) refer to the extremal \(\mathcal{C}_0 \) and to the curve \(\mathcal{C} \) respectively.

If this condition is satisfied we shall say that the curve \(\mathcal{C} \) is transverse\(^3\) to the extremal \(\mathcal{C}_0 \) at the point 1.

Equation (33) together with the two equations

\[f(x_0, a, \beta) = y_0, \quad f(x_1, a, \beta) = \bar{f}(x_1), \]

determine in general the two constants of integration \(a, \beta \) in the general solution of Euler's differential equation, as well as the abscissa \(x_1 \) of the point 1.

We suppose in the sequel that condition (33) is fulfilled.

d) We next proceed to the computation of \(J''(x_2) \). From (32) we obtain

\(^1\)We suppose that the co-ordinates of the movable end-point do not occur explicitly in the function \(F(x, y, y') \); if they do occur, another term must be added to the expression of \(J(x_2) \). Compare for this case KNESER, Lehrbuch, §12. An example of this exceptional case is the brachistochrone; compare LINDELÖF-MOIGNO, Calcul des variations, No. 113, and the references given in PASCAL, Variationsrechnung, §31.

\(^2\)In accordance with §8, end.

\(^3\)In the use of the word "transverse" I follow OSGOOD, loc. cit., p. 112. KNESER, who first introduced the term (Lehrbuch, §10), used it with a slightly different meaning; he says: the extremal \(\mathcal{C}_0 \) is transverse to the curve \(\bar{\mathcal{C}} \) if (33) is satisfied.
\[J''(x_2) = F_x + F_y \frac{dy_2}{dx_2} + F_y' \frac{dp_2}{dx_2} + F_y'' \left(\frac{dp_2}{dx_2} - \frac{dp_3}{dx_2} \right) + (\tilde{p}_2 - p_3) \left[F_{y,x} + F_{y',y} \frac{dy_2}{dx_2} + F_{y'',y'} \frac{dp_2}{dx_2} \right]. \]

But
\[y_2 = \tilde{F}(x_2) = \phi(x_2, \gamma_2), \]
\[p_2 = \phi_x(x_2, \gamma_2), \quad \tilde{p}_2 = \tilde{F}'(x_2); \]
hence
\[\frac{dy_2}{dx_2} = \tilde{F}'(x_2), \quad \frac{dp_2}{dx_2} = \tilde{F}''(x_2), \quad (34) \]
\[\frac{dp_2}{dx_2} = \phi_{xx}(x_2, \gamma_2) + \phi_{x\gamma}(x_2, \gamma_2) \frac{dy_2}{dx_2}, \]
and \[\frac{dy_2}{dx_2} \] is determined by
\[\tilde{F}'(x_2) = \phi_x(x_2, \gamma_2) + \phi_\gamma(x_2, \gamma_2) \frac{dy_2}{dx_2}. \]

Substituting these values for
\[\frac{dy_2}{dx_2}, \quad \frac{dp_2}{dx_2}, \quad \frac{dp_2}{dx_2}, \]
and remembering that on account of Euler's equation
\[F_{y,x} = F_y' - F_{y,y} \phi_x - F_{y,y'} \phi_{xx}, \]
we obtain for \(x = x_1 \) the following result:

Let \(A_1 \) and \(B_1 \) denote the expressions:
\[A_1 = F_x + (2\tilde{y}_1 - y_1') F_y + \tilde{y}_1'' F_y' + (\tilde{y}_1' - y_1')^2 F_{y,y}, \quad (35) \]
\[B_1 = (\tilde{y}_1' - y_1')^2 F_{y,y}. \]

the arguments of the derivatives of \(F \) being \(x_1, y_1, y_1' \); then
\[J''(x_1) = A_1 + B_1 \frac{\phi_{xx}(x_1, \gamma_0)}{\phi_\gamma(x_1, \gamma_0)}. \quad (36) \]

For the further discussion of the inequality \(J''(x_1) \leq 0 \), we leave aside the exceptional case where \(\tilde{y}_1' = y_1' \), i. e., we suppose that the extremal \(\mathcal{E}_0 \) and the curve \(\mathcal{\tilde{E}} \) are not tangent to each other at the point 1. Then \(B_1 > 0 \), since we have moreover already supposed that \(F_{y,y'} > 0 \).

\(^1\) Given, in a slightly different form, by Bliss, _Mathematische Annalen_, Vol. LVIII (1903), p. 77.
According to equation (30) of §15, we have in the notation of §§13 and 14:

\[\phi_\gamma(x_1, \gamma_0) = C \Delta(x_1, x_0) \]

and therefore

\[\phi_{x_1}(x_1, \gamma_0) = C \frac{\partial \Delta(x_1, x_0)}{\partial x_1} . \]

Now let \(H(x_1, x) \) denote the function

\[H(x_1, x) = A_1 \Delta(x_1, x) + B \frac{\partial \Delta(x_1, x)}{\partial x_1} , \]

then the expression for \(J''(x_1) \) may be written

\[J''(x_1) = \frac{H(x_1, x_0)}{\Delta(x_1, x_0)} . \]

The function

\[\Delta(x_1, x) = r_1(x_1) r_2(x) - r_2(x_1) r_1(x) \]

is an integral of Jacobi’s differential equation and vanishes for \(x = x_1 \). The function \(H(x_1, x) \) is likewise an integral of Jacobi’s differential equation, since it is linearly expressible in terms of \(r_1(x) \) and \(r_2(x) \). Since \(B_1 > 0 \) and

\[r_1(x_1) r_2'(x_1) - r_2(x_1) r_1'(x_1) = 0 \]

(see pp. 57, 58),

\[H(x_1, x_1) = 0 . \]

Hence if we denote by \(x_1' \) the root of the equation

\[\Delta(x_1, x) = 0 \]

next smaller than \(x_1 \) and by \(x_1'' \) the root next smaller than \(x_1' \), of the equation

\[H(x_1, x) = 0 \]

it follows from Sturm’s theorem\(^1\) that

\[x_1'' > x_1' . \]

At \(x = x_1'' \), \(H(x_1, x) \) changes sign.

\(^1\)Compare p. 58, footnote 2. This remark is due to Bliss, Transactions, etc. p. 138.
Again from (38) it follows that

\[L (x_1 - x) \frac{\partial \Delta (x_1, x)}{\partial x_1} \left/ \Delta (x_1, x) \right. = 1 \]

and therefore

\[L \left(A_1 + B_1 \frac{\partial \Delta (x_1, x)}{\partial x_1} \right) \Delta (x_1, x)) = +\infty . \]

Hence we infer that

\[J''(x_1) \begin{cases} > 0 & \text{when } x_1'' < x_0 < x_1, \\ = 0 & \text{when } x_0 = x_1'', \\ < 0 & \text{when } x_1' < x_0 < x_1'' . \end{cases} \]

For reasons which will appear later on (under \(f \)), the point of the extremal \(\mathcal{C}_0 \) whose abscissa is \(x_1'' \) is called, according to Kneser,\(^1\) the "focal point" of the curve \(\bar{C} \) on the extremal \(\mathcal{C}_0 \).

We have therefore reached the theorem: For a minimum it is necessary that the focal point of the curve \(\bar{C} \) on the extremal \(\mathcal{C}_0 \) shall not lie between the points 0 and 1.

e) It remains to consider the question of the sufficiency of these conditions.

If in addition to (IIb') and (33) the condition

\[x_1'' < x_0 \] \hspace{1cm} (41)

is satisfied, then

\[J'(x_1) = 0, \quad J''(x_1) > 0, \]

and therefore the function \(J(x_2) \) has a minimum for \(x_2 = x_1 \).

Let now \(\bar{C} \) be any curve of class \(D \) which begins at the point 0 and ends at some point 2 of \(\bar{C} \), and which lies moreover in the improper field \(\mathcal{F}_k \) about \(\mathcal{C}_0 \) defined under \(b \). Let \(\mathcal{C}_2 \) be the extremal of the field from the point 0 to the point 2 (see Fig. 21), then we have

\[J_{\bar{C}_0} < J_{\bar{C}_2} . \]

\(^1\)The discovery of the focal point ("Brennpunkt") is due to Kneser, see Lehrbuch, §24. For the special case of the straight line, the focal point occurs already in Erdmann's paper referred to above. Bliss uses "critical point" for "Brennpunkt."
On the other hand, since we have supposed \(k \) so small that \(\phi_\gamma(x, \gamma) \equiv 0 \) for
\[
x_0 < x \equiv x_1, \quad |\gamma - \gamma_0| \equiv k,
\]
the region \(\mathcal{S}_k \) is at the same time an (improper) field\(^1\) about the extremal \(\mathcal{E}_2 \) and therefore since \((\text{IIb}')\) holds throughout \(\mathcal{S}_k \).
\[
J_{\epsilon_2} < J_\epsilon,
\]
according to §22, b). Hence
\[
J_{\epsilon_0} < J_\epsilon.
\]

The extremal \(\mathcal{E}_0 \) furnishes therefore a smaller value for the integral \(J \) than any other curve of class \(D' \) which can be drawn in the region \(\mathcal{S}_k \) from the point 0 to the curve \(\mathcal{E}_1 \) and in this sense the extremal \(\mathcal{E}_0 \) minimizes\(^2\) the integral \(J \) if the conditions \((\text{IIb}')\), (33) and (41) are fulfilled.

Example VIa: To draw the curve of shortest length from a given point to a given curve.

Here:
\[
J' = 1 \frac{1 + y''}{1 + y'^2};
\]
hence we obtain for the condition of transversality
\[
1 + y'_1 y'_{1'} = 0,
\]
\(i. e. \), the minimizing straight line must be normal to the curve \(\mathcal{E}_1 \) at the point 1.

Further we get easily
\[
H(x_1, x) = \frac{y'_1 y''_{1'}}{1 + y'^2_{1'}} (x_1 - x) + \frac{(y'_1 - y'_{1'})^2}{(1 + y'^2_{1'})^3};
\]
therefore
\[
x_1'' = x_1 - \frac{y'_1 (1 + y'^2_{1'})}{y''_{1'}}.
\]

\(^1\)In the discussion concerning the construction of a field about \(\epsilon_\gamma \) in §19, we have for simplicity restricted \(\gamma \) to an interval \((\gamma_0 - k, \gamma_0 + k)\) whose middle point is \(\gamma = \gamma_0 \). We might just as well have taken an interval of the more general form \((\gamma_0 - k_1, \gamma_0 + k_2)\). In the present case the term field must be understood in this slightly more general sense.

\(^2\)It should, however, be observed that the region \(\mathcal{S}_k \) does not, strictly speaking, constitute a neighborhood (see §3, b)) of the arc \(\epsilon_\gamma \) since its width approaches zero as \(x \) approaches the value \(x_0 \). The proof that \(\epsilon_\gamma \) minimizes the integral \(J \) is therefore not quite complete. Kneser's sufficiency proof, which will be given in chap. V for the problem in parameter-representation, is not open to this objection.
Hence it follows that the center of curvature 1'' of the curve \(C \) at the point 1 must not lie between the point 0 and the point 1. Conversely: If this condition is fulfilled and if moreover 1'' does not coincide with the point 0, then the straight line 01 actually furnishes a minimum.

Entirely analogous results are obtained in the case when the point 1 is fixed and the point 0 movable on a given curve. The condition of transversality must be satisfied at the point 0. Again, if \(A_0, B_0 \) have the same meaning for the point 0 as the constants \(A_1, B_1 \) for the point 1, and if \(x_0'' \) denotes the root next \(^1\) greater than \(x_0 \) of the equation

\[
H(x_0, x) = A_0 \Delta(x_0, x) + B_0 \frac{\partial \Delta(x_0, x)}{\partial x_0} = 0 ,
\]

then \(x_0'' \) must not be less than \(x_1 \).

\(f) \) Geometrical interpretation of the focal point. Let us consider the problem to construct through a point 2 of the curve \(C \) in the vicinity of the point 1 an extremal which shall be cut transversely at the point 2 by the curve \(C \). Let

\[y = f(x, a, \beta) \]

be the required extremal. Then we have for the determination of \(a \) and \(\beta \) the two equations

\[
M = f(x_2, a, \beta) - f(x_2) = 0 , \\
N = F(x_2, y_2, \tilde{\eta}_2) + (\tilde{\eta}_2 - \tilde{\eta}_2) F_y(x_2, y_2, \tilde{\eta}_2) = 0 ,
\]

where

\[y_2 = \tilde{f}(x_2) , \quad \tilde{\eta}_2 = \tilde{f}'(x_2) , \quad \tilde{\eta}_2 = f_x(x_2, a, \beta) . \]

The two equations (43) are satisfied for \(x_2 = x_1, a = a_0, \beta = \beta_0 \), since \(C \) is transverse to \(C_0 \) at the point 1; the left-hand sides of the two equations (43) are functions of \(x_2, a, \beta \) of class \(C' \) in the vicinity of \(x_2 = x_1, a = a_0, \beta = \beta_0 \) and their Jacobian with respect to \(a \) and \(\beta \) is different from zero for \(x_2 = x_1, a = a_0, \beta = \beta_0 \), if \(\tilde{y}_1' - y_1' \neq 0 \) as we have supposed; for it reduces to

\[
(\tilde{y}' - y_1') F_y y' (v_1(x_1) v_1'(x_1) - v_2(x_1) v_1'(x_1)) .
\]

\(^1\)Compare the Addenda at the end of the book.
Hence the equations (43) admit, according to the theorem on implicit functions,\(^1\) a unique solution:

\[a = a(x_2), \quad \beta = \beta(x_2), \]

which is of class \(C''\) in the vicinity of \(x_2 = x_1\) and satisfies the initial conditions

\[a(x_1) = a_0, \quad \beta(x_1) = \beta_0. \]

If we denote

\[f(x, a(x_2), \beta(x_2)) = g(x, x_2), \]

the required extremal is therefore

\[y = g(x, x_2), \quad (44) \]

and if we consider \(x_2\) as a variable parameter, this equation represents a set of extremals each of which is cut transversely by the curve \(\bar{C}\); the extremal \(\bar{C}_0\) is itself contained in the set and corresponds to \(x_2 = x_1\).

The envelope \(\bar{y}\) of the set (44) is defined by the two equations

\[y = g(x, x_2), \quad g_{x_2}(x, x_2) = 0, \]

and the abscissae of the points at which the extremal \(\bar{C}_0\) meets this envelope are the roots of the equation

\[g_{x_2}(x, x_2) \bigg|_{x_2 = x_1} = 0. \]

To obtain this equation we compute the derivatives

\[\frac{da}{dx_2}, \quad \frac{d\beta}{dx_2} \]

from the two equations \(dM/dx_2 = 0, \ dN/dx_2 = 0\), substitute their values in the equation

\[g_{x_2}(x, x_2) \equiv f_a \frac{da}{dx_2} + f_\beta \frac{d\beta}{dx_2} = 0, \]

and finally put \(x_2 = x_1\), \(a = a_0\), \(\beta = \beta_0\).

Carrying out this process, we are led to the three equations

\(^1\)Compare footnote 2, p. 35.
Sufficient Conditions

\[r_1(x) \alpha'(x) + r_2(x) \beta'(x) = 0, \]

\[(\tilde{y}_1' - y_1') F_x y_1' \left[r_1'(x) \alpha'(x) + r_2'(x) \beta'(x) \right] = - \lambda_1, \]

from which, by eliminating \(\alpha'(x) \), \(\beta'(x) \), we obtain the result

\[H(x_1, x) = 0, \quad \text{i.e.,} \]

The focal point is the point at which the extremal \(C_0 \) meets for the first time — counting from the point 1 toward the point 0 — the envelope of the set of extremals which are cut transversely by the curve \(\mathcal{E} \).

Example VIa: The set \((44)\) consists of the normals to the curve \(\mathcal{E} \): the extremal \(\eta \) is the evolute of the curve \(\mathcal{E} \).

g) Case of two movable end-points: We add a few remarks concerning the case when the point 0 is movable on a curve \(\mathcal{E}_0 \) and at the same time the point 1 movable on a curve \(\mathcal{E}_1 \).

The consideration of special variations leads at once to the result that the minimizing curve must be an extremal, that the condition of transversality must hold at both endpoints, and that the inequalities

\[x_0 \geq x_1'', \quad x_1 \geq x_0'' \]

must be satisfied.

But still another condition must be added: If \(x_1'' \) denotes the root next greater than \(x_1 \) of the equation

\[H(x_1, x) = 0, \]

then the following inequality must be satisfied: ²

1 This geometrical interpretation of the focal point is due to Kneser; see Lehrbuch, §24.

2 This result is due to Bliss; see Mathematische Annalen, Vol. LVI (1902), p. 70. He also proves that for a regular problem the condition \(x_1 < x_1'' < x_1' \), together with the two transversality conditions and the condition that the minimizing curve is an extremal, are sufficient for a minimum. His proof is based upon Kneser's theory of the problem with one variable end-point.

For the example of the curve of shortest length between two given curves, the inequality (45) had already been given by ErMann (loc. cit.). Another important example with both end-points variable (the special isoperimetric problem) has been completely discussed by Kneser (Mathematische Annalen, Vol. LVII (1902), p. 109).
The problems on variable end-points which we have discussed in this section are special cases of the problem: To minimize the integral J when the co-ordinates of the two end-points are connected by a number of relations:

$$\Phi_t(x_0, y_0, x_1, y_1) = 0.$$

The "method of differential calculus" used in this section can be applied also to this case.

The number of independent relations cannot exceed four: if it is exactly equal to four, we have the case of fixed end-points. If both end-points are perfectly unrestricted, the vanishing of the first variation leads to the four conditions

$$F^{(1)} = 0, \quad F^{(0)} = 0, \quad F_{y'}^{(1)} = 0, \quad F_{y'}^{(0)} = 0,$$

which are in general incompatible.

1Compare Kneser, Lehrbuch, §10.
CHAPTER IV

WEIERSTRASS'S THEORY OF THE PROBLEM IN PARAMETER-REPRESENTATION

§24. FORMULATION OF THE PROBLEM

In the previous chapters we have confined ourselves to curves which are representable in the form \(y = f(x) \), a restriction of a very artificial character in all truly geometrical problems. We are now going to remove this restriction by assuming henceforth all curves expressed in parameter-representation.

a) Generalities concerning curves in parameter-representation.

A "continuous curve" \(C \) is defined by a system of two equations

\[
x = \phi(t), \quad y = \psi(t), \quad t_0 \leq t \leq t_1, \quad (1)
\]

\(\phi \) and \(\psi \) being functions of \(t \), defined and continuous in \((t_0, t_1)\). As \(t \) increases from \(t_0 \) to \(t_1 \), the curve is described in

The treatment of the problems of the Calculus of Variations in parameter-representation is entirely due to Weierstrass; he used it in his lectures at least as early as 1872. In order to avoid repetitions, we shall discuss in detail only those points in which the new treatment differs essentially from the old one. For the rest, we shall confine ourselves to an account of the results.

As regards the relative merits of the two methods, one is inclined to consider the older method—in which \(x \) is taken for the independent variable—as antiquated and imperfect when compared with Weierstrass's method; unjustly, however, for the two methods deal with two clearly distinct problems, and which of the two deserves the preference, depends upon the nature of the special problem under consideration.

Generally speaking one may say that in all truly geometrical problems the method of parameter-representation is not only preferable, but is the only one which furnishes a complete solution. On the other hand, the older method has to be applied whenever a function of minimizing properties is to be determined (for instance, Dirichlet's problem).

For examples illustrating the relation between the two methods, see Bolza, Bulletin of the American Mathematical Society (2), Vol. IX (1903), p. 6.

Compare J. I, Nos. 96-113.
a certain sense, called the "positive sense," from its origin, say 0, to its end-point, say 1.

If we make the "parameter-transformation":

\[t = \chi(\tau) \]

(2)

where \(\chi(\tau) \) is a continuous function of \(\tau \) which constantly increases from \(t_0 \) to \(t_1 \) as \(\tau \) increases from \(\tau_0 \) to \(\tau_1 \), the equations (1) are changed into

\[x = \phi(\chi(\tau)) = \Phi(\tau), \quad y = \psi(\chi(\tau)) = \Psi(\tau). \]

(1a)

Vice versa, the equations (1a) are again transformed into (1) by the inverse transformation

\[\tau = \chi^{-1}(t) . \]

(2a)

We agree to consider the two curves defined by (1) and (1a) as identical, and conversely two curves will be considered as identical only\(^1\) when their equations can be transformed into each other by a parameter-transformation of the above properties.

The curve \(\mathcal{C} \) will be said to be of class \(C'(C'') \) if the parameter \(t \) can be so selected that \(\phi(t) \) and \(\psi(t) \) have continuous first (and second) derivatives in \((t_0, t_1) \), and if moreover \(\phi' \) and \(\psi' \) do not vanish simultaneously in \((t_0, t_1) \) so that

\[\phi'^2 + \psi'^2 \neq 0 \quad \text{in} \quad (t_0, t_1). \]

(3)

A curve of class \(C' \) has at every point a continuously turning tangent; the amplitude \(\theta \) of its positive direction is given by the equations

\[\cos \theta = \frac{\phi'}{1 + \phi'^2 + \psi'^2}, \quad \sin \theta = \frac{\psi'}{1 + \phi'^2 + \psi'^2}. \]

(4)

Every curve of class \(C' \) is rectifiable\(^2\), and the length \(s \) of the arc \(t_0 \) is expressible by the definite integral

\[^1\]According to this agreement, a curve (more exactly "path-curve," E. H. Moore) is not simply the totality of points defined by (1) but the totality of these points taken in the order defined by (1).

\[^2\]Compare J. I, Nos. 105-111.
Weierstrass's Theory

\[s = \int_{t_2}^{t_3} \sqrt{\phi'^2 + \psi'^2} \, dt. \quad (5) \]

By an "ordinary curve" will be understood a continuous curve which is either of class \(C' \) or else made up of a finite number of arcs of class \(C' \). A point where two different arcs meet will be called a "corner" if the direction of the positive tangent undergoes a discontinuity at that point. A curve will be said to be \textit{regular} at a point \(t = t' \), if for sufficiently small values of \(|t - t'| \), \(x \) and \(y \) are expansible into convergent power-series:

\[
x = a + a_1(t - t') + a_2(t - t')^2 + \cdots, \\
y = b + b_1(t - t') + b_2(t - t')^2 + \cdots,
\]

and if moreover \(a_1 \) and \(b_1 \) are not both zero.

b) \textit{Integrals taken along a curve; conditions for their invariance under a parameter-transformation.}

Let \(F(x, y, x', y') \) be a function of four independent variables which is of class \(C''' \) in a domain \(\mathcal{D} \) which consists of all points \(x, y, x', y' \) for which a) \(x, y \) lies in a certain region \(\mathcal{R} \) of the \(x, y \)-plane, b) \(x', y' \) are not both zero.

We suppose that the curve \(\mathcal{C} \) defined by (1) lies entirely in \(\mathcal{R} \), and select two points 2 and 3 \((t_2 < t_3) \) on \(\mathcal{C} \). Then we consider the definite integral

\[J = \int_{t_2}^{t_3} F(x, y, x', y') \, dt, \]

in which \(x, y, x', y' \) are replaced by \(\phi(t), \psi(t), \phi'(t), \psi'(t) \) respectively, and ask: \textit{Under what conditions will the value of the integral} \(J \) \textit{depend only on the arc 23 and not on the choice of the parameter} \(t \)?

The simplest example of an integral which is independent of the choice of the parameter is the length of the arc 23, which is always expressed by the definite integral

\[\int_{t_2}^{t_3} \sqrt{x'^2 + y'^2} \, dt, \]
no matter what quantity has been selected for the independent variable t, provided that $t_2 < t_3$, so that if we pass from the parameter t to another parameter τ by any admissible transformation (2), we must have

$$\int_{t_2}^{t_3} \sqrt{(dx/dt)^2 + (dy/dt)^2} \, dt = \int_{\tau_2}^{\tau_3} \sqrt{(dx/d\tau)^2 + (dy/d\tau)^2} \, d\tau .$$

Returning now to the general case, our question may be formulated explicitly as follows:

Under what conditions is

$$\int_{t_2}^{t_3} F(x, y, dx/dt, dy/dt) \, dt = \int_{\tau_2}^{\tau_3} F(x, y, dx/d\tau, dy/d\tau) \, d\tau , \quad (6)$$

with the understanding that this relation is to hold:

a) For every transformation $t = \chi(\tau)$ of the properties indicated above;

β) For all positions of the two points 2 and 3 on the curve C;

γ) For all possible curves C of class C', lying in \mathbb{R}?

On account of β) we may differentiate (6) with respect to τ_3: writing for brevity t, τ instead of t_3, τ_3, we obtain

$$F(x, y, dx/dt, dy/dt) \frac{dt}{d\tau} = F(x, y, dx/d\tau, dy/d\tau) ,$$

or since

$$\frac{dx}{d\tau} = \frac{dx}{dt} \frac{dt}{d\tau}, \quad \frac{dy}{d\tau} = \frac{dy}{dt} \frac{dt}{d\tau} ;$$

$$F(x, y, dx/dt, dy/dt) \frac{dt}{d\tau} = F(x, y, dx/d\tau, dy/d\tau) . \quad (7)$$

On account of a) this must hold for the special transformation

$$t = k\tau ,$$

k being a positive constant. Hence

$$F(x, y, k \frac{dx}{dt}, k \frac{dy}{dt}) = k F(x, y, \frac{dx}{dt}, \frac{dy}{dt}) .$$
But by properly choosing the curve (1) (see assumption γ) and the parameter t, we can give the four quantities

\[x, y, \frac{dx}{dt}, \frac{dy}{dt} \]

any arbitrary system of values in the domain \mathcal{C}, and therefore the relation

\[F(x, y, kx', ky') = kF(x, y, x', y') \quad (8) \]

must hold identically for all values of the independent variables x, y, x', y' in \mathcal{C} and for all positive values of k, or as we shall say: $F(x, y, x', y')$ must be "positively homogeneous" and of dimension one with respect to x', y'.

Vice versa, if this condition is satisfied, (7) holds since we suppose

\[\frac{dt}{d\tau} > 0 \]

and therefore also (6), as follows by integrating (7) between the limits τ_2 and τ_3. This shows that the homogeneity condition (8) is necessary and sufficient for the invariance of the integral J.

We shall in the sequel always suppose that the function F satisfies the homogeneity condition (8), and we shall denote the value of the integral

\[\int_{t_0}^{t_1} F(\phi(t), \psi(t), \phi'(t), \psi'(t)) \, dt \]

indifferently by $J_\mathcal{C}$ or J_{01}, and call it the integral of the function $F(x, y, x', y')$ taken along the curve \mathcal{C}.

If we wish to reverse the direction of integration we must first introduce a new parameter which increases as the

1 Weierstrass, Lectures; also Kneser, Lehrbuch, §3.

This lemma has been extended to the case where F contains higher derivatives of x and y by Zermelo, Dissertation, pp. 2-23; to the case of double integrals by Kobb, Acta Mathematica, Vol. XVI (1892), p. 67.

2 Compare Kneser, Lehrbuch, p. 3.
curve is described from the point 1 to the point 0, for instance: \(u = -t \). The equations
\[C^{-1}: \quad x = \phi(-u), \quad y = \psi(-u), \quad u_0 \equiv u \equiv u_1, \]
where \(u_0 = -l_1, u_1 = -l_0 \), represent the same totality of points as (1), but the sense is reversed.

The integral of \(F(x, y, x', y') \) taken along \(C^{-1} \) has the value
\[
J_{10} = \int_{u_0}^{u_1} F(x, y, \frac{dx}{du}, \frac{dy}{du}) du,
\]
\[
= \int_{u_0}^{u_1} F(\phi(-u), \psi(-u), -\phi'(-u), -\psi'(-u)) du,
\]
\[
= \int_{l_0}^{l_1} F'(\phi(t), \psi(t), -\phi'(t), -\psi'(t)) dt.
\]

If the relation (8) holds also for negative values of \(k \), as happens, for instance, when \(F \) is a rational function of \(x', y' \), then
\[
F(x, y, -x', -y') = -F(x, y, x', y'),
\]
and therefore: \(J_{10} = -J_{01} \).

But the relation (8) need not hold for negative values of \(k \); thus in the example of the length we have for negative values of \(k \):
\[
F(x, y, kx', ky') = -k F(x, y, x', y');
\]
hence in this case \(J_{10} = J_{01} \).

In other cases the relation is more complicated, for instance, when
\[
F = xy' - x'y + \lambda y \frac{x'^2 + y'^2}{x'^2 + y'^2}.
\]
From the homogeneity condition (8) follow a number of important relations between the partial derivatives of \(F \).

Differentiating (8) with respect to \(k \) and then putting \(k = 1 \), we get
\[
x'F_x + y'F_y = F. \quad (9)
\]
Differentiating this relation with respect to \(x \) and \(y \), we obtain
\[
F_x = x'F'_{xx} + y'F'_{yx}, \quad F_y = x'F'_{xy} + y'F'_{yy}. \quad (10)
\]
Differentiating (9) with respect to x' and y' we get
\[x'F_{xx'} + y'F_{y'x'} = 0, \quad x'F_{x'y'} + y'F_{y'y'} = 0; \]
hence if x' and y' are not both zero,
\[F_{x'x'} : F_{x'y'} : F_{y'y'} = y'^2 : -x'y' : x'^2; \tag{11} \]
there exists therefore a function F_1 of x, y, x', y' such that
\[F_{x'x'} = y'^2F_1, \quad F_{x'y'} = -x'y'F_1, \quad F_{y'y'} = x'^2F_1. \tag{11a} \]

The function F_1 thus defined is of class C' in the domain \mathfrak{T}, even when one of the two variables x', y' is zero; but F_1 becomes in general infinite when x' and y' vanish simultaneously, even if F itself should remain finite and continuous for $x'=0$, $y'=0$.

For instance:
\[F = y\sqrt{x'^2 + y'^2}, \quad F_1 = \frac{y}{\sqrt{1 + x'^2 + y'^2}}. \]

c) Definition of a Minimum: Two points $A(x_0, y_0)$ and $B(x_1, y_1)$ being given in the region \mathfrak{B}, we consider the totality \mathfrak{M} of all ordinary curves which can be drawn in \mathfrak{B} from A to B. Then a curve \mathcal{C} of \mathfrak{M} is said to minimize the integral
\[J = \int_{x_0}^{x_1} F(x, y, x', y') \, dt, \]
if there exists a neighborhood \mathfrak{U} of \mathcal{C} such that
\[J_\delta \equiv J_{\delta'} \tag{12} \]
for every ordinary curve \mathcal{C} which can be drawn in \mathfrak{U} from A to B.

We may, without loss of generality, choose for \mathfrak{U} the strip of the x, y-plane swept over by a circle of constant radius ρ whose center moves along the curve \mathcal{C} from A to B. This strip will be called "the neighborhood (\(\rho\)) of \mathcal{C}."
§25. THE FIRST VARIATION

We suppose that we have found an ordinary curve
\[C: \quad x = \phi(t), \quad y = \psi(t), \quad t_0 \leq t \leq t_1, \]
contained in the interior of \(\mathfrak{R} \), which minimizes the integral \(J \). We replace the curve \(C \) by a neighboring curve
\[\bar{C}: \quad \bar{x} = x + \xi, \quad \bar{y} = y + \eta, \]
where \(\xi \) and \(\eta \) are arbitrary functions of \(t \) of class \(D' \), which vanish at \(t_0 \) and \(t_1 \):
\[\xi(t_0) = 0, \quad \eta(t_0) = 0; \quad \xi(t_1) = 0, \quad \eta(t_1) = 0. \quad (13) \]
The consideration of special variations of the form
\[\xi = \epsilon \rho, \quad \eta = \epsilon \eta, \quad (14) \]
where \(\epsilon \) is a constant, and \(\rho \) and \(\eta \) are functions of \(t \) of class \(D' \), which are independent of \(\epsilon \) and vanish at \(t_0 \) and \(t_1 \), leads as in §4 to the result\(^1\) that
\[\Delta J = \delta J + \epsilon(\epsilon), \quad (15) \]
where \((\epsilon) \) is an infinitesimal and
\[\delta J = \int_{t_0}^{t_1} \left(F_x \xi + F_y \eta + F_x \xi' + F_y \eta' \right) dt, \quad (15a) \]
whence we infer again that \(\delta J \) must vanish for all admissible functions \(\xi, \eta \).

Considering first special variations for which \(\eta \equiv 0 \), and secondly special variations for which \(\xi \equiv 0 \), we see that we must have separately
\[\int_{t_0}^{t_1} (F_x \xi + F_x \xi') dt = 0, \quad \int_{t_0}^{t_1} (F_y \eta + F_y \eta') dt = 0. \quad (16) \]

\(^1\)The same results hold for variations of the more general type
\[\xi = \xi(t, \epsilon), \quad \eta = \eta(t, \epsilon), \]
where the functions \(\xi(t, \epsilon), \eta(t, \epsilon) \), their first partial derivatives and the cross-derivatives \(\xi_{\epsilon t}, \eta_{tt} \) are continuous in the domain \(t_0 \leq t \leq t_1, |\epsilon| \leq \epsilon_0, \epsilon_0 \) being a sufficiently small positive quantity. Moreover
\[\xi(t_0, \epsilon) \equiv 0, \quad \eta(t_0, \epsilon) \equiv 0, \]
\[\xi(t_1, \epsilon) \equiv 0, \quad \eta(t_1, \epsilon) \equiv 0. \]

Compare §4, d).
To these two equations the methods of §§4–9 can be applied with the following results:

a) Weierstrass's form of Euler's equation: The functions x and y must satisfy the two differential equations

$$F_x - \frac{d}{dt} F_x = 0 \quad F_y - \frac{d}{dt} F_y = 0$$

(17)

these two differential equations are however not independent; for, if we carry out the differentiation with respect to t and make use of the relations (10) and (11a) we obtain

$$F_x - \frac{d}{dt} F_x \equiv y'T \quad F_y - \frac{d}{dt} F_y \equiv -x'T$$

(18)

where

$$T \equiv F_{xy} - F_{yx} + F_1(x'y'' - x''y')$$

(19)

x'', y'' denoting the second derivatives of x and y with respect to t. Since x' and y' do not vanish simultaneously (see §24, a)), the two differential equations (17) are equivalent to the one differential equation

$$T \equiv F_{xy} - F_{yx} + F_1(x'y'' - x''y') = 0$$

(1)

This is Weierstrass's form of Euler's differential equation. Every curve satisfying (1) will again be called an extremal.

The same result can also be derived from a transformation¹ of δJ which will be useful in the sequel.

If we perform in the expression (15a) for δJ the well-known integration by parts, and make use of (18), we obtain

$$\delta J = \left[\xi F_x + \eta F_y \right]_{t_0}^{t_1} + \int_{t_0}^{t_1} Tw \, dt$$

(15b)

where $w = y'\xi - x'\eta$.

¹Weierstrass, Lectures; compare Zermelo, Dissertation, p. 37.

If we introduce the curvature

$$\frac{1}{r} = \frac{x'y'' - x''y'}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

the differential equation may also be written

$$\frac{1}{r} = \frac{F_{xy} - F_{yx}}{F_1(x'^2 + y'^2)^{\frac{3}{2}}}$$

(1a)
The differential equation (I) together with the initial conditions determines the minimizing curve, but not the functions \(x \) and \(y \) of \(t \). In order to determine the latter, we must add a second equation or differential equation between \(t, x, y \). This additional relation (which is equivalent to some definite choice of the parameter \(t \)) must be such that \(x \) and \(y \) come out as single-valued functions of \(t \) of class \(D' \) satisfying (3); otherwise it is arbitrary. The best selection depends largely upon the nature of the particular example under consideration (see the examples in §26).

If we add to (I) a finite relation between \(t, x, y \) we obtain as the general solution a pair of functions of \(t \) containing two constants of integration:

\[
x = f(t, a, \beta), \quad y = g(t, a, \beta).
\]

The constants \(a, \beta \) together with the unknown values \(t_0 \) and \(t_1 \) have to be determined from the condition that the curve must pass through the two given points:

\[
x_0 = f(t_0, a, \beta), \quad y_0 = g(t_0, a, \beta),
\]

\[
x_1 = f(t_1, a, \beta), \quad y_1 = g(t_1, a, \beta).
\]

b) Extremal through a given point in a given direction: In order to construct an extremal through a given point \(O(a, b) \) of \(\mathbb{R} \) in a given direction of amplitude \(\gamma \), we select the arc of the curve measured from the given point for the parameter \(t \) and have then to solve the simultaneous system

\[
T = 0, \quad x'' + y'' = 1
\]

with the initial conditions

\[
x = a, \quad y = b, \quad x' = \cos \gamma, \quad y' = \sin \gamma
\]

for \(t = 0 \). Differentiating the second differential equation we obtain the new system

\[
F_x(y'x'' - x'y'') = F_yx' - F_x, \quad x'x'' + y'y'' = 0.
\]
Solving with respect to \(x'' \), \(y'' \) we obtain \(x'' \), \(y'' \) expressed as functions of \(x, y, x', y' \) which are of class \(C' \) in the vicinity of \(x = a, y = b, x' = \cos \gamma, y' = \sin \gamma \) provided that
\[F'(a, b, \cos \gamma, \sin \gamma) \neq 0. \] (23)

Hence\(^1\) there exists a unique solution
\[x = \Phi(t; a, b, \gamma), \quad y = \Psi(t; a, b, \gamma) \]
of the system (22a) satisfying the initial conditions and of class \(C' \) in the vicinity of \(t = 0 \).

This solution satisfies also the original system (22). For, by integrating the second equation of (22a) we get:
\[x'^2 + y'^2 = \text{const.}, \]
and the value of this constant is found to be 1 from the particular value \(t = 0 \). Thus we reach the result:\(^2\)
\[\text{If} \quad F'(a, b, \cos \gamma, \sin \gamma) \neq 0 \]
one and but one extremal of class \(C' \) can be drawn through the point \((a, b)\) in the direction \(\gamma \).

Hence, if (23) is satisfied for every value of \(\gamma \), a unique extremal of class \(C' \) can be drawn from \(O \) in every direction.

If (23) is satisfied at every point \((a, b)\) of the region \(\mathbb{R} \) for every value of \(\gamma \), the problem will be called a regular problem (compare §7, c).

c) "Discontinuous solutions." As in §9, a) we infer by the method of partial variation that every "discontinuous solution"\(^3\) must be made up of a finite number of arcs of extremals of class \(C' \).

Furthermore, the method of §9, b) applied to the two equations (16) leads to the result:\(^4\)

\(^1\)According to Cauchy’s existence-theorem; compare p. 28, footnote 1.
\(^2\)See Kneser, Lehrbuch, §§27, 29.
\(^3\)I.e., a solution which has a finite number of corners; compare §24, a).
\(^4\)Weierstrass, Lectures; compare also Kneser, Lehrbuch, §43.
At a corner \(t_1 = t_2 \) of the minimizing curve, the two conditions

\[
\begin{align*}
F_x'|_{t_2=0} & = F_x'|_{t_2=+0}, & F_y'|_{t_2=0} & = F_y'|_{t_2=+0} \\
\end{align*}
\]

must be satisfied, i.e., the two functions \(F_x \) and \(F_y \) must remain continuous even at the corners.

We add here the following corollary, though its proof can be given only later (§28):

At a corner \((x_2, y_2)\) of the minimizing curve, the function

\[F_1(x_2, y_2, \cos \theta, \sin \theta) \]

must vanish for some value of the angle \(\theta \).

Hence it follows: If at every point \((x, y)\) of the region \(R \)

\[F_1(x, y, \cos \theta, \sin \theta) = 0 \]

for every value of \(\theta \), no "discontinuous solutions" are possible.

§26. Examples

In applications it is frequently convenient to use one of the two equations (17) instead of (I), especially when \(F' \) does not contain \(x \) or \(y \), in which case one of the two equations (17) yields at once a first integral. It must, however, be borne in mind that each of these two equations contains a foreign solution\(^1\) (\(x = \text{const.} \) and \(y = \text{const.} \), respectively), and that only their combination is equivalent to (I).

a) Example X: To determine for a heavy particle the curve of quickest descent in a vertical plane between two given points ("Brachistochrone")\(^2\).

\(^1\)This happens, for instance, in Example I:

\[F = \sqrt{x^2 + y^2}, \]

where a first integral is obtained from (17):

\[\frac{yx'}{\sqrt{x^2 + y^2}} = a; \]

when \(a = 0 \), \(y = 0 \) is such a foreign solution.

\(^2\)Compare Lindelöf-Moigno, loc. cit., No. 112; Pascal, loc. cit., §31; Kneser, Lehrbuch, p. 37.
If we take the positive y-axis vertically downward and denote by g the constant of gravity, by v_0 the initial velocity, which we suppose different from zero, we have to minimize the integral

$$J = \int_{t_0}^{t_1} \frac{\sqrt{x'^2 + y'^2}}{\sqrt{y - y_0 + k}} \, dt,$$

where

$$k = \frac{v_0^2}{2g}.$$

The curves are restricted to the region

$$\Re: \quad y - y_0 + k > 0.$$

Since $F_x \equiv 0$, we obtain the first integral

$$F_x' \equiv \frac{x'}{\sqrt{x'^2 + y'^2}} \frac{1}{\sqrt{y - y_0 + k}} = a. \quad (25)$$

The theorem on discontinuous solutions shows that the constant a must have the same value all along the curve.

If $a=0$, we obtain $x = \text{const.}$, which is the solution of the problem when the two given points A and B lie in the same vertical line.

If $a \neq 0$, we choose for the parameter t the amplitude of the positive tangent to the curve; then we have the additional relation

$$\frac{x'}{\sqrt{x'^2 + y'^2}} = \cos t,$$

which reduces (25) to

$$y - y_0 + k = r (1 + \cos 2t),$$

where

$$r = \frac{1}{2a^2}.$$

Hence

$$y' = -2r \sin 2t,$$

and

$$x' = \pm 4r \cos^2 t.$$

If we finally make the substitution

$$2t = \tau - \pi,$$

we get the result

$$x - x_0 + h = \pm r (\tau - \sin \tau),$$

$$y - y_0 + k = r (1 - \cos \tau), \quad (26)$$
h being the second constant of integration. The extremals are therefore cycloids\(^1\) generated by a circle of radius r rolling upon the horizontal line $y - y_0 + k = 0$.

Among this double infinitude of cycloids there exists\(^2\) one and but one which passes through the two given points A and B and has no cusp between A and B, provided only that the co-ordinates of the two given points satisfy the inequalities

$$x_1 = x_0 , \quad y_1 - y_0 + k \geq 0 .$$

b) Example XI: To determine the curve of shortest length which can be drawn on a given surface between two given points.

If the rectangular co-ordinates x, y, z of a point of the surface are given as functions of two parameters u, v and the curves on the surface are expressed in parameter-representation

$$u = \phi(t) , \quad v = \psi(t) ,$$

the problem is to minimize the integral

$$J = \int_a^b \sqrt{E u'^2 + 2F u'v' + G v'^2} \, dt ,$$

where

$$E = \sum x_u^2 , \quad F = \sum x_u x_v , \quad G = \sum x_v^2 ,$$

the summation sign referring to a cyclic permutation of x, y, z.

The curves must be restricted to such a portion S of the surface that the correspondence between S and its image \bar{S} in the u, v-plane is a one-to-one correspondence. We further suppose that E, F, G are of class C'' in \mathbb{R} and that S is free from singular points, i.e.,

$$EG - F^2 > 0 .$$

a) If we use Weierstrass's form (I) of Euler's equation, and denote by $\Phi(F)$ the differential expression

\(^1\)This result is due to Johann Bernoulli (1696); see Ostwald's Klassiker, etc., No. 46, p. 3.

\[\Phi (F') = F_{xx} - F_{uv} + F_{1} (x'y'' - x''y') , \]

we obtain easily
\[\Phi \left(\sqrt{E u''^2 + 2F u' v' + G v'^2} \right) = \frac{\Gamma}{(1 \ E u''^2 + 2F u' v' + G v'^2)} \right] , \] (28)

where
\[\Gamma = (E G - F^2) (u' v'' - u'' v') \]
\[+ (E u' + F v') \left[(F_u - \frac{1}{2} E_v) u''^2 + G_u u' v' + \frac{1}{2} G_v v'^2 \right] \]
\[- (F u' + G v') \left[\frac{1}{2} E_u u'^2 + E_v u' v' + (F_v - \frac{1}{2} G_u) v'^2 \right] . \] (29)

The extremals satisfy, therefore, the differential equation\(^1\)
\[\Gamma = 0 . \] (29a)

This differential equation admits of a simple geometrical interpretation:

The geodesic curvature of the curve (27) at the point \(t \) is given by the expression\(^2\)
\[\frac{1}{\rho(g)} = \frac{\Gamma}{EG - F^2 (1 \ E u''^2 + 2F u' v' + G v'^2)} . \] (30)

Hence the curve of shortest length has the characteristic property that its geodesic curvature is constantly zero, i.e., it is a geodesic.

In passing we notice the relation
\[\Phi \left(\sqrt{E u''^2 + 2F u' v' + G v'^2} \right) = \left(\frac{EG - F^2}{\rho} \right) , \] (28a)

which will be useful in the sequel.

\(\beta \) If instead of (I) we use the two differential equations (17) and, moreover, select the arc \(s \) for the parameter \(t \), we obtain for the extremals the two differential equations:\(^3\)
\[2 \frac{d}{ds} \left(E \frac{du}{ds} + F \frac{dv}{ds} \right) = E_u \left(\frac{du}{ds} \right)^2 + 2F_u \frac{du}{ds} \frac{dv}{ds} + G_u \left(\frac{dv}{ds} \right)^2 , \]
\[2 \frac{d}{ds} \left(F \frac{du}{ds} + G \frac{dv}{ds} \right) = E_v \left(\frac{du}{ds} \right)^2 + 2F_v \frac{du}{ds} \frac{dv}{ds} + G_v \left(\frac{dv}{ds} \right)^2 . \] (31)

\(^1\) That (29a) is the differential equation of the geodesics might be taken directly from the treatises on differential geometry: Knoblauch, Flächelehre, p. 140; Bianchi-Lukat, Differentialgeometrie, p. 154; Darboux, Théorie des Surfaces, Vol. II, p. 403.

\(^3\) Compare Knoblauch, loc. cit., p. 142; Bianchi, loc. cit., p. 153; Darboux, loc. cit., p. 465.
They have likewise a simple geometrical meaning: From the definition of E, F, G it follows that

\[
E \frac{du}{ds} + F \frac{dv}{ds} = \sum x_u \frac{dx}{ds}, \\
F \frac{du}{ds} + G \frac{dv}{ds} = \sum x_r \frac{dr}{ds}.
\]

Differentiating with respect to s we obtain

\[
d\left(E \frac{du}{ds} + F \frac{dv}{ds} \right) = \sum x_u \frac{d^2x}{ds^2} \\
\quad + \frac{1}{2} E_u \left(\frac{du}{ds} \right)^2 + F_u \frac{du}{ds} \frac{dv}{ds} + \frac{1}{2} G_r \left(\frac{dr}{ds} \right)^2; \\
\]

hence on account of (31)

\[
\sum x_u \frac{d^2x}{ds^2} = 0,
\]

and similarly

\[
\sum x_r \frac{d^2r}{ds^2} = 0.
\]

Therefore

\[
\frac{d^2x}{ds^2} : \frac{d^2y}{ds^2} : \frac{d^2z}{ds^2} = (y_u z_r - y_r z_u) : (z_u x_r - z_r x_u) : (x_u y_r - x_r y_u),
\]

(32)

The geometrical meaning of this proportion is that at every point of the curve the principal normal coincides with the normal to the surface, which is another characteristic property of the geodesic lines.

§ 27. The second variation

Let

\[
x = f(t, a_0, \beta_0) = f(t) , \\
y = g(t, a_0, \beta_0) = g(t) ,
\]

represent an extremal of class C''' passing through the two given points A and B, derived from the general solution (20) by giving the constants the particular values $a = a_0, \beta = \beta_0$.

We suppose that the functions $f(t, a, \beta)$ and $g(t, a, \beta)$, their first partial derivatives and the following higher derivatives,

\[
f_{tt}, f_{ta}, f_{t\beta}, f_{ta}, f_{t\beta}; g_{tt}, g_{ta}, g_{t\beta}, g_{ta}, g_{t\beta},
\]

...
are continuous in a domain

\[T_0 \leq t \leq T_1 , \quad a - a_0 \leq d , \quad \beta - \beta_0 \leq d , \]

where \(T_0 < t_0 , \ T_1 > t_1 , \) and \(d \) is a sufficiently small positive quantity.

Then we infer, as in §11, that in case of a minimum the second variation of \(J \) must be positive or zero. The second variation is defined by the integral

\[\delta^2 J = \int_{t_0}^{t_1} \delta^2 F dt , \]

where

\[\delta^2 F = F_{xx} \xi^2 + 2F_{xy} \xi \eta + F_{yy} \eta^2 + 2F_{xx} \xi' \eta' + 2F_{yy} \eta' \eta' + 2F_{xy} \xi' \eta' + 2F_{xy} \xi' \eta' + F_{yy} \eta'^2 , \tag{34} \]

the arguments of the partial derivatives of \(F \) being

\[x = f(t) , \quad y = g(t) , \quad \xi' = f'(t) , \quad \eta' = g'(t) . \]

a) **Weierstrass's Transformation of the second variation.** This transformation proceeds by the following steps:

1. Express \(F_{x'x'} , F_{x'y'} , F_{y'y'} \) in terms of \(F_1 \) by means of (11a) and introduce the abbreviations

\[w = y' \xi' - x' \eta' \]

\[L = F_{xx} - y' y'' F_1 , \quad N = F_{yy} - x' x'' F_1 , \tag{35} \]

\[M = F_{xy} + x' y'' F_1 = F_{yx} + y' x'' F_1 ; \]

the two expressions for \(M \) are equal since \(x \) and \(y \) satisfy the differential equation (1).

We thus obtain

\[\delta^2 F = F_1 \left(\frac{dw}{dt} \right)^2 + 2L \xi \xi' + 2M (\xi \eta' + \eta \xi') + 2N \eta' \eta' + (F_{xx} - y'' F_1) \xi^2 + 2 (F_{xy} + x' y'' F_1) \xi \eta + (F_{yy} - x'' F_1) \eta^2 . \]

2. Observe that

\[2L \xi \xi' + 2M (\xi \eta' + \eta \xi') + 2N \eta' \eta' \]

\[= \frac{d}{dt} \left[L \xi^2 + 2M \xi \eta + N \eta^2 \right] - \left[\frac{\xi^2}{\xi} \frac{dL}{dt} + 2 \xi \eta \frac{dM}{dt} + \eta^2 \frac{dN}{dt} \right] . \]

\[^1 \text{Weierstrass, Lectures, at least as early as 1872.} \]
and introduce the abbreviations

\[L_1 = F_{xx} - y''^2 F_1 - \frac{dL}{dt} ; \]
\[M_1 = F_{xy} + x'y'' F_1 - \frac{dM}{dt} ; \]
\[N_1 = F_{yy} - x''^2 F_1 - \frac{dN}{dt} . \] \hspace{1cm} (36)

Then the above expression for \(\delta^2 F \) becomes

\[\delta^2 F = F_1 \left(\frac{d\xi}{dt} \right)^2 + L_1 \xi^2 + 2M_1 \xi \eta + N_1 \eta^2 \]
\[+ \frac{d}{dt} \left[L_1 \xi^2 + 2M_1 \xi \eta + N_1 \eta^2 \right] . \]

3. The three functions \(L_1, M_1, N_1 \) have the important property of being proportional to \(y'^2, -x'y', x''^2 \).

\textit{Proof:} From the definition of \(L, M, N \) and the relations (10) follows

\[Lx' + My' = F_x , \quad Mx' + Ny' = F_y . \]

Differentiating the first of these relations we get

\[\frac{dL}{dt} x' + \frac{dM}{dt} y' + Lx'' + My'' = F_{xx} x' + F_{xy} y' + F_{xx} x'' + F_{xy} y'' . \]

But

\[Lx'' + My'' = F_{xx} x'' + F_{xy} y'' , \]

and from (I) it follows that

\[F_{xx} x'' - F_{xy} y'' = F_1 (x'y'' - x''y') . \]

Substituting these values we obtain

\[L_1 x' + M_1 y' = 0 ; \]

similarly

\[M_1 x' + N_1 y' = 0 ; \]

whence we infer that indeed

\[L_1 : M_1 : N_1 = y'^2 : -x'y' : x''^2 . \]

There exists therefore a function \(F_2 \) of \(t \) such that

\[L_1 = y'^2 F_2 , \quad M_1 = -x'y' F_2 , \quad N_1 = x''^2 F_2 . \] \hspace{1cm} (37)
This reduces the expression for $\delta^2 J$ to the final form

$$\delta^2 J = \int_{t_0}^{t_1} \left[F'_1 \left(\frac{dw}{dt} \right)^2 + F'_2 w^2 \right] dt + \left[L \xi^2 + 2M \xi \eta + N \eta^2 \right]_{t_0}^{t_1}$$

(38)

If, as we suppose for the present, the two end-points are fixed, then ξ and η vanish at t_0 and t_1 and the expression for $\delta^2 J$ reduces to

$$\delta^2 J = \int_{t_0}^{t_1} \left[F'_1 \left(\frac{dw}{dt} \right)^2 + F'_2 w^2 \right] dt .$$

(39)

This definite integral must then be $\equiv 0$, for all functions w of class D' which vanish at both end-points.

From the assumptions made at the beginning of this section with respect to the functions $f(t, \alpha, \beta)$, $g(t, \alpha, \beta)$ together with our assumptions concerning the function F (see §24, b)), it follows that F_1 and F_2 are of class C' in the interval (T_0, T_1); we suppose that they are not both identically zero.

b) Weierstrass’s form of Legendre’s and Jacobi’s conditions: The second variation being now exactly of the same form as in the previous problem (§11), we can directly apply the results of Chapter II.

Accordingly we infer in the first place, as in §11:

The second necessary condition for a minimum (maximum) is that

$$F_1 \equiv 0 \quad (F'_1 \equiv 0) \quad (II)$$

along the curve C_0.

We suppose in the sequel that this condition is satisfied in the slightly stronger form

$$F'_1 > 0 , \quad \text{along } C_0 . \quad (II')$$

Again, Jacobi’s differential equation (equation (9) of §11) becomes

$$\Psi (u) \equiv F_2 u - \frac{d}{dt} \left(F'_1 \left(\frac{dw}{dt} \right) \right) = 0 . \quad (40)$$
Jacobi's theorem concerning the integration of this differential equation takes now a slightly different form. If we substitute in the differential equation

$$F_x - \frac{d}{dt} F'_x = 0$$

for x and y the general solution

$$x = f(t, \alpha, \beta), \quad y = g(t, \alpha, \beta)$$

and differentiate with respect to α we get

$$F_{xx} f_{\alpha} + F_{xy} g_{\alpha} + F'_x f_{t\alpha} + F'_{xy} g_{t\alpha} = -\frac{d}{dt} (F_{xx} f_{\alpha} + F_{xy} g_{\alpha} + F'_x f_{t\alpha} + F'_{xy} g_{t\alpha}) = 0.$$

In this equation we express the second partial derivatives of F' in terms of L, M, N, F_1, F_2 by means of (11a), (35), (36), (37) and obtain, after some simple reductions,

$$g_t \left[F'_{2\omega} - \frac{d}{dt} \left(F_1 \frac{d\omega}{dt} \right) \right] = 0,$$

where

$$\omega = g_t f_{\alpha} - f_t g_{\alpha}.$$

If we operate in the same manner upon the differential equation

$$F'_y - \frac{d}{dt} F''_y = 0,$$

we obtain

$$-f_t \left[F'_{2\omega} - \frac{d}{dt} \left(F_1 \frac{d\omega}{dt} \right) \right] = 0.$$

Therefore, since f_t and g_t are not both zero, we find that

$$F'_{2\omega} - \frac{d}{dt} \left(F_1 \frac{d\omega}{dt} \right) = 0.$$

An analogous result is reached if we differentiate with respect to β. Finally, giving α, β the particular values a_0, β_0, we obtain Weierstrass's modification of Jacobi's theorem:
The differential equation

\[\Psi(u) \equiv F'_2 u - \frac{d}{dt} \left(F'_1 \frac{du}{dt} \right) = 0 \]

has the two particular integrals

\[\begin{align*}
\theta_1(t) &= g_1(t) f_\alpha(t) - f_1(t) g_\alpha(t), \\
\theta_2(t) &= g_1(t) f_\beta(t) - f_1(t) g_\beta(t),
\end{align*} \tag{41} \]

which are in general linearly independent.

Reasoning now as in §§14 and 16 we obtain the result:

Let

\[\Theta(t, t_0) = \theta_1(t) \theta_\alpha(t_0) - \theta_2(t) \theta_\beta(t_0); \tag{42} \]

then Jacobi's condition takes the following form:\(^1\)

The third necessary condition for an extremum is that

\[\Theta(t, t_0) \equiv 0 \quad \text{for } t_0 < t < t_1. \tag{III} \]

If we denote by \(t'_0 \) the zero next greater than \(t_0 \) of the equation

\[\Theta(t, t_0) = 0, \]

Condition (III) may also be written:

\[t_1 \equiv t'_0; \]

\(t'_0 \) is the parameter of the "conjugate point" to the point \(A \).

Example X\(^2\) (see p. 126).

We suppose that the two end-points \(A \) and \(B \) lie between the two consecutive cusps \(\tau = 0 \) and \(\tau = 2\pi \) of the cycloid (26), so that the values \(\tau = \tau_0 \) and \(\tau = \tau_1 \) corresponding to \(A \) and \(B \) respectively, satisfy the inequality

\[0 < \tau_0 < \tau_1 < 2\pi. \]

For the function \(F'_1 \) we obtain

\[F'_1 = \frac{1}{1 + y - y_9 + k \left(1 + x^2 + y^2 \right)^{\frac{3}{2}}}, \]

Hence \(F'_1 \) is indeed positive along the arc \(AB \).

\(^1\) **Weierstrass, Lectures; compare also** Kneser, *Lehrbuch*, §31.

\(^2\) **Lindelöf-Moigno**, *loc. cit.*, p. 234.
Again, we obtain from (26)

$$\Theta(\tau, \tau_0) = \pm 4\tau^2 \sin \frac{\tau}{2} \cos \frac{\tau}{2} \sin \frac{\tau_0}{2} \cos \frac{\tau_0}{2}$$

$$\left[\tau - 2 \tan \frac{\tau}{2} - \tau_0 + 2 \tan \frac{\tau_0}{2} \right].$$

The parameter τ_0 of the conjugate point A' is therefore determined by the transcendental equation

$$\tau - 2 \tan \frac{\tau}{2} = \tau_0 - 2 \tan \frac{\tau_0}{2},$$

As τ increases from 0 to π and then from π to 2π, the function $\tau - 2 \tan \frac{\tau}{2}$ decreases continually from 0 to $-\infty$ and then from $+\infty$ to $+2\pi$. Hence $\tau = \tau_0$ is the only root of the equation between 0 and 2π. There exists, therefore, no conjugate point on the arc AB.

c) Kneser's form of Jacobi's condition: As in §15 the existence of a set of extremals through the point A can be proved,\(^1\) representable in the form

$$x = \phi(t, a), \quad y = \psi(t, a), \quad (43)$$

\(^1\)Weierstrass obtains the set of extremals through A as follows (Lectures, 1882): Let

$$c: \quad \bar{x} = f(t, a, \beta), \quad \bar{y} = g(t, a, \beta)$$

represent the extremal passing through A and making at A a given small angle ω with the extremal

$$c_0: \quad x = f(t, a_0, \beta_0), \quad y = g(t, a_0, \beta_0).$$

Let further t^0 denote that value of t which corresponds on c to the point A. Then we have for the determination of t^0, a, β the three equations:

$$f(t^0, a, \beta) - x_0 = 0, \quad g(t^0, a, \beta) = 0, \quad \frac{(x' \bar{y} - y' \bar{x})}{1 - \frac{x'^2 + y'^2}{x^2 + y^2}} - \alpha = 0,$$

where the argument of x', y' is t_0, that of $\bar{x}', \bar{y}' : t^0$, and where

$$\alpha = (x'^2 + y'^2) \sin \omega.$$
§271 **Weierstrass’s Theory** 137

where \(\phi(t, a) \) and \(\psi(t, a) \) are continuous with continuous partial derivatives of the first and second orders—with the possible exception of \(\phi_{aa}, \psi_{aa} \)—in the domain

\[
T_0 \equiv t \equiv T_1, \quad |a - a_0| \equiv d_0,
\]

\(a_0 \) being the value of \(a \) which corresponds to the extremal \(C_0 \) through \(A \) and \(B \), and \(d_0 \) being a sufficiently small positive quantity.

Again, the Jacobian

\[
\frac{\partial (\phi, \psi)}{\partial (t, a)} = \Delta(t, a)
\]

differs\(^1\) for \(a = a_0 \) from the function \(\Theta(t, t_0) \) only by a constant factor:

\[
\Delta(t, a_0) = C \cdot \Theta(t, t_0),
\]

where \(C \neq 0 \).

Furthermore the value \(t = t' \) which corresponds on the extremal (43) to the point \(A \), and which satisfies therefore the equations

\[
x_a = \phi(t', a), \quad y_a = \psi(t', a),
\]

is a function of \(a \), which is, in the vicinity of \(a_0 \), of class \(C' \).

From (44) follows Kneser’s\(^2\) form of Jacobi’s condition:

\[
\Delta(t, a_0) \neq 0 \quad \text{for} \quad t_0 < t < t_1
\]

(III)

Further, if \(t'_0 \) denotes the value of \(t \) corresponding to the conjugate point \(A' \), we have

\[
\Delta(t'_0, a_0) = 0,
\]

and at the same time

\[
\Delta(t'_0, a_0) = 0
\]

(47)

provided that \(F_1, F_2 \) are of class \(C' \) in the vicinity of \(t'_0 \) and \(F'_1 \neq 0 \) at \(t'_0 \). The inequality (47) follows\(^3\) from the fact that \(\Delta(t, a_0) \) is an integral of Jacobi’s differential equation (40).

From this second form of Jacobi’s condition it follows\(^4\) easily that the conjugate point \(A' \) has the same geometrical meaning as in the simpler case of §15.

\(^1\)This follows either by direct computation from the equations which define \(\phi, \psi \) as functions of \(a, \) or else from the fact that \(\Delta(t, a_0) \) and \(\Theta(t, t_0) \) are integrals of Jacobi’s differential equation and vanish for \(t = t_0.\)

\(^2\)See Kneser, Lehrbuch, §31.

\(^3\)Compare p. 58, footnote 2.

\(^4\)See Kneser, Lehrbuch, §21, and the references given in E. III D, p. 48, footnote 117.
§28. THE FOURTH NECESSARY CONDITION AND SUFFICIENT CONDITIONS

We suppose in the sequel that for our extremal \(C_0 \) the conditions

\[F_1 > 0 \quad (\text{II}') \]

and

\[\Theta(t, t_0) \equiv 0 \quad \text{for} \ t_0 < t \equiv t_1, \quad (\text{III}') \]

are fulfilled.

a) These conditions are not yet sufficient for a (strong) minimum; a fourth condition must be added.

Let \(E(x, y; x', y'; \tilde{x}', \tilde{y}') \) be defined\(^1\) as the following function of six independent variables:

\[
E(x, y; x', y'; \tilde{x}', \tilde{y}') = F(x, y, x', y') - \left[\tilde{x}' F_{x'}(x, y, x', y') + \tilde{y}' F_{y'}(x, y, x', y') \right], \quad (48)
\]

or, as we may write on account of (9),

\[
E(x, y; x', y'; \tilde{x}', \tilde{y}') = \tilde{x}' \left[F_{x'}(x, y, x', y') - F_x(x, y, x', y') \right] + \tilde{y}' \left[F_{y'}(x, y, x', y') - F_y(x, y, x', y') \right]. \quad (48a)
\]

Let further \((x, y)\) be any point of the extremal \(C_0 \), \(p, q \) the direction-cosines of the positive tangent to \(C_0 \) at \((x, y)\), and \(\tilde{p}, \tilde{q} \) the direction-cosines of any direction.

Then the fourth necessary condition for a minimum (maximum) is that

\[
E(x, y; p, q; \tilde{p}, \tilde{q}) \equiv 0 \quad (\equiv 0) \quad (\text{IV})
\]

for every point \((x, y)\) of \(C_0 \) and for every direction \(\tilde{p}, \tilde{q} \).

The proof follows\(^2\) immediately from Weierstrass's lemma\(^3\) on a special class of variations:

Let

\(^1\)This is Weierstrass's original definition; Kneser writes \(E \) instead of Weierstrass's \(+ E \), Lehrbuch, p. 75.
\(^2\)Compare §18, b).
\(^3\)The reasoning is the same as in §8; compare also §4, d).
Weierstrass's Theory

§28 | Weierstrass's Theory | 139

Weierstrass's Theory

Let \(C : x = \phi(t), \quad y = \psi(t), \quad t' \leq t \leq t'' \)
be any extremal of class \(C'' \) lying in the interior of the region \(\mathcal{B} \), and let \(2 : (t = t_2) \) be an arbitrary point of \(C \). Through the point 2 draw an arbitrary curve of class \(C ' \):

\[\tilde{C} : \quad \tilde{x} = \tilde{\phi}(\tau), \quad \tilde{y} = \tilde{\psi}(\tau), \]

the value of \(\tau = \tau_2 \) corresponding to the point 2.

Let \(3 : (x_2 + \xi_2, y_2 + \eta_2) \) be the point of \(\tilde{C} \) corresponding to \(\tau = \tau_2 + h \), where \(h \) is a sufficiently small positive quantity. Finally, from a point \(0 : (t = t_0 < t_2) \) of \(\mathcal{C} \) to the point 3 draw a curve \(\tilde{C} \) representable in the form

\[\tilde{C} : \quad \tilde{x} = x + \xi, \quad \tilde{y} = y + \eta, \]

where \(\xi \) and \(\eta \) are functions of \(t \) and \(h \) which vanish identically for \(h = 0 \), and which satisfy the following conditions:

1. \(\xi, \eta \) themselves, their first partial derivatives and the cross derivatives \(\xi_{th}, \eta_{th} \), are continuous in the domain

\[t_0 \leq t \leq t_2, \quad |h| \leq h_0, \]

\(h_0 \) being a sufficiently small positive quantity.

2. \(\xi(t_0, h) = 0, \quad \eta(t_0, h) = 0, \]

\(\xi(t_2, h) = \xi_2, \quad \eta(t_2, h) = \eta_2, \)

for every \(0 \leq h \leq h_0 \). Then the difference

\[\tilde{J}_{a_3} - (J_{a_2} + J_{a_3}) \]

has the following value:

\[\tilde{J}_{a_3} - (J_{a_2} + J_{a_3}) = -h \left[\mathcal{E}(x, y; x'_2, y'_2; x_2', y_2') + (h) \right]. \quad (49) \]

Similarly, if we denote by 4 the point of \(\tilde{C} \) corresponding to

\[\xi = \xi_2 u, \quad \eta = \eta_2 v, \]

if \(u, v \) are two functions of \(t \) of class \(C ' \) which vanish for \(t = t_0 \) and are equal to 1 for \(t = t_2 \).

1 Functions \(\xi, \eta \) satisfying these conditions are, for instance, the following:

\[\xi = \xi_2 u, \quad \eta = \eta_2 v, \]

if \(u, v \) are two functions of \(t \) of class \(C ' \) which vanish for \(t = t_0 \) and are equal to 1 for \(t = t_2 \).

2 For the notation compare §§2, 21 (a), and 8.
\(\tau = \tau_2 - h \) and draw a curve \(\mathcal{C} \) from 0 to 4 of the same character as \(\mathcal{C} \), we obtain:

\[
J_{04} + J_{42} - J_{02} = + h \left[E(x_2, y_2; x'_2, y'_2; \tilde{x}'_2, \tilde{y}'_2) + (h) \right]. \tag{49a}
\]

By the same method and under analogous assumptions we further obtain the following results, which are sufficiently explained by the adjoining diagram:

\[
J_{23} + J_{31} - J_{21} = h \left[E(x_2, y_2; x'_2, y'_2; \tilde{x}'_2, \tilde{y}'_2) + (h) \right], \tag{50}
\]

\[
J_{14} - (J_{12} + J_{21}) = - h \left[E(x_2, y_2; x'_2, y'_2; \tilde{x}'_2, \tilde{y}'_2) + (h) \right]. \tag{50a}
\]

From the relation (8) it follows that

\[
E(x, y; kx', ky'; \tilde{k}\overline{x}', \tilde{k}\overline{y}') = \tilde{k}E(x, y; x', y'; \tilde{x}', \tilde{y}') , \tag{51}
\]

if \(k > 0 \) and \(\tilde{k} > 0 \).

Hence if we set

\[
p = \frac{x'}{\sqrt{x'^2 + y'^2}} = \cos \theta , \quad q = \frac{y'}{\sqrt{x'^2 + y'^2}} = \sin \theta ,
\]

\[
\tilde{p} = \frac{\tilde{x}'}{\sqrt{\tilde{x}'^2 + \tilde{y}'^2}} = \cos \tilde{\theta} , \quad \tilde{q} = \frac{\tilde{y}'}{\sqrt{\tilde{x}'^2 + \tilde{y}'^2}} = \sin \tilde{\theta} , \tag{52}
\]

we get

\[
E(x, y; x', y'; \tilde{x}', \tilde{y}') = \sqrt{x'^2 + y'^2}E(x, y; p, q; \tilde{p}, \tilde{q}) , \tag{53}
\]

which reduces the second and the third pair of arguments of the \(E \)-function to direction-cosines.

If we choose for the parameter \(\tau \) on the curve \(\mathcal{C} \) the arc, we may replace in the above formulæ \(x'_2, y'_2 \) and \(\tilde{x}'_2, \tilde{y}'_2 \) by the direction-cosines \(p_2, q_2 \) and \(\tilde{p}_2, \tilde{q}_2 \) of the positive tangents at 2 to \(\mathcal{C} \) and to \(\mathcal{C} \) respectively.

b) Relation between the \(E \)-function and the function \(F' \) : If the angles \(\theta \) and \(\tilde{\theta} \) are defined by (52), we have, according to (48),
\[E(\tilde{x}', y', \tilde{p}, \tilde{q}; p, q) = \cos \tilde{\theta} \left[F_{x'}(x, y, \cos \tilde{\theta}, \sin \tilde{\theta}) - F_{x'}(x, y, \cos \theta, \sin \theta) \right] + \sin \tilde{\theta} \left[F_{y'}(x, y, \cos \tilde{\theta}, \sin \tilde{\theta}) - F_{y'}(x, y, \cos \theta, \sin \theta) \right]. \]

But
\[F_{x'}(x, y, \cos \tilde{\theta}, \sin \tilde{\theta}) - F_{x'}(x, y, \cos \theta, \sin \theta) = \int_{0}^{\omega} \frac{d}{d\tau} F_{x'}(x, y, \cos (\theta + \tau), \sin (\theta + \tau)) d\tau, \]
where \(\omega = \tilde{\theta} - \theta \); and an analogous formula holds for \(F_{y'} \).

If we perform the differentiation with respect to \(\tau \) and then make use of the relations (11a), we get
\[E(\tilde{x}', y', \tilde{p}, \tilde{q}; p, q) = \int_{0}^{\omega} F_{1}(x, y, \cos (\theta + \tau), \sin (\theta + \tau)) \sin (\omega - \tau) d\tau. \]

By adding to \(\tilde{\theta} \) a proper multiple of \(2\pi \), we can always cause \(\omega \) to lie in the interval
\[-\pi < \omega \leq \pi, \]
so that \(\sin (\omega - \tau) \) does not change sign between the limits of integration. We may then apply the first mean-value theorem and obtain the following relation between the \(E \)-function and the function \(F_{1} \):
\[E(x, y; \cos \theta, \sin \theta; \cos \tilde{\theta}, \sin \tilde{\theta}) = (1 - \cos (\tilde{\theta} - \theta)) F_{1}(x, y, \cos \theta^{*}, \sin \theta^{*}), \quad (54) \]
where \(\theta^{*} \) is a mean value between \(\theta \) and \(\tilde{\theta} \).

From this theorem follow a number of important consequences:

1. If we let \(\tilde{\theta} \) approach \(\theta \), we obtain
\[\lim_{\tilde{\theta} = \theta} \frac{E(x, y; \tilde{p}, \tilde{q}; \tilde{p}, \tilde{q})}{1 - \cos (\tilde{\theta} - \theta)} = F_{1}(x, y, \tilde{p}, \tilde{q}). \quad (55) \]

Hence it follows that Condition (II) is contained in Condition (IV).
2. Condition (IV) is always satisfied when
\[F'(x, y, \cos \gamma, \sin \gamma) \geq 0 \] (Ia)
for every point \((x, y)\) on \(C_0\) and for every value of \(\gamma\).

3. The \(\mathbf{E}\)-function vanishes whenever \(\tilde{\theta} = \theta\) ("ordinary vanishing")\(^1\); for a value \(\tilde{\theta} \neq \theta\) it can only vanish\(^2\) ("extraordinary vanishing") if \(F'(x, y, \cos \gamma, \sin \gamma)\) vanishes for some value \(\gamma = \theta^*\) between \(\theta\) and \(\tilde{\theta}\).

c) Example XII:\(^3\) To minimize the integral
\[J = \int_{t_0}^{t_1} \frac{y y'^3}{x'^2 + y'^2} dt. \]
The value of the \(\mathbf{E}\)-function is easily found to be
\[\mathbf{E}(x, y; p, q; \tilde{p}, \tilde{q}) = \frac{y(p \tilde{q} - \tilde{p} q)^2 \left[(p^2 - q^2) \tilde{q} + 2pq\tilde{p} \right]}{(p^2 + q^2)^2 (\tilde{p}^2 + \tilde{q}^2)} = y \sin^2 (\tilde{\theta} - \theta) \sin (2\theta + \tilde{\theta}) . \]

Apart from the exceptional case when both end-points lie on the \(x\)-axis, \(\mathbf{E}\) can be made negative as well as positive by choosing \(\tilde{\theta}\) suitably; and therefore no minimum can take place.

More generally, whenever the homogeneity condition (S) holds not only for positive but also for negative values of \(k\), as happens, for instance, when \(F\) is a rational function of \(x', y'\), no extremum can—in general—take place.

For in this case (51) holds also for negative values of \(\tilde{k}\), so that
\[\mathbf{E}(x, y; p, q; -\tilde{p}, -\tilde{q}) = -\mathbf{E}(x, y; p, q; +\tilde{p}, +\tilde{q}) . \]
Condition (IV) can therefore be fulfilled only if
\[\mathbf{E}(x, y; p, q; \tilde{p}, \tilde{q}) = 0 . \]

\(^1\)Kneser's terminology, *Lehrbuch*, p. 78.

\(^2\)Hence follows the corollary on discontinuous solutions stated on p. 126. For from (24) follows
\[\mathbf{E}(x, y; \tilde{p}, \tilde{q}; \tilde{p}, \tilde{q}) = 0 . \]

\(^3\)To this definite integral leads Newton's celebrated problem: To determine the solid of revolution of minimum resistance. Compare Pascal, loc. cit., p. 111; Kneser, *Lehrbuch*, §§ 11, 18, 26; the above expression for \(\mathbf{E}\) was given by Weierstrass (1882).
along \(\mathcal{C}_0 \) for every direction \(\vec{p}, \vec{q} \), which, on account of (54), is possible only in the exceptional case when \(F_1 = 0 \) along \(\mathcal{C}_0 \).

d) Sufficiency of the four preceding conditions. The four conditions which so far have been shown to be necessary for a minimum of the integral \(J \) are—apart from certain exceptional cases—also sufficient.

Let us suppose

1. That \(\mathcal{C}_0 \) (or \(AB \)) is an arc of an extremal of class \(C'' \) without multiple points, lying wholly in the interior of the region \(\mathcal{R} \);

2. \(F_1(x, y, p, q) > 0 \) along \(\mathcal{C}_0 \);

3. The arc \(\mathcal{C}_0 \) does not contain the conjugate point \(A' \) of the point \(A \).

4. \(E(x, y; p, q; \vec{p}, \vec{q}) > 0 \) along \(\mathcal{C}_0 \) for every direction \(\vec{p}, \vec{q} \) different from the direction \(p, q \) of the positive tangent to \(\mathcal{C}_0 \) at \((x, y)\).

Moreover we retain the assumptions made in §27 concerning the general integral of Euler's differential equation.

We propose to prove that under these circumstances the extremal \(\mathcal{C}_0 \) actually minimizes the integral

\[
J = \int_{t_0}^{t_1} F'(x, y, x', y') \, dt.
\]

From the assumptions (III') follows the existence of a field of extremals about the arc \(\mathcal{C}_0 \). i.e., there exists a neighborhood of \(\mathcal{C}_0 \) in which an extremal arc can be found for every point \((x, y)\) of \(\mathcal{C}_0 \).
hood \((\rho)\) of \(\mathcal{C}_0\) such that to every point \(P\) of \((\rho)\) there can be drawn from the point \(A\) a uniquely defined extremal which varies continuously with the position of the point \(P\) and coincides with \(\mathcal{C}_0\) when \(P\) coincides with \(B\).

Let now
\[
\mathcal{E}: \quad \dot{x} = \ddot{\phi}(s), \quad \dot{y} = \ddot{\psi}(s), \quad s_0 \leq s \leq s_1,
\]
be any ordinary curve drawn from \(A\) to \(B\) and lying wholly in the neighborhood \((\rho)\) of \(\mathcal{C}_0\), \(s\) denoting the arc of the curve \(\mathcal{E}\) measured from some fixed point of \(\mathcal{E}\), and let \(\Delta J\) denote the total variation
\[
\Delta J = J_0 - J_{v_0}.
\]

Then a reasoning\(^2\) analogous to that employed in §20 leads to the following expression for \(\Delta J\) (Weierstrass's Theorem):
\[
\Delta J = \int_{s_0}^{s_1} \mathcal{E} (\ddot{x}, \ddot{y}; \rho, q; \ddot{\rho}, \ddot{q}) \, ds , \tag{56}
\]
where \((\ddot{x}, \ddot{y})\) denotes a point of \(\mathcal{E}\), \(\ddot{\rho}, \ddot{q}\) the direction-cosines of the positive tangent to \(\mathcal{E}\) at \((\ddot{x}, \ddot{y})\), and \(\rho, q\) the direction-cosines of the positive tangent to the unique extremal of the field passing through \((\ddot{x}, \ddot{y})\).

It now only remains to show that, as a consequence of our assumptions \((\text{II}')\) and \((\text{IV}')\), the integrand in \((56)\) is never negative\(^3\) along the curve \(\mathcal{E}\).

Let \((x, y)\) be any point of the above defined neighborhood \((\rho)\) of \(\mathcal{C}_0\) and let, as before, \(\rho, q\) denote the direction-cosines of the positive tangent at \((x, y)\) to the unique extremal of the field passing through \((x, y)\), and \(\ddot{\rho}, \ddot{q}\) the direction-cosines of any direction \(\ddot{\theta}\), and define

\(^1\)Or better from a point \(\tilde{A}\) in the vicinity of \(A\) on the continuation of \(v_0\) beyond \(A\), as in §19, c).

\(^2\)The lemma of §8 must be replaced by the lemma of §28, a). Other proofs of Weierstrass's theorem will be given in §35 in connection with Kneser's theory.

\(^3\)It is in this last conclusion that the problem in parameter-representation differs essentially from the problem with \(x\) as independent variable; compare §22, c).
Weierstrass’s Theory

\(E_1(x, y; p, q; \tilde{p}, \tilde{q}) \)

\[
= \begin{cases}
E(x, y; p, q; \tilde{p}, \tilde{q}), & \text{when } 1 - (p\tilde{p} + q\tilde{q}) \neq 0 \quad (57) \\
F'_1(x, y, p, q), & \text{when } 1 - (p\tilde{p} + q\tilde{q}) = 0
\end{cases}
\]

where \(\tilde{\theta} = \theta \) in the domain

\((x, y)\) in \((\rho)\), \quad \(0 \leq \tilde{\theta} \leq 2\pi\),

and since, according to our assumptions (II') and (IV'), \(E_1 \) is positive along \(C_0 \) for every value of \(\tilde{\theta} \), it follows from general theorems on continuous functions that \(E_1 \) is positive throughout the domain

\((x, y)\) in \((\rho)\), \quad \(0 \leq \tilde{\theta} \leq 2\pi\),

provided that \(\rho \) has been taken sufficiently small.

The integrand of (56) is therefore positive at all points of \(C \) at which the direction \(\tilde{p}, \tilde{q} \) does not coincide with the direction \(p, q \), and zero where these two directions do coincide. Hence \(\Delta J > 0 \) unless it should happen that \(\tilde{p} = p, \tilde{q} = q \) all along \(C \), in which case we should have \(\Delta J = 0 \).

But the latter alternative is impossible\(^1\) unless \(C \) be identical with \(C_0 \). This proves that the arc \(C_0 \) actually minimizes the integral \(J \) if the four conditions enumerated at the beginning of §28, d) are fulfilled.

Example VII (see p. 97):

\[F' = g(x, y) \sqrt{x'^2 + y'^2}. \]

Here

\[E_1(x, y; p, q; \tilde{p}, \tilde{q}) = g(x, y), \]

\(^1\) Compare §34, Corollary 1.

\(^2\) The proof is similar to that given in §22, a); for the details compare Kneser, Lehrbuch, §22.
and therefore Condition (IV') is satisfied if
\[g(x, y) > 0 \]
along \(\mathcal{C}_0 \).

This shows that in the problem of the brachistochrone an arc \(AB \) of the cycloid (26) actually furnishes a minimum if it contains no cusp (compare p. 136).

Corollary: If the condition
\[F_1(x, y, \cos \gamma, \sin \gamma) > 0 \quad (II') \]
is satisfied for every point \((x, y)\) of \(\mathcal{C}_0 \) and for every value of \(\gamma \), then (II') and (IV') are a fortiori satisfied, the latter on account of (54).

Example XI (see p. 128): The Geodesies.

Here
\[F_1 = \frac{EG - F^2}{\left(1 + E'w'^2 + 2F'u'v' + Gv'^2\right)^{1/2}}. \]

Hence under the assumptions made on p. 128 concerning the nature of the portion of the surface to which the geodesics are restricted, Condition (II') is always satisfied.

c) **Existence of a minimum “im Kleinem”:** We add here an important theorem which has been used, without proof, by several authors in various investigations of the Calculus of Variations, viz., the theorem that under certain conditions two points can always be joined by a minimizing extremal, provided only that the two points are sufficiently near to each other. An exact formulation and a proof of this theorem have first been given by Bliss. His results are as follows:

We suppose that in addition to our assumptions concerning the function \(F \) (see §24, b)) the condition
\[F_1(x, y, \cos \gamma, \sin \gamma) > 0 \quad (58) \]

\[^1 \text{Weierstrass (Lectures, 1879) in his extension of the sufficiency proof to curves without a tangent, see §31: Hilbert in his existence proof (see the references given in chap. vii); Osgood in his proof of the identity of Weierstrass's and Hilbert's extension of the meaning of the definite integral } J \text{ to curves without a tangent (Transactions of the American Mathematical Society, Vol. II (1901), p. 295).} \]

\[^2 \text{Transactions of the American Mathematical Society, Vol. V (1904), p. 113. His proof is based upon an extension of a theorem of Picard's concerning the existence of an integral of a differential equation of the second order, taking for two given values of the independent variable two arbitrarily prescribed values (Traité d'Analyse, Vol. III, p. 94).} \]
is fulfilled for every point \((x, y)\) in a finite closed region \(\mathfrak{K}_0\) contained in the interior of \(\mathfrak{K}\), and for every value of \(\gamma\).

Since \(F_1(x, y, \cos \gamma, \sin \gamma)\) is continuous at every point \((x, y)\) of \(\mathfrak{K}\) and for every value of \(\gamma\), a finite closed region, \(\mathfrak{K}_1\), contained in \(\mathfrak{K}\) and containing \(\mathfrak{K}_0\) in its interior, can be determined such that the inequality (58) still holds for every point \((x, y)\) of \(\mathfrak{K}_1\), and for every value of \(\gamma\).

Under these circumstances, if a positive quantity \(\varepsilon\) be assigned arbitrarily, a second positive quantity \(\rho_1\) can be determined such that from every point \(P_1(x_1, y_1)\) of \(\mathfrak{K}_0\) to every point \(P_2(x_2, y_2)\) in the circle \((P_1, \rho)\), where \(0 < \rho \leq \rho_1\), an extremal of class \(C'\) can be drawn which lies entirely in the circle \((P_1, \rho)\), and which has the property that at every one of its points the slope with respect to the direction \(P_1P_2\) is numerically less than \(\varepsilon\). Moreover the circle \((P_1, \rho)\) lies entirely in the region \(\mathfrak{K}_1\).

This extremal is at the same time the only extremal of class \(C'\) which can be drawn from \(P_1\) to \(P_2\) and which lies entirely in the circle \((P_1, \rho)\).

Let this extremal be represented by

\[
\begin{align*}
x &= \Phi(t; x_1, y_1; x_2, y_2), \\
y &= \Psi(t; x_1, y_1; x_2, y_2),
\end{align*}
\]

Then there exists a positive quantity \(l\), independent of \(x_1, y_1, x_2, y_2\), such that the functions \(\Phi, \Psi, \Phi_t, \Psi_t\) are continuous and have continuous first partial derivatives with respect to \(t, x_1, y_1, x_2, y_2\) throughout the domain

\[
\left| t \right| \leq l; (x_1, y_1) \text{ in } \mathfrak{K}_0; 0 < 1 \left((x_2 - x_1)^2 + (y_2 - y_1)^2 \right) \leq \rho_1.
\]

Finally also the value \(t = t_2\) which corresponds to the point \(P_2\) is a continuous function with continuous first partial derivatives of \(x_1, y_1, x_2, y_2\) for all positions of the two points \(P_1, P_2\) here considered.

For the parameter \(t\) of a point \(P\) of the extremal we may choose the projection of the vector \(P_1P\) upon the vector \(P_1P_2\).

This unique extremal \(P_1P_2\) furnishes for the integral \(J\) a smaller value than any other ordinary curve \(\mathfrak{C}\) which can be drawn from \(P_1\) to \(P_2\) and which lies entirely in the circle \((P_1, \rho)\).

If in addition to the inequality (IIb') the further condition

\[
F(x, y, \cos \gamma, \sin \gamma) > 0
\]
is fulfilled for every point \((x, y)\) of the region \(S\), and for every value
of \(\gamma\), and if both points \(P_1\) and \(P_2\) lie in \(S\), then the unique
extremal \(P_1P_2\) furnishes for the integral \(J\) even a smaller value
than any ordinary curve, different from the extremal \(P_1P_2\), which
can be drawn from \(P_1\) to \(P_2\) and which lies entirely in \(S\), provided
that \(|P_1P_2| \leq \rho_0\), where \(\rho_0\) is a certain positive quantity less than \(\rho\)
and independent of the position of \(P_1\) and \(P_2\).

§29. BOUNDARY CONDITIONS\(^1\)

\(a)\) Condition along a segment of the boundary: If the
minimizing curve \(0231\) has a segment \(23\) in common with
the boundary of the region \(S\) to which the admissible
curves are confined (see Fig. 7), we obtain the condition
which must hold along the boundary
as follows:

In order to fix the ideas, we sup-
pose that as we go along the bound-
dary \(\tilde{C}\) from \(2\) to \(3\), \(i. e.,\) in the
positive direction of the minimizing
curve, the region \(S\) lies to our left.
Let the curve \(\tilde{C}\) be represented by
\[
\tilde{x} = \tilde{\phi}(s), \quad \tilde{y} = \tilde{\psi}(s),
\]
\(s\) denoting the arc, and suppose that the first and second
derivatives of \(\tilde{\phi}(s)\) and \(\tilde{\psi}(s)\) are continuous along \(23\).

Then if we construct at a point \((\tilde{x}, \tilde{y})\) of \(23\) a vector of
length \(u\), normal to \(23\) and directed toward the interior of
\(S\), the co-ordinates of its end-points are

\[
\begin{align*}
x &= \tilde{x} + \xi, \\
y &= \tilde{y} + \eta,
\end{align*}
\]
where

\[
\begin{align*}
\xi &= -\frac{u\tilde{y}'}{\sqrt{\tilde{x}''^2 + \tilde{y}''^2}}, \\
\eta &= \frac{u\tilde{x}'}{\sqrt{\tilde{x}''^2 + \tilde{y}''^2}}.
\end{align*}
\]

Hence if we substitute for \(u\) a function of \(s\) of the form

\[u = \varepsilon \rho,\]

\(^1\) Due to Weierstrass, Lectures, 1879; compare §10 and Kneser, Lehrbuch, §44.
where ϵ is a positive constant and ρ a function of s of class D' which is $\equiv 0$ in (s_2,s_3) and vanishes at s_2 and s_3, the preceding formulae represent for sufficiently small values of ϵ a curve which remains in the region \mathbb{R} and which is therefore an admissible variation of the arc 23.

For this variation we obtain, if we apply (15a), for ΔJ the expression

$$\Delta J = \epsilon \left[- \int_{s_2}^{s_3} T \rho \sqrt{\dot{x}'^2 + \dot{y}'^2} \, ds + (\epsilon) \right],$$

from which we infer, by the method of \S5, that in case of a minimum we must have

$$\tilde{T} \equiv 0 \quad \text{along 23},$$

where \tilde{T} is the expression (19) in which x, y are replaced by \tilde{x}, \tilde{y}.

If F_1 is positive not only along the arcs 02 and 31 but also along 23, the preceding condition admits of a simple geometrical interpretation: for, if we introduce in the expression for \tilde{T} the curvature $1/\tilde{r}$ of \tilde{C} at a point P, and denote by $1/r$ the curvature at the same point P of the extremal which passes through P and is tangent to \tilde{C} at P, then (60) may be written, according to equation (Ia) of p. 123, footnote 1,

$$\frac{1}{\tilde{r}} \equiv \frac{1}{\tilde{r}}.$$

Hence if $\tilde{r} > 0$, i. e., if the vector from the point P to the center of curvature \tilde{M} of \tilde{C} lies to the left of the positive tangent to \tilde{C} at P, also r must be positive and the center of curvature M of the extremal must lie between P and \tilde{M} or coincide with \tilde{M}.

If, on the contrary, $\tilde{r} < 0$, i. e., if the vector $P\tilde{M}$ lies to the right of the positive tangent, M must lie either on the

\footnote{This is an extension of the results given for the special case $F = \sqrt{x^2 + y^2}$ by Kneser, Lehrbuch, p. 178.}
opposite side of the tangent to \tilde{M} (when $r > 0$), or else on the same side as, but beyond, \tilde{M} (or coincide with \tilde{M}).

If, as we go along the boundary from 2 to 3, the region \mathcal{E} lies to the right, the condition becomes:

$$\tilde{T} \equiv 0 \quad \text{along } 23 \quad (60a)$$

or

$$\frac{1}{r} \equiv \frac{1}{\tilde{r}}. \quad (61a)$$

b) Conditions at the points of transition: An additional condition must hold at the point 2 where the minimizing curve meets the boundary, and likewise at the point 3 where it leaves the boundary. To obtain the first, let h be a positive infinitesimal and let 4 be the point of \tilde{C} whose parameter is $s = s_2 + h$; join the points 0 and 4 by a curve \mathcal{C} of the type defined in §28, $a)$, and consider the variation 0131 of the minimizing curve. For this variation we obtain, according to (49) and (53):

$$\Delta J = J_{04} - (J_{02} + J_{24}) = -h \left[\mathbf{E} (x_2, y_2; p_2, q_2; \tilde{p}_2, \tilde{q}_2) + (h) \right],$$

where p_2, q_2 and \tilde{p}_2, \tilde{q}_2 are the direction-cosines of the positive tangents at 2 to the curves 02 and 23 respectively.

Similarly, if we join the point 5 ($s = s_2 - h$) of \tilde{C} with the point 0 by a curve \mathcal{C}, we get, according to (49a),

$$\Delta J = J_{05} + J_{52} - J_{03} = +h \left[\mathbf{E} (x_2, y_2; p_2, q_2; \tilde{p}_2, \tilde{q}_2) + (h) \right],$$

whence we infer in the usual manner that at the point 2 the following condition must be satisfied:

$$\mathbf{E} (x_2, y_2; p_2, q_2; \tilde{p}_2, \tilde{q}_2) = 0. \quad (62)$$

Applying similar reasoning to the point 3 and making use of (50) and (50a), we reach the result that at the point 3 the analogous condition

$$\mathbf{E} (x_3, y_3; p_3, q_3; \tilde{p}_3, \tilde{q}_3) = 0 \quad (63)$$

must be satisfied, where p_3, q_3 and \tilde{p}_3, \tilde{q}_3 are the direction-cosines of the positive tangents at 3 to 31 and 23 respectively.
The two conditions (62) and (63), together with the condition that the minimizing curve must pass through the given points 0 and 1, determine in general the constants of integration of the two extremals 02 and 31.

If the problem is a "regular" one, i. e., if the condition
\[F_i(x, y, \cos \gamma, \sin \gamma) = 0 \]
is satisfied at every point \((x, y)\) of the region \(\mathbb{R}\) and for every value of \(\gamma\), it follows from (54) that (62) and (63) can only be satisfied if
\[\tilde{p}_2 = p_2, \tilde{q}_2 = q_2; \tilde{p}_3 = p_3, \tilde{q}_3 = q_3. \]

This means geometrically that the arcs 02 and 31 must touch the boundary at the points 2 and 3 in such a manner that their positive tangents coincide with the positive tangents of the boundary.

c) Case where the minimizing curve has only one point in common with the boundary: Suppose that the minimizing curve has only the point 2 in common with the boundary \(\tilde{C}\). Then the arcs 02 and 21 must be extremals. To find the point 2, let 3 be the point of \(\tilde{C}\) whose parameter is \(s = s_2 + h\), and consider a variation 031 of the curve 021 (see Fig. 24).

For this variation we obtain
\[\Delta J = \tilde{J}_{03} + \tilde{J}_{31} - (J_{02} + J_{21}) \]
\[= \left[\tilde{J}_{01} - (J_{02} + J_{23}) \right] + \left[J_{24} + \tilde{J}_{34} - J_{21} \right], \]
which, according to (49) and (49a), is equal to:
\[\Delta J = h \left[E(x_2, y_2; \tilde{p}_2, \tilde{q}_2; \tilde{p}_3, \tilde{q}_3) - E(x_2, y_2; \tilde{p}_2, \tilde{q}_2; \tilde{p}_2, \tilde{q}_2) + (h) \right], \]

where \(\tilde{p}_2, \tilde{q}_2; \tilde{p}_2, \tilde{q}_2; \tilde{p}_2, \tilde{q}_2\) are the direction-cosines of the positive tangents to the arcs 02, 21, 23 respectively at the point 2.
Similarly, if \(4 \) be the point of \(\mathcal{C} \) whose parameter is \(s = s_2 - h \), and we consider a variation \(041 \) of the curve \(021 \), we obtain
\[
\Delta J = [\mathcal{J}_{41} - \mathcal{J}_{42} + \mathcal{J}_{42}] + [\mathcal{J}_{41} - (\mathcal{J}_{42} + \mathcal{J}_{31})]
\]
\[
= -h \left[\mathcal{E} (x_2, y_2; \tilde{P}_2, \tilde{Q}_2) - \mathcal{E} (x_2, y_2; \tilde{P}_2, \tilde{Q}_2; \tilde{P}_2, \tilde{Q}_2) + (h) \right].
\]
Hence we infer that at the point \(2 \) the condition
\[
\mathcal{E} (x_2, y_2; \tilde{P}_2, \tilde{Q}_2; \tilde{P}_2, \tilde{Q}_2) = \mathcal{E} (x_2, y_2; \tilde{P}_2, \tilde{Q}_2) \quad (64)
\]
must be satisfied.

4) Example VI (see p. 84):
\[
F = 1 - x'^2 + y'^2.
\]

Suppose the region \(\mathcal{R} \) to be the whole plane with the exception of the interior of a simply closed curve of class \(C^2 \), and suppose that the straight line joining 0 and 1 passes through the excluded region.

The minimizing curve must be composed of segments of straight lines and segments of the boundary, the latter turning their convex side outward since in this case \(1/r = 0 \) and therefore
\[
\frac{1}{r} \equiv 0 \quad \text{or} \quad \equiv 0,
\]
according as \(23 \) is described positively or negatively with respect to \(\mathcal{R} \). The lines 02 and 31 must touch the arc 23 positively at 2 and 3 since \(F_1(x, y, \cos \gamma, \sin \gamma) = 1 \).

Again,
\[
\mathcal{E} (x, y; \cos \theta, \sin \theta; \cos \tilde{\theta}, \sin \tilde{\theta}) = 1 - \cos (\tilde{\theta} - \theta).
\]
Hence if the minimizing curve is to have one point 2 in common with the boundary, the condition
\[
\cos (\tilde{\theta}_2 - \tilde{\theta}_2) = \cos (\tilde{\theta}_2 - \theta_2)
\]
must be satisfied at 2. This means that the lines 02 and 21 must make equal angles with the tangent to the boundary at 2.

1 Compare Kneser, Lehrbuch, p. 178.
c) Example I (see p. 1):

\[f' = y \sqrt{1 + x'^2 + y'^2} ; \]

the region \(\mathcal{R} \) is the upper half-plane:

\[y \leq 0 \]

The extremals are here:

\[a) \text{ The catenaries} \]

\[x = t, \quad y = a \cosh \frac{t - \beta}{a} ; \]

\[b) \text{ The straight lines} \]

\[x = a, \quad y = t . \]

Since the catenaries never meet the \(x \)-axis, the only possible solution containing a segment of the boundary consists of the ordinates of the two given points:

\[x = x_0 \quad \text{and} \quad x = x_1 , \]

together with the segment 23 of the \(x \)-axis between them.

Since along the \(x \)-axis

\[T = -1 , \]

condition (60) is satisfied along 23; and since

\[E(x, y; \cos \theta, \sin \theta; \cos \bar{\theta}, \sin \bar{\theta}) = (1 - \cos (\bar{\theta} - \theta)) y , \]

conditions (62) and (63) are satisfied at 2 and 3.

§30. The case of variable end-points

The methods explained in §23, slightly modified, can be applied to the case when all curves considered are expressed in parameter-representation. In one respect the treatment of the problem in parameter-representation is even considerably simpler, viz.: the variation of the limits of the integral \(J \) can be completely avoided. For let

\[C_0 : \quad x = \phi(t) , \quad y = \psi(t) , \quad t_0 \equiv t \equiv t_1 , \quad (65) \]

be the minimizing curve, and

\[C : \quad \bar{x} = \phi(\tau) , \quad \bar{y} = \bar{\psi}(\tau) , \quad \tau_0 \equiv \tau \equiv \tau_1 , \quad (66) \]
a neighboring curve. If we then apply to \(\mathcal{C} \) the "parameter-transformation" (see §24, \(\alpha \))

\[
t = t_0 + \frac{(t_1 - t_0) (\tau - \tau_0)}{\tau_1 - \tau_0}
\]

we obtain for \(\mathcal{C} \) a representation in terms of the parameter \(t \) for which the end-values are \(t_0 \) and \(t_1 \), the same as for \(\mathcal{C}_0 \).

We consider briefly the case where the point 1 is fixed and the point 0 movable on a given curve of class \(C'' \):

\[
\tilde{\mathcal{C}}: \quad \tilde{x} = \tilde{\phi}(a), \quad \tilde{y} = \tilde{\psi}(a).
\]
(67)

The minimizing curve (65) must again be an extremal; it begins at a point 0 of the curve \(\tilde{\mathcal{C}} \) whose parameter on \(\tilde{\mathcal{C}} \) we denote by \(a_0 \). Let \(2: (a = a_0 + \epsilon) \) be a point of \(\tilde{\mathcal{C}} \) in the vicinity of 0, \(x_0 + \xi_0, y_0 + \eta_0 \) its co-ordinates; then

\[
\xi_0 = \epsilon \left(\tilde{\phi}'(a_0) + (\epsilon) \right), \quad \eta_0 = \epsilon \left(\tilde{\psi}'(a_0) + (\epsilon) \right).
\]

An admissible variation \(\tilde{\mathcal{C}} \) of sufficient generality which passes through 2 and 1, can easily be constructed analytically in the form

\[
\tilde{\mathcal{C}}: \quad \tilde{x} = x + \xi, \quad \tilde{y} = y + \eta,
\]
where

\[
\xi = \xi_0 u, \quad \eta = \eta_0 v,
\]

\(u, v \) being two arbitrary functions of \(t \) of class \(C' \) which vanish for \(t = t_1 \) and are equal to 1 for \(t = t_0 \).

For this variation of the curve \(\mathcal{C}_0 \) we obtain, according to (15b),

\[
\Delta J = \left[\xi F'_{x'} + \eta F'_{y'} \right]_{t_0}^{t_1} + \int_{t_0}^{t_1} (y' \xi - x' \eta) T \, dt + \epsilon(\epsilon).
\]

Substituting the values of \(\xi, \eta \) at \(t_0 \) and \(t_1 \) and remembering that \(T = 0 \) along the extremal \(\mathcal{C}_0 \), we get\(^1\)

\[
\Delta J = \epsilon \left[- \left. (x' F'_{x'} + y' F'_{y'}) \right|_{t_0}^{t_1} + (\epsilon) \right],
\]
where

\(^1\text{Weierstrass, Lectures, 1882.}\)
§30] Weierstrass’s Theory 155

\[\bar{x}' = \frac{d\bar{x}}{da}, \quad \bar{y}' = \frac{d\bar{y}}{da}. \]

We obtain, therefore, the condition of transversality in the form

\[\bar{x}' F_x(x, y, x', y') + \bar{y}' F_y(x, y, x', y') = 0 \]
(68)

where \(x', y' \) refer to the extremal \(\mathcal{C}_0, \bar{x}', \bar{y}' \) to the given curve \(\bar{C} \).

Example XI (see p. 128): The Geodesics. The condition of transversality is

\[\bar{u}' (Eu' + Fv') + \bar{v}' (Fu' + Gv') = 0 ; \]
(69)

its geometrical meaning\(^1\) is that the geodesic must be orthogonal to the given curve.

The focal point is determined by the following formulae:\(^2\)

Let \(A_0 \) and \(B_0 \) denote the following two constants

\[A_0 = \left. \frac{\bar{x}' F_x + \bar{y}' F_y - L \bar{x}'^2 + 2M \bar{x}' \bar{y}' + N \bar{y}'^2}{\bar{x}'^2 + \bar{y}'^2} \right|, \]
(70)
\[B_0 = \left. \frac{(x' \bar{y}' - y' \bar{x}')^2 F_1}{\bar{x}'^2 + \bar{y}'^2} \right|, \]

where the arguments of \(F_x, F_y, F_1 \) are \(x_0, y_0, x'_0, y'_0 \) and \(L, M, N \) are defined by (35). \(B_0 \) is different from zero if we suppose, as in §23, that \(\mathcal{C}_0 \) and \(\bar{C} \) are not tangent to each other at the point 0. Let further

\[H(t_0, t) = A_0 \Theta(t_0, t) + B_0 \frac{\partial \Theta(t_0, t)}{\partial t_0}, \]
(71)

the function \(\Theta \) being defined by (42). Then the parameter \(t_0' \) of the focal point is given by the equation

\[H(t_0, t) = 0. \]
(72)

If

\[x = \phi(t, a), \quad y = \psi(t, a) \]

\(^1\)Compare Bianchi-(Lukat), Differentialgeometric, p. 65.
is the extremal which passes through the point \(a \) of the curve \(\mathcal{C} \) and is cut transversely by \(\mathcal{C} \) at that point, and if \(\Delta(t, a) \) denotes the Jacobian of the two functions \(\phi, \psi \) with respect to \(t, a \), then

\[
\Delta(t, a) = \text{CH}(t_0, t) \tag{73}
\]

which proves the geometrical meaning of the focal point.

The question of sufficient conditions will be discussed in detail in connection with Kneser's theory in chap. v.

§31. Weierstrass's Extension of the Meaning of the Definite Integral

\[
\int_{t_0}^{t_1} F(x, y, x', y') \, dt.
\]

We have confined ourselves in all the preceding investigations to "ordinary" curves. This limitation was indeed necessary for most of our proofs, but it is not implied in the nature of the problem.

The most general class of curves for which the problem has a meaning would be the totality of curves for which the integral

\[
J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt
\]

is finite and determinate.

In many problems of a geometrical origin, however, a still further generalization is desirable.

a) Example of the length of a curve: Thus, for instance, the problem to determine the curve of shortest length between two given points \(A \) and \(B \), is not exactly equivalent to the problem to minimize the integral

\[
J = \int_{t_0}^{t_1} \sqrt{x'^2 + y'^2} \, dt,
\]

because the length of a curve cannot in all cases be expressed by this integral.

The length of a continuous curve

1See Bliss, loc. cit., p. 140.
2Compare §24, a) and c).
Weierstrass’s Theory

is defined\(^1\) as follows:

Consider any partition \(\Pi\) of the interval \((t_0, t_1)\) into \(n\) subintervals by points of division \(\tau_1, \tau_2, \cdots, \tau_{n-1}\), where

\[
l_0 < \tau_1 < \tau_2 \cdots < \tau_{n-1} < t_1,
\]

and denote by \(A, P_1, P_2, \cdots, P_{n-1}, B\) the corresponding points of \(\mathcal{L}\), by \(X_0, Y_0; x_1, y_1; x_2, y_2; \cdots; x_{n-1}, y_{n-1}; X_1, Y_1\) their co-ordinates. Then the length of the polygon \(\mathcal{P}_\Pi\) inscribed in the curve \(\mathcal{C}\) whose successive vertices are these points, is

\[
S_\Pi = \sum_{\nu=0}^{n-1} \sqrt{\Delta x_\nu^2 + \Delta y_\nu^2},
\]

where \(^2\)

\[
\Delta x_\nu = x_{\nu+1} - x_\nu, \quad \Delta y_\nu = y_{\nu+1} - y_\nu.
\]

If \(S_\Pi\) approaches a determinate finite limit \(^3\) \(J\) as all the differences \((\tau_{\nu+1} - \tau_\nu)\) approach zero:

\[
J = \lim_{\Delta \tau \to 0} S_\Pi,
\]

the curve \(\mathcal{L}\) is said to have a finite length whose value is \(J\).

If the first derivatives \(\phi'(t), \psi'(t)\) exist and are continuous in \((t_0, t_1)\), the above limit always exists and can be expressed by the definite integral\(^4\)

\[
\int_{t_0}^{t_1} \sqrt{x'^2 + y'^2} \, dt.
\]

b) Extension of the meaning of the general integral: In an entirely analogous manner Weierstrass\(^5\) has generalized the meaning of the definite integral

\(^1\)See Jordan, \textit{Cours d’Analyse}, Vol. I, Nos. 105-111. This is the definition which is most convenient for our present purpose; compare also §44, a), end.

\(^2\)With the understanding that \(\tau_0 = t_0, x_0 = X_0, y_0 = Y_0\) and \(\tau_\nu = t_\nu, x_\nu = X_\nu, y_\nu = Y_\nu\).

\(^3\)That is, corresponding to every positive \(\varepsilon\), another positive quantity \(\delta_\varepsilon\) can be assigned such that

\[
|J - S_\Pi| < \varepsilon
\]

for all partitions \(\Pi\) in which all the differences \((\tau_{\nu+1} - \tau_\nu)\) are less than \(\delta_\varepsilon\).

\(^5\)Lectures, 1879; compare also Osgood, \textit{Transactions of the American Mathematical Society}, Vol. II (1901), pp. 255 and 293.
Calculus of Variations [Chap. IV]

\[J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt , \]
taken along a continuous curve \(\mathcal{C} \) (defined by (74)) which lies entirely in the interior of the region \(\mathbb{R} \) of §24, b).

Consider as before a partition \(\Pi \) of the interval \((t_0, t_1)\) and denote by \(W_{\Pi} \) the sum

\[W_{\Pi} = \sum_{\nu=0}^{n-1} F(x_{\nu}, y_{\nu}, \Delta x_{\nu}, \Delta y_{\nu}) . \] (75)

Then, if the curve \(\mathcal{C} \) is of class\(^1\) \(C^r \), this sum \(W_{\Pi} \) approaches a determinate finite limit as all the differences \((\tau_{\nu+1} - \tau_\nu) \) approach zero, viz., the definite integral\(^2\) \(J(AB) \):

\[L W_{\Pi} = \int_{t_0}^{t_1} F(x, y, x', y') \, dt . \] (76)

This remains true when \(\mathcal{C} \) has a finite number of corners.

We now agree to define the definite integral

\[\int_{t_0}^{t_1} F(x, y, x', y') \, dt . \]

\(^1\)This implies that \(\phi^2(t) + \phi^2(t) \neq 0 \) in \((t_0, t_1)\); compare §24, a).

\(^2\)For the definite integral may be written

\[J = \sum_{\nu=0}^{n-1} \int_{\tau_\nu}^{\tau_{\nu+1}} F(x, y, x', y') \, dt = \sum_{\nu=0}^{n-1} F(\phi(\tau_{\nu}), \psi(\tau_{\nu}), \phi'(\tau_{\nu}), \psi'(\tau_{\nu}))(\tau_{\nu+1} - \tau_\nu) , \]

where \(\tau_\nu \) is some intermediate value between \(\tau_\nu \) and \(\tau_{\nu+1} \). On the other hand

\[\Delta x_{\nu} = \phi'(\tau_{\nu}')(\tau_{\nu+1} - \tau_\nu) , \quad \Delta y_{\nu} = \psi'(\tau_{\nu}')(\tau_{\nu+1} - \tau_\nu) , \]

where \(\tau_{\nu}' \) and \(\tau_{\nu}'' \) are again intermediate values between \(\tau_\nu \) and \(\tau_{\nu+1} \). Hence we have, on account of the homogeneity of \(F \),

\[W_{\Pi} = \sum_{\nu=0}^{n-1} F(\phi(\tau_{\nu}), \psi(\tau_{\nu}), \phi'(\tau_{\nu}'), \psi'(\tau_{\nu}'))(\tau_{\nu+1} - \tau_\nu) . \]

From the theorem on uniform continuity applied to the function \(F(x, y, x', y') \) on the one hand, and to the functions \(\phi(t), \psi(t) \) and their derivatives on the other hand, it follows that corresponding to every positive quantity \(\varepsilon \) another positive quantity \(\delta_\varepsilon \) can be determined such that

\[| F(\phi(\tau_{\nu}), \psi(\tau_{\nu}), \phi'(\tau_{\nu}), \psi'(\tau_{\nu}')) - F(\phi(\tau_{\nu}), \psi(\tau_{\nu}), \phi'(\tau_{\nu}'), \psi'(\tau_{\nu}')) | < \varepsilon \]

for \(\nu = 0, 1, 2, \ldots, n-1 \), provided that all the differences \((\tau_{\nu+1} - \tau_\nu) \) are less than \(\delta_\varepsilon \). Hence

\[| W_{\Pi} - J | < \varepsilon (t_1 - t_0) , \]

which proves our statement.
§31] Weierstrass’s Theory

159

taken along the curve \(\mathcal{C} \), as the limit of \(W_H \) in all cases in which this limit exists and is finite; and we denote its value by \(J^*(A B) \):

\[
J^*(A B) = \lim_{\Delta r \to 0} L W_H .
\] (77)

This is a natural extension of the definition of the definite integral since it coincides with the ordinary definition for all "ordinary" curves.

c) First modification of Weierstrass’s definition: Various modifications of this definition will be of importance in the sequel:

Since the curve \(\mathcal{C} \) is supposed to lie in the interior of the region \(\mathbb{R} \), the rectilinear polygon whose vertices are the points \(A, P_1, P_2, \ldots, P_{n-1}, B \) will likewise lie in the interior of \(\mathbb{R} \), provided that the differences \((\tau_{n+1} - \tau_{n}) \) have been taken sufficiently small. Let \(V_H \) denote the value of the integral \(J \) taken along this polygon from \(A \) to \(B \).

If, then, the curve \(\mathcal{C} \) is rectifiable, and if one of the two sums \(V_H \) and \(W_H \) approaches\(^1\) for \(\Delta r = 0 \) a determinate finite limit, the other approaches the same limit,\(^1\) so that we may also define

\[
J^*(A B) = \lim_{\Delta r \to 0} V_H .
\] (78)

d) Second modification of Weierstrass’s definition: If the curve \(\mathcal{C} \) is rectifiable and lies in a finite closed region \(\mathbb{R} \), (contained in the interior of the region \(\mathbb{R} \)) in which the condition

\[
F'(x, y, \cos \gamma, \sin \gamma) > 0
\] (58)

is fulfilled for every value of \(\gamma \), then the preceding extension of the meaning of the definite integral \(J \) may be modified as follows:

Let a positive quantity \(\varepsilon \) be chosen arbitrarily. Then determine for the region \(\mathbb{R} \), the quantity \(\rho \) defined in §28, e) and choose a positive quantity \(\rho \geq \rho \) arbitrarily. Further select, according to

\(^1\)See Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p. 233. If \(l_{r+1} \) and \(\gamma_{r+1} \) denote the length and the amplitude of the vector \(P_r P_{r+1} \), the difference \(V_H - W_H \) may be written in the form

\[
V_H - W_H = \sum_{r=0}^{n-1} \int_{0}^{l_{r+1}} \left[F(x_{r+1}, y_{r+1}, \cos \gamma_{r+1}, \sin \gamma_{r+1}) - F(x, y, \cos \gamma_{r+1}, \sin \gamma_{r+1}) \right] ds,
\]

where \(x_{r+1} = x_{r} + s \cos \gamma_{r+1}, \quad y_{r+1} = y_{r} + s \sin \gamma_{r+1} \).

The above statement follows, then, from the theorem on uniform continuity applied to the function \(F(x, y, x', y') \).
the theorem on uniform continuity, another positive quantity δ so small that
\[
|\phi(t') - \phi(t'')| < \rho/\sqrt{2}, \quad |\psi(t') - \psi(t'')| < \rho/\sqrt{2}
\]
for every two values t', t'' of the interval (t_0, t_1) for which
\[
|t'' - t'| < \delta.
\]

Finally choose the partition Π so that
\[
\tau_{\nu+1} - \tau_{\nu} < \delta
\]
for $\nu = 0, 1, 2, \ldots, n - 1$.

Then the distance $|P_{\nu}P_{\nu+1}|$ is less than ρ, and therefore we can, according to §28, e), inscribe in the curve Σ a unique polygon of minimizing extremals with the points $A, P_1, P_2, \ldots, P_{n-1}, B$ for vertices, i.e., we can draw from P_{ν} to $P_{\nu+1}$ a unique extremal of class C' which lies entirely in the circle (P_{ν}, ρ) and which furnishes for the integral J a smaller value than any other ordinary curve which can be drawn from P_{ν} to $P_{\nu+1}$ and which lies entirely in the circle (P_{ν}, ρ). Moreover, at every point of $\Xi_{\nu+1}$ the slope with respect to the direction $P_{\nu}P_{\nu+1}$ is less than c.

We denote by U_Π the value of the integral J taken along this polygon of extremals, i.e.,
\[
U_\Pi = \sum_{\nu=0}^{n-1} J_{\nu+1}(P_{\nu}P_{\nu+1}). \quad (79)
\]

Then if we pass, as before, to the limit $L \delta t = 0$, and if one of the two sums U_Π and W_Π approaches a finite and determinate limit, the other approaches the same limit, so that we may also define

1 First remarked by Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p. 295. The statement can be proved as follows:

Let the extremal $e_{\nu+1}$ be represented by
\[
e_{\nu+1}: \quad x = \phi_{\nu+1}(t), \quad y = \psi_{\nu+1}(t), \quad 0 \leq t \leq \tau_{\nu+1},
\]
where, as in §28, e), the parameter t of a point P of $e_{\nu+1}$ is the projection P_Q of the vector $P_{\nu}P$ upon the vector $P_{\nu}P_{\nu+1}$, and $\tau_{\nu+1}$ is again the distance $|P_{\nu}P_{\nu+1}|$. If we denote by $\gamma_{\nu+1}$, the amplitude of the vector $P_{\nu}P_{\nu+1}$ and by u the perpendicular QP with the sign $+$ or $-$ according as the point P lies to the left or to the right of the vector $P_{\nu}P_{\nu+1}$, then we have
\[
\phi_{\nu+1}(t) = x_{\nu} + t \cos \gamma_{\nu+1} - u \sin \gamma_{\nu+1}, \quad \phi_{\nu+1}(t) = y_{\nu} + t \sin \gamma_{\nu+1} + u \cos \gamma_{\nu+1},
\]
\[
\phi_{\nu+1}(t) = \cos \gamma_{\nu+1} - u \sin \gamma_{\nu+1}, \quad \phi_{\nu+1}(t) = \sin \gamma_{\nu+1} + u \cos \gamma_{\nu+1}.
\]
Hence if we write
\[
\phi_{\nu+1}(t) = x_{\nu} + \xi_{\nu}, \quad \psi_{\nu+1}(t) = y_{\nu} + \eta_{\nu},
\]
\[
\phi_{\nu+1}(t) = \cos \gamma_{\nu+1} + \xi_{\nu}, \quad \psi_{\nu+1}(t) = \sin \gamma_{\nu+1} + \theta_{\nu},
\]
Weierstrass’s Theory

\[J^*_{\mathcal{E}} (A B) = \frac{L}{\Delta t = 0} U_{\Pi}. \]

We shall call the totality of rectifiable curves for which the sum \(W_{\Pi} \) approaches a determinate finite limit, “the class \((K)\).”

\textit{c) Extension of the sufficiency proof to curves of class \((K)\):}

After these preliminaries, let \(\mathcal{C}_0 \) denote an extremal of class \(C^* \) drawn from \(A \) to \(B \) and lying wholly in the interior of the region \(\mathfrak{R} \). We suppose that \(\mathcal{C}_0 \) does not contain the conjugate \(A' \) to the point \(A \), and that for every point \((x, y)\) of \(\mathcal{C}_0 \) and for every value of \(\gamma \) the condition

we have for every \(t \) in the interval \((0, l_{r+1})\)

\[|\xi_t| \equiv \rho, \quad |\eta_t| \equiv \rho, \]

since \(\varepsilon_{r+1} \) lies in the circle \((P_r, \rho)\); and

\[|\xi_t| < \epsilon, \quad |\eta_t| < \epsilon, \]

since the slope \(u' \) of \(\varepsilon_{r+1} \) at the point \(P \) with respect to the direction \(P_rP_{r+1} \) is numerically less than \(\epsilon \).

Applying now to the integral \(J_{\varepsilon_{r+1}} \) the first mean-value theorem we obtain

\[J_{\varepsilon_{r+1}} (P_r P_{r+1}) = l_{r+1} F'(x_r + \xi_r, y_r + \eta_r, \cos \gamma_{r+1} + \xi_r, \sin \gamma_{r+1} + \eta_r), \]

where the argument of \(\xi_r, \eta_r, \xi_r, \eta_r \) is some value of \(t \) between 0 and \(l_{r+1} \).

On the other hand, we have on account of the homogeneity of \(F \),

\[F'(x_r, y_r, \Delta x_r, \Delta y_r) = l_{r+1} F'(x_r + \xi_r, y_r + \eta_r, \cos \gamma_{r+1}, \sin \gamma_{r+1}). \]

The extremal of \(\varepsilon_{r+1} \)—though it need not lie entirely in the region \(\mathfrak{R}_0 \)—certainly lies in the larger region \(\mathfrak{R}_1 \) defined in §28, \(\epsilon \).

Further, the function \(F'(x, y, x', y') \) is uniformly continuous in the domain:

\[(x, y) \in \mathfrak{R}_1, \quad 1 - a \equiv 1 - \frac{1}{1 + a}, \]

where \(a \) is any positive quantity less than 1.

Hence if a positive quantity \(\sigma \) be assigned arbitrarily, the quantities \(\epsilon, \rho \) and \(\delta \) can be chosen so small that

\[|F'(x_r + \xi_r, y_r + \eta_r, \cos \gamma_{r+1} + \xi_r, \sin \gamma_{r+1} + \eta_r)| < \sigma, \]

for \(r = 0, 1, \ldots, n-1 \), and therefore

\[-F'(x_r, y_r, \cos \gamma_{r+1}, \sin \gamma_{r+1})| < \sigma, \]

and therefore

\[|U_{\Pi} - W_{\Pi}| < \sigma l, \]

But if, as we suppose, the curve \(\varepsilon \) has a finite length \(l \), we have

\[\sum_{r=0}^{n-1} l_{r+1} \equiv l, \]

and therefore

\[|U_{\Pi} - W_{\Pi}| < \sigma l, \]

which proves the above statement.

\textit{1} Without multiple points.
is fulfilled.

Then we can construct, according to §28, (d) and §34, about the extremal C_0 a field S_k which lies in the interior of S; and if we take k sufficiently small the inequality (IIa') will be satisfied throughout the region S_k.

Now let L be any curve of class (K), not coinciding with C_0, beginning at A and ending at B, and lying entirely in the interior of S_k; let it be represented by (74). We propose to prove that

$$ J_{\bar{v}_0} < J_k^* , $$

(81)

J_k^* being defined as in (b).

Proof.\(^1\) We may apply to the curve L the results of (d), the field S_k taking the place of the region there denoted by S_0.

Accordingly we can choose a partition Π of the interval $(l_0 l_1)$, whose points of division P_v do not all lie on C_0, so that the distance

$$ P_v P_{v+1} < \rho/3 , \quad (v = 0, 1, \ldots, n - 1) , $$

and that at the same time the arc $P_v P_{v+1}$ of L lies entirely in the circle $(P_v, \rho/3)$, where ρ has the same signification as in (d), and is, moreover, chosen so small that the circle (P_v, ρ) lies entirely in the interior of S_k.

We may then, on the one hand, inscribe in L a polygon of minimizing extremals with the vertices A, P_1, P_2, \ldots, P_{v-1}, B. This polygon is an ordinary curve; it lies entirely in the interior of S_k, and it does not coincide with C_0. Hence we have, according to §28, (d),

$$ U_\Pi > J_{\bar{v}_0} , $$

say

$$ U_\Pi - J_{\bar{v}_0} = \rho > 0 . $$

(82)

On the other hand, let Π' be a partition derived from Π by subdivision of the intervals, and so chosen that

$$ |U_\Pi - J_k^*| < \rho , $$

(83)

which is always possible on account of (80). Let Q_1, Q_2, \ldots, Q_{m-1} be the points of division interpolated between the points P_v and

\(^1\)The outlines of this proof were given by Weierstrass in his Lectures, 1879. Another proof has been given by Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p. 292, by means of the theorem given in §35, (c).
P_{v+1} of the partition II. These points lie in the circle $(P_v, \rho/3)$ and therefore

$$|Q_i Q_{i+1}| \leq 2\rho/3, \quad (i = 0, 1, \ldots, m - 1; Q_0 = P_v, Q_m = P_{v+1}).$$

Hence the minimizing extremal from Q_i to Q_{i+1} lies in the circle $(Q_i, 2\rho/3)$ and therefore also in the circle (P_v, ρ). Hence it follows, according to (d), that the minimizing extremal from P_v to P_{v+1} furnishes for the integral J a smaller value than the polygon of minimizing extremals $P_v Q_1 Q_2 \cdots Q_{m-1} P_{v+1}$, or at most the same value.\(^1\) Therefore

$$U_{II} \leq U_{II} . \quad (84)$$

But from (82), (83) and (84) follows (81), since we may write

$$J_v^* - J_{v_0} = (J_v^* - U_{II^*}) + (U_{II} - U_{II}) + (U_{II} - J_{v_0}).$$

\(^1\)Viz., when the two curves are identical.
CHAPTER V

Kneser's Theory

§32. Gauss's Theorems on Geodesics

Kneser has given, in his "Lehrbuch der Variationsrechnung" a new theory of the extremum of the integral

\[J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt \]

essentially different from Weierstrass's theory and reaching farther in its results, inasmuch as it furnishes sufficient conditions also for the case when one end-point is movable on a given curve.

Kneser's theory is based upon an extension of certain well-known theorems on geodesics, of which we give—by way of introduction—a brief account in this section.

\(a) \) Suppose on a surface there is given a curve \(\mathcal{C}_0 \) whose points are determined by a parameter \(r \). At a point \(M(r) \) of \(\mathcal{C}_0 \) we construct the geodesic \(\mathcal{G} \) normal to \(\mathcal{C}_0 \) and lay off on \(\mathcal{G} \) an arc \(MP = u. \)

The position of the end-point \(P \) is uniquely determined by the two quantities \(u, v \).

\[\text{FIG. 29} \]

If we restrict ourselves to such a region \(\mathcal{S} \) of the surface that also conversely \(P \) determines uniquely the values of \(u \) and \(v \), these two quantities may be introduced as curvilinear co-ordinates on the surface ("geodesic parallel-co-ordinates"). According to a well-known theorem due to Gauss,\(^1\) the lines \(u = \text{const.} \) are orthogonal to the geodesics \(v = \text{const.} \)

\(^{1}\) I. e., the length of the arc is \(|u| \), its direction is determined by the sign of \(u \).

\(^{2}\) Gauss, *Disquisitiones generales circa superficies curvas*, art. 16.
b) Hence it follows that the square of the line element takes, for this special system of co-ordinates, the form

$$ds^2 = du^2 + dw^2 + dv^2.$$

We consider now a particular geodesic, \(\mathcal{C}_0 \), of the set \(v = \text{const.} \), say \(v = v_0 \), and on it two points 0: \((u_0, v_0)\) and 1: \((u_1, v_0)\), where \(u_0 < u_1 \).

We join the points 0 and 1 by an arbitrary curve

\[\mathcal{C}: \quad \bar{u} = u(\tau) \quad \bar{v} = v(\tau) \quad (\tau \equiv \tau \equiv \tau_1). \]

Then the length of the arc 01 of \(\mathcal{C} \) is given by the definite integral

$$J = \int_{\tau_0}^{\tau_1} \sqrt{\left(\frac{du}{d\tau}\right)^2 + m^2 \left(\frac{dv}{d\tau}\right)^2} d\tau.$$

On the other hand, the length of the arc 01 of the geodesic \(\mathcal{C}_0 \) is

$$J = u_1 - u_0.$$

This may be written

$$J = \int_{\tau_0}^{\tau_1} \frac{du}{d\tau} d\tau,$$

and therefore the total variation becomes

$$\Delta J \equiv J - J = \int_{\tau_0}^{\tau_1} \left(\sqrt{\left(\frac{du}{d\tau}\right)^2 + m^2 \left(\frac{dv}{d\tau}\right)^2} - \frac{du}{d\tau} \right) d\tau.$$

The integrand is never negative, and can be zero throughout the whole interval \((\tau_0, \tau_1)\) only when \(\mathcal{C} \) coincides with \(\mathcal{C}_0 \). Hence it follows that among all curves which can be drawn in \(\mathfrak{S} \) between the two points 0 and 1, \(the \ geodesic \ \mathcal{C}_0 \ has \ the \ shortest \ length. \)

It should be noticed that the assumption that the geodesic \(\mathcal{C}_0 \) belongs to a set of geodesics satisfying the condi-

1 Gauss, loc. cit., art. 19.
3 The conclusion can easily be extended to the case where the point 0, instead of being fixed, is movable on a given curve orthogonal to the set of geodesics.
tions imposed upon the region \mathcal{S}, is equivalent to Jacobi's condition.

c) The necessity of Jacobi's condition follows from a well-known theorem on the envelope of a set of geodesics: If the set of geodesics through the point 0 has an envelope \mathcal{N}, and 02 and 03 are two geodesics of the set touching the envelope at the points 2 and 3, then

$$\text{arc } 02 + \text{arc } 23 = \text{arc } 03.$$

The point 3 is the conjugate to 0 on the geodesic 03. Now, if 2 be taken sufficiently near to 3 on the envelope \mathcal{N}, the compound arc 023 is an admissible variation of 03 for which $\Delta J = 0$. And since the envelope \mathcal{N} is never itself a geodesic, the arc 23 can be replaced by a shorter arc 23, and therefore ΔJ can even be made negative.

Hence the arc 03 does not furnish a minimum, still less an arc 01 of the same geodesic whose end-point 1 lies beyond the conjugate point 3.

The method whose outlines have just been given applies with only slight modifications to the case where only one of the two end-points is given, while the other is movable on a given curve on the surface.

§33. KNESER'S THEOREM ON TRANSVERSALS AND THE THEOREM ON THE ENVELOPE OF A SET OF EXTREMALS

We consider in this section Knész's extension to any set of extremals of the two fundamental theorems on sets of geodesics given in the preceding section.

3 Apart from a certain exceptional case; see §38.
Construction of a transversal to a set of extremals: Let
\[x = \phi(t, a) \quad y = \psi(t, a) \quad (1) \]
be a set of extremals for the integral
\[J = \int F(x, y, x', y') \, dt \]
containing the particular extremal
\[\mathcal{C}_0: \quad x = \phi(t, a_a) \quad \psi(t, a_a) \quad t_0 \leq t \leq t_1, \]
whose minimizing properties are to be investigated. \(A\) and \(B\) are again the end-points of \(\mathcal{C}_0\).

We suppose that the functions \(\phi(t, a)\) and \(\psi(t, a)\) are of class \(C''\) in the domain
\[\mathfrak{B}: \quad T_0 - \epsilon \leq t \leq T_1 + \epsilon, \quad |a - a_o| \leq d, \]
where \(t_0 - T_0, T_1 - t_1, \epsilon\) and \(d\) are positive quantities.

We suppose further that for the extremal \(\mathcal{C}_0\)
\[\phi_i^2(t, a_o) + \psi_i^2(t, a_o) \pm 0 \quad (2) \]
It follows, then, from the continuity of \(\phi_i(t, a)\) and \(\psi_i(t, a)\), that the quantities \(t_0 - T_0, T_1 - t_1, \epsilon, d\) can be chosen so small that also
\[\phi_i^2(t, a) + \psi_i^2(t, a) \pm 0 \quad (2a) \]
throughout the domain \(\mathfrak{B}\).

We denote by \(\mathfrak{K}_k\) the rectangle
\[\mathfrak{K}_k: \quad T_0 \leq t \leq T_1, \quad |a - a_o| \leq k < d \]
in the \(t, a\)-plane, and by \(\mathfrak{S}_k\) its image in the \(x, y\)-plane defined by the transformation (1).

To every point \((t, a)\) of \(\mathfrak{K}_k\) corresponds a unique point \((x, y)\) of \(\mathfrak{S}_k\) which we shall call "the point \([t, a]\)." To a continuous curve
\[t = g(\tau), \quad a = h(\tau), \quad \tau' \leq \tau \leq \tau'' \]
in \(\mathfrak{K}_k\) corresponds a unique curve in \(\mathfrak{S}_k\):
\[
\begin{align*}
\ddot{x} &= \phi \left(y(\tau), h(\tau) \right) = \ddot{\phi}(\tau), \\
\ddot{y} &= \psi \left(y(\tau), h(\tau) \right) = \ddot{\psi}(\tau),
\end{align*}
\]

which we call the curve \([t = g(\tau), a = h(\tau)]\).

The point \(\tau\) of \(\tilde{C}\) coincides with the point \(t = g(\tau)\) of the extremal \(a = h(\tau)\) of the set \((1)\). If for every value of \(\tau\) the curve \(\tilde{C}\) is transverse\(^2\) to the extremal \(a = h(\tau)\) at their point of intersection, we shall say that \(\tilde{C}\) is a transversal to the set of extremals \((1)\).

We write for brevity
\[
F(\phi(t, \alpha), \psi(t, \alpha), \phi'(t, \alpha), \psi'(t, \alpha)) = F(t, \alpha),
\]
and use the analogous notation for the partial derivatives of \(F\) and the function \(F_1\). Then the condition of transversality may be written
\[
F_x'(t, \alpha) \frac{d\ddot{x}}{d\tau} + F_y'(t, \alpha) \frac{d\ddot{y}}{d\tau} = 0.
\]
But
\[
\frac{d\ddot{x}}{d\tau} = \phi'_t \frac{dt}{d\tau} + \phi'_a \frac{d\alpha}{d\tau}, \quad \frac{d\ddot{y}}{d\tau} = \psi'_t \frac{dt}{d\tau} + \psi'_a \frac{d\alpha}{d\tau},
\]
hence, remembering the relation \((9)\) of \(\S 24\), we get
\[
F(t, \alpha) \frac{dt}{d\tau} + \left[F_x'(t, \alpha) \phi'(t, \alpha) + F_y'(t, \alpha) \psi'(t, \alpha) \right] \frac{d\alpha}{d\tau} = 0.
\]
This differential equation for the functions \(t\) and \(\alpha\) of \(\tau\) is the necessary and sufficient condition that the curve \(\tilde{C}\) may be a transversal to the set \((1)\).

We now introduce the further restricting assumption\(^3\) that
\[
F(t, \alpha_0) \neq 0 \quad \text{in } (t_0, t_1).
\]

1 For the deductions of this section it is not necessary to assume that also conversely to every point \((x, y)\) of \(\mathcal{K}_k\) corresponds a unique point \((t, \alpha)\) of \(\mathcal{K}_h\), provided that we consider the points and curves of \(\mathcal{K}_h\) only in so far as they are the images of definite points and curves of \(\mathcal{K}_k\), and this is what our notation is to indicate. Accordingly two points \([t, \alpha]\) and \([t', \alpha']\) of \(\mathcal{K}_h\) are considered as distinct—even if they should have the same co-ordinates \(x, y\)—if the points \((t', \alpha')\) and \((t'', \alpha'')\) of \(\mathcal{K}_k\) are distinct.

2 Compare \(\S 30\).

3 We shall free ourselves from this restriction in \(\S 37, c\).
It follows, then, from the continuity of $F(t, a)$, that we can take T_0, T_1 so near to t_0, t_1 and k so small that

$$F(t, a) = 0 \tag{6a}$$

throughout the region \mathbb{R}_k.

If the condition (6a) is satisfied, it follows from Cauchy's existence theorem\(^1\) on differential equations that through every point $[t', a']$ of the region \mathbb{S}_k a uniquely\(^2\) defined transversal of the set (1) of extremals can be drawn, representable in the form

$$\begin{align*}
x &= \phi(t, a) \\
y &= \psi(t, a)
\end{align*} \quad t = \chi(a),$$

$\chi(a)$ being single-valued and of class C'' in the vicinity of $a = a'$, and taking for $a = a'$ the prescribed value $t = t'$.

The curve $\tilde{\mathcal{C}}$ may degenerate\(^3\) into a point, viz., when the functions $\tilde{\phi}(\tau), \tilde{\psi}(\tau)$ reduce to constants, say x^0, y^0. For such a degenerate curve the condition of transversality (4) is evidently always satisfied.

Conversely, if any point (x^0, y^0) in the interior of the region \mathcal{R} of §24, b) is given for which

$$F_1(x^0, y^0, \cos \gamma, \sin \gamma) = 0$$

for every γ, and if we construct by the method of §§15 and 27, c) the set of extremals through the point (x^0, y^0), this point may always be considered as a degenerate transversal to the set of extremals. For there exists, according to §27, c), a function $\ell^0(a)$ of class C', such that for every a within certain limits

$$x^0 = \phi(\ell^0, a), \quad y^0 = \psi(\ell^0, a);$$

the point (x^0, y^0) is therefore indeed the image of the curve $t = \ell^0(a)$ in the l, a-plane.

\(^1\) Compare p. 28, footnote 1.

\(^2\) Compare footnote 1, p. 158.

\(^3\) See Kneser, Lehrbuch, p. 47.
b) The function \(u(t, a) \): Let \(A^0 \) be a point on the continuation of \(C_0 \) beyond \(A \), corresponding to an arbitrary value \(t = T_0^0 \) between \(T_0 \) and \(T_0 \), and let

\[
t = t^0(a)
\]

be the transversal \(\Xi^0 \) passing through the point \([f_0^0, a_0]\). We suppose \(k \) taken so small that in the interval \((a_0 - k, a_0 + k)\) the function \(t^0(a) \) is of class \(C' \) and \(T_0 < t^0(a) < T_1 \). The curve \(t = t^0(a) \), interpreted in the \(t, a \)-plane, divides the rectangle \(R_k \) into two regions; we denote by \(R'_k \) that one for which

\[
t \leq t^0(a)
\]

and by \(S_k' \) its image in the \(x', y'-\)plane.

We consider now any point \(P: [t, a] \) of \(S_k \). The extremal \(\bar{C}: x = \phi(t, a), y = \psi(t, a) \) of the set (1) which passes through \(P \), meets the curve \(\Xi^0 \) at the point \(P^0: [T^0, a] \).

Now denote by \(u \) or \(u(t, a) \) the value of the definite integral

\[
u = \int_{T_0}^{t^0} F(t, a) \, dt = u(t, a).
\]

The function \(u(t, a) \) is single-valued and of class \(C' \) in the domain \(R_k \); moreover it represents, in \(R'_k \), the value of our integral

\[
J = \int F'(x, y, x', y') \, dt
\]
taken along the extremal \(\bar{C} \) from the point \(P^0 \) to the point \(P: \)

\[
u(t, a) = J(\bar{C}) = J(P^0 P).
\]

1 When the transversal \(\Xi^0 \) shrinks to a point, the function \(\bar{C}^0(a) \) becomes identical with the function so denoted at the end of \(a \).

2 In Fig. 31 \(S_k \) is the non-shaded part of \(S_k \).

3 Only in \(R'_k \), since we always suppose that the lower limit of the integral \(J \) is less than the upper limit; compare \(\S 24, b \).
The partial derivatives of \(u(t, a) \) are:

\[
\frac{\partial u}{\partial t} = F(t, a) ,
\]

\[
\frac{\partial u}{\partial a} = -F(t, a) \frac{df}{da} + \int_t^a \frac{\partial F(t, a)}{\partial a} \, dt .
\]

But

\[
\frac{\partial F(t, a)}{\partial a} = F_x \phi_a + F_y \psi_a + F_x \phi_{ta} + F_y \psi_{ta}
\]

\[
= \frac{\partial}{\partial t} \left[F_x \phi_a + F_y \psi_a \right] + \phi_a \left[F_x - \frac{\partial}{\partial t} F_x \right] + \psi_a \left[F_y - \frac{\partial}{\partial t} F_y \right],
\]

since \(\phi_{ta} = \phi_{at} \), \(\psi_{ta} = \psi_{at} \). Now

\[
F_x - \frac{\partial}{\partial t} F_x = 0 \quad \text{and} \quad F_y - \frac{\partial}{\partial t} F_y = 0,
\]

since \(\phi(t, a) \) and \(\psi(t, a) \) satisfy Euler's differential equation.

Hence we obtain

\[
\frac{\partial u}{\partial a} = (F_x \phi_a + F_y \psi_a) \bigg|_t^{t=0} - \left(F \frac{dt}{da} \right) \bigg|_t^{t=0} + \left(F_x \phi_a + F_y \psi_a \right).
\]

But the second term disappears since \(t = t^0(a) \) represents a transversal and therefore satisfies the differential equation (5).

Thus we finally obtain

\[
\frac{\partial u}{\partial a} = F_x(t, a) \phi_a(t, a) + F_y(t, a) \psi_a(t, a) .
\]

If the point \(P : [t, a] \) moves along a curve \(\tilde{C} \) defined by \(^1\)

\[
t = g(\tau), \quad a = h(\tau), \quad i.e.,
\]

\[
\tilde{C}: \begin{cases} \tilde{x} = \phi \left(g(\tau), h(\tau) \right) = \tilde{\phi}(\tau), \\ \tilde{y} = \psi \left(g(\tau), h(\tau) \right) = \tilde{\psi}(\tau) . \end{cases}
\]

\(u \) becomes a function of \(\tau \) whose derivative is, according to (8) and (9):

\(^1\)The functions \(g(\tau) \) and \(h(\tau) \) are supposed to be of class \(C^r \) and to furnish points \((t, a) \) in \(\mathbb{R}^2 \) so long as \(\tau \) is restricted to a certain interval \((\tau^* \tau^{'}) \) to which we confine ourselves in the following discussion.
The extensions of the two theorems on geodesics of §32 follow immediately from this formula by specializing the curve \hat{c}.

c) Kneser’s Theorem on Transversals: In the first place we suppose that the curve \hat{c} is a transversal to the set (1). Then it follows from (4) and (10) that

$$\frac{du}{d\tau} = 0$$

and therefore $u = \text{const.}$.

Thus we obtain the

Theorem I: Two transversals Ξ^0 and Ξ^1 to the same set of extremals intercept on the extremals arcs along which the integral J has a constant value.

More explicitly: If \hat{c}' and \hat{c}'' are two extremals of the set (1) meeting the transversals Ξ^0, Ξ^1 at the points P_0', P_1' and P_0'', P_1'' respectively, then

$$J_{\hat{c}'}(P_0'P_1') = J_{\hat{c}''}(P_0''P_1'') \ . \ (11)$$

Conversely: If along the curve Ξ^1 the function $u(t, \alpha)$ is constant, then Ξ^1 is a transversal of the set (1).

In the special case of the geodesics, transversality is identical with orthogonality,\(^1\) and therefore Kneser’s theorem is indeed a generalization of Gauss’s theorem on geodesic parallels.

The theorem remains true if one or both of the two transversals shrink to a point;\(^2\) thus we obtain the following corollaries:

\(^1\)Compare §30, a).

\(^2\)Compare the remark at the end of a).
Corollary I: If \mathcal{T}_1 is a transversal to the set of extremals through a point P_0, then the integral J has the same value if taken along the different extremals from the point P_0 to the curve \mathcal{T}_1, and vice versa.

Corollary II: If \mathcal{T}_0 is a transversal to a set of extremals passing through a point P_1, then the integral J has the same value if taken along the different extremals from the curve \mathcal{T}_0 to the point P_1.

Corollary III: If the extremals passing through a point P_0 all pass through a second point P_1, then the integral J has the same value if taken along the different extremals from P_0 to P_1.

d) Theorem on the envelope of a set of extremals: In the second place, we suppose that the curve \mathcal{C} is tangent to all the extremals of the set (1), and therefore is the envelope of the set.

More explicitly: As it has been remarked before, the point τ of \mathcal{C} coincides with the point $t = g(\tau)$ of the extremal $a = h(\tau)$ of the set (1); we suppose that for every value of τ, at least in a certain interval (τ', τ'') in which

$$\left(\frac{d\tilde{x}}{d\tau}\right)^2 + \left(\frac{d\tilde{y}}{d\tau}\right)^2 = 0,$$

the curve \tilde{C} and the corresponding extremal are tangent to each other at this common point, so that

$$\begin{vmatrix}
\frac{d\tilde{x}}{d\tau} \\
\frac{d\tilde{y}}{d\tau}
\end{vmatrix}
\begin{vmatrix}
\phi_t \\
\psi_t
\end{vmatrix}
= 0.$$

It follows, then, that there exists a function m of τ such that

$$\phi_t = m \frac{d\tilde{x}}{d\tau}, \quad \psi_t = m \frac{d\tilde{y}}{d\tau};$$

1 Applied to geodesics, this is Gauss's theorem on geodesic polar co-ordinates, Gauss, loc. cit., art. 15.
m is continuous in \((\tau', \tau'')\) and can not change sign.\(^1\) We may without loss of generality\(^2\) suppose that
\[m > 0 \quad \text{in} \quad (\tau', \tau'') , \]
i. e., that the positive directions of the tangents to the two curves coincide.

From the homogeneity properties of \(F\) it follows, then, that
\[F_x(t, a) = F_x \left(\tilde{x}, \tilde{y}, \frac{d\tilde{x}}{d\tau}, \frac{d\tilde{y}}{d\tau} \right) , \]
and
\[F_y(t, a) = F_y \left(\tilde{x}, \tilde{y}, \frac{d\tilde{x}}{d\tau}, \frac{d\tilde{y}}{d\tau} \right) , \]
and therefore, according to (10),
\[\frac{du}{d\tau} = F \left(\tilde{x}, \tilde{y}, \frac{d\tilde{x}}{d\tau}, \frac{d\tilde{y}}{d\tau} \right) . \]

Hence, integrating from \(\tau = \tau'\) to \(\tau = \tau'(\tau' < \tau'')\) and remembering the meaning of \(u(t, a)\), we obtain the

Theorem II.\(^3\) Let \(\tilde{\mathcal{Z}}^0\) be a transversal to the set of extremals (1) and \(\bar{\mathcal{C}}\) the envelope of the set; let, further, \(P'Q', P''Q''\) be two extremals of the set starting from the points \(P', P''\) of \(\tilde{\mathcal{Z}}^0\) and touching \(\bar{\mathcal{C}}\) at the points \(Q', Q''\), then
\[J_u(P''Q'') = J_u(P'Q') + J_{\bar{\mathcal{C}}}(Q'Q'') , \quad (12) \]

\(^1\)This follows from (2a) and the assumption that
\[\left(\frac{d\tilde{x}}{d\tau} \right)^2 + \left(\frac{d\tilde{y}}{d\tau} \right)^2 \neq 0 \quad \text{in} \quad (\tau', \tau'') . \]

\(^2\)If \(m\) is negative, introduce a new parameter
\[\tau = -\sigma \quad \text{on} \quad \tilde{u} . \]

\(^3\)The theorem in the special case when \(\tilde{\mathcal{Z}}^0\) shrinks to a point is due to Zermelo, who proves it by means of Weierstrass's expression for \(\Delta J\) in terms of the \(E\)-function (Dissertation, p. 96). The theorem in its general form and the above proof are due to Kneser; see Kneser, Lehrbuch, §25, and also idem, Mathematische Annalen, Vol. L (1898), p. 27. The simplest case of the theorem is the theorem on the evolute of a plane curve.

\(^4\)By a limiting process it can be shown that the theorem remains true if the assumption
with the understanding that the positive direction $Q'Q''$ on \mathfrak{S} has been chosen as indicated above.

The theorem remains true if the transversal \mathfrak{T}^{0} shrinks to a point, in which case we obtain the corollary:

$$J_{\mathfrak{S}^{0}}(P_{0}Q'') = J_{\mathfrak{S}^{0}}(P_{0}Q') + J_{\mathfrak{S}}(Q'Q''), \quad (13)$$

$P_{0}Q', P_{0}Q''$ being two extremals of the set through P_{0}, and \mathfrak{S} the envelope of the set.1

§34. CONSTRUCTION OF A FIELD

Before we can extend to the general case of extremals the results given in §32, $b)$ concerning geodesic parallel co-ordinates, it is necessary to impose upon the set of extremals (1) such further conditions that the correspondence between the two regions \mathfrak{R}_k and \mathfrak{S}_k defined in §33, $a)$ becomes a one-to-

$$\left(\frac{d\mathfrak{X}}{d\tau}\right)^2 + \left(\frac{d\mathfrak{Y}}{d\tau}\right)^2 \neq 0$$

ceases to be satisfied at Q', i.e., if the curve λ has a “cusp” at Q', provided that there exists a positive quantity μ such that

$$\frac{d\mathfrak{X}}{d\tau} \bigg/ (\tau' - \tau)^\mu \quad \text{and} \quad \frac{d\mathfrak{Y}}{d\tau} \bigg/ (\tau' - \tau)^\mu$$

approach, for $\mathfrak{X} = \tau^{''} - 0$, finite determinate limiting values not both zero (a condition which is, for instance, always fulfilled if \mathfrak{X} and \mathfrak{Y} are regular in the vicinity of $\tau^{''}$). The proof follows immediately from the homogeneity property of the function F'; see §24, (8).

1The two theorems on sets of extremals proved in this section can be derived by still a different method indicated for the case of the geodesics by Darboux (Théorie des Surfaces, Vol. II, No. 53)). Let

$$\theta_0: \quad x = f(t, a_0, \beta_0), \quad y = g(t, a_0, \beta_0)$$

be a particular extremal derived from the general solution of Euler's equation, and let $M_0(t = t_0, x = a_0, y = b_0)$ and $M_1(t = t_1, x = a_1, y = b_1)$ be two points on θ_0 which are not conjugate in the more general sense that $\Theta(t_1, t_0) = 0$. Then it follows from the theorem on implicit functions that if we take two points $P_0(x_0, y_0)$ and $P_1(x_1, y_1)$ sufficiently near to M_0 and M_1 respectively, a uniquely defined extremal can be drawn through P_0 and P_1:

$$\theta: \quad x = f(t, a, \beta), \quad y = g(t, a, \beta).$$

The constants a, β, the two values of t which correspond on θ to the two points
one correspondence, or in other words that the set of extremals (1) furnishes a field about the arc \(\mathcal{C}_0 \).

The proof of the existence of a field is based upon the following

Theorem: Let

\[
x = \phi(t, a), \quad y = \psi(t, a)
\]

be a one-parameter-set of curves satisfying the following conditions:

A) The functions \(\phi \) and \(\psi \) are of class \(C' \) in the domain

\[
T_0 - \epsilon \equiv t \equiv T_1 + \epsilon, \quad |a - a_0| \equiv d,
\]

\(\epsilon \) and \(d \) being two positive quantities.

B) The particular curve \(x = \phi(t, a_0), \quad y = \psi(t, a_0) \)

has no multiple points for \(T_0 - \epsilon \equiv t \equiv T_1 + \epsilon \).

C) If we denote by \(\Delta(t, a) \) the Jacobian

\[
\Delta(t, a) = \frac{\partial(\phi, \psi)}{\partial(t, a)},
\]

then

\[
\Delta(t, a_0) = 0 \quad \text{in} \quad (T_0 - \epsilon, T_1 + \epsilon).
\]

\(P_0 \) and \(P_1 \), and consequently also the value of the integral \(J \) taken from \(P_0 \) to \(P_1 \)

along \(\varepsilon \) are single-valued functions of \(x_0, y_0, x_1, y_1 \) which are continuous and have continuous partial derivatives in the vicinity of \(a_0, b_0, a_1, b_1 \). We denote this integral \(J(\mathcal{C}_0, P_0, P_1) \) considered as a function of \(x_0, y_0, x_1, y_1 \), by

\[
J(x_0, y_0, x_1, y_1);
\]

it is a generalization of the geodesic distance between two points (see Darboux, loc. cit.).

The total differential of this function can be obtained by precisely the same method as that which Darboux applies to the geodesic distance, and the result is

\[
dJ(x_0, y_0, x_1, y_1) = F_x(x_0, y_0, x_1', y_1') \, dx_0 + F_y(x_0, y_0, x_1, y_1') \, dy_1 - F_x(x_0, y_0, x_1, y_1) \, dx_0 - F_y(x_0, y_0, x_1', y_1) \, dy_0, \tag{14}
\]

the derivatives \(x_0', y_0' \) and \(x_1', y_1' \) referring to the extremal \(\varepsilon \).

Now suppose that \(P_0 \) and \(P_1 \) move along two curves \(\varepsilon_0 \) and \(\varepsilon_1 \) whose co-ordinates are expressed in terms of the same parameter \(\tau \). Then the extremals joining corresponding points of \(\varepsilon_0 \) and \(\varepsilon_1 \) form a set of extremals with the parameter \(\tau \), and \(J(x_0, y_0, x_1, y_1) \) changes into a function of \(\tau \) whose derivative is obtained immediately from (14). By specializing the curves \(\varepsilon_0 \) and \(\varepsilon_1 \) the two theorems I and II are obtained.

1 Kneser's proof (Lehrbuch, §14) must be supplemented by a lemma such as that given below under a) and b). Compare also Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p. 277, and Bolza, ibid., Vol. II (1901), p. 424.
Under these circumstances a positive quantity $k < d$ can be taken so small that the transformation (15) establishes a one-to-one correspondence between the domain

$$\mathbb{K}_k: \quad T_0 \leq t \leq T_1, \quad |a - a_0| \leq k$$

in the t, a-plane, and its image \mathbb{K}_k in the x, y-plane.

Proof: We suppose it were not so; that is, we suppose that however small k may be taken, there always exists in \mathbb{K}_k at least one pair of distinct points (l', a'), (l'', a'') whose images coincide at a point (x, y) of \mathbb{K}_k, and we show that this hypothesis leads to a contradiction to our assumptions.

a) We first select a sequence of decreasing positive quantities

$$k > k_1 > k_2 > \cdots k_r > \cdots > 0,$$

beginning with k and approaching the limit zero, subject to the following rule: After k_1 has been chosen, we select in the rectangle \mathbb{K}_{k_1} a pair of distinct points $P'_1(l'_1, a'_1)$ and $P''_1(l''_1, a''_1)$ whose images coincide; this is always possible according to our hypothesis. According to B), a'_1 and a''_1 cannot both be equal to a_0; we may therefore choose k_2 smaller than at least one of the two quantities $|a'_1 - a_0|$, $|a''_1 - a_0|$, so that at least one of the two points P'_1, P''_1 lies outside of \mathbb{K}_{k_2}.

Next we select in \mathbb{K}_{k_2} a pair of distinct points $P'_2(l'_2, a'_2)$ and $P''_2(l''_2, a''_2)$ whose images coincide. As before, we can...
choose \(k_3 \) smaller than at least one of the two quantities \(|a'_2 - a_0|, |a'_{2'} - a_0| \), etc. etc.

Proceeding in this manner, we obtain corresponding to the sequence \(\{k_v\} \) an infinite sequence of distinct pairs of points

\[
P'_v(t'_v, a'_v), \quad P''_v(t''_v, a''_v), \quad v = 1, 2, \ldots \infty ;
\]

the two points \(P'_v, P''_v \) lie in \(\mathfrak{B}_{k_v} \), and their images coincide at a point \((x'_v, y'_v) \) of \(\mathfrak{S}_k \).

We consider now the set of points

\[
\mathcal{Z} = \{(t'_v, a'_v; t''_v, a''_v) \mid \} = \{z_v\}
\]
in the four-dimensional space \((t', a'; t'', a'') \). The set \(\mathcal{Z} \) contains an infinitude of distinct points all lying in the finite domain

\[
\mathfrak{D} : \quad T_0 \equiv t' \equiv T_1 ; \quad -k \equiv a' - a_0 \equiv k ;
\]

\[
T_0 \equiv t'' \equiv T_1 ; \quad -k \equiv a'' - a_0 \equiv k ;
\]

it has therefore at least one accumulation point\(^1\)

\[
\zeta = (\tau', \alpha'; \tau'', \alpha'') ,
\]

which belongs itself to \(\mathfrak{D} \) since \(\mathfrak{D} \) is closed ("abgeschlossen").

\(b) \) We are going to prove that

\[
a' = a_0 , \quad a'' = a_0 , \quad \tau' = \tau'' .
\]

Out of the sequence \(\{z_v\} \) we can select\(^2\) a subsequence \(\{z_{v_i}\} \) \((i = 1, 2, \ldots X; v_{i+1} > v_i)\) such that

\[
\sum_{i=1}^{X} z_{v_i} = \zeta , \quad \text{i. e.,}
\]

\[
\sum_{i=1}^{X} t'_{v_i} = \tau' , \quad \sum_{i=1}^{X} a'_{v_i} = a' , \quad \sum_{i=1}^{X} t''_{v_i} = \tau'' , \quad \sum_{i=1}^{X} a''_{v_i} = a'' .
\]

But since \(\sum_{i=1}^{X} k_{v_i} = 0 \) and

\[
|a'_{v_i} - a_0| \equiv k_{v_i} , \quad |a''_{v_i} - a_0| \equiv k_{v_i} ,
\]

it follows that

\(^1 \)Compare E. I A, p. 185, and II A, p. 45; J. I, No. 27.

\(^2 \)See J. I, No. 28.
§34 Kneser's Theory 179

\[a' = a_0, \quad a'' = a_0; \]

besides \(\tau' \) and \(\tau'' \) are contained in \((T_0, T_1) \).

On the other hand, let \(D(t', a'; l', a'') \) denote the distance between the two points \((x', y') \) and \((x'', y'') \) corresponding to \((t', a') \) and \((l'', a'') \). Then we have

\[D(t'_v, a'_v; l''_v, a''_v) = 0. \]

But since \(D(t', a'; l', a'') \) is a continuous function of its four arguments, we have

\[D(\tau', a_0; \tau'', a_0) = L \left(\lim_{i \to \infty} D(t'_v, a'_v; l''_v, a''_v) \right) = 0, \]

that is, the images \((\xi', \eta') \) and \((\xi'', \eta'') \) of the two points \((\tau', a_0) \) and \((\tau'', a_0) \) coincide. According to B), this is only possible if

\[\tau' = \tau'', \quad \text{say } = \tau. \]

There exists therefore a point \((\tau, a_0) \) in \(\mathbb{R}_k \), in every vicinity of which pairs of distinct points \((l', a') \), \((l'', a'') \) can be found whose images in the \(x, y \)-plane coincide.

c) The theorem on implicit functions\(^1\) leads now immediately to a contradiction. For, let \((\xi, \eta) \) denote the image of the point \((\tau, a_0) \); take \((x, y) \) in the vicinity of \((\xi, \eta) \) and consider the problem of solving the system of equations

\[x = \phi(t, a), \quad y = \psi(t, a) \]

with respect to \((t, a) \). Since \(\Delta(\tau, a_0) = 0 \) it follows from the theorem on implicit functions that after a positive quantity \(\epsilon \) has been chosen arbitrarily but sufficiently small, a second positive quantity \(\delta \), can be determined such that, if \((x, y) \) be taken in the vicinity \((\delta, \epsilon) \) of \((\xi, \eta) \), the above two equations have one and but one solution \((t, a) \) in the vicinity \((\epsilon) \) of \((\tau, a_0) \).

Further, we can determine, on account of the continuity of \(\phi \) and \(\psi \), a positive quantity \(\epsilon' \equiv \epsilon \) such that the image

\(^1\)Compare p. 35, footnote 2.
of every point \((l, a)\) in the vicinity \((\epsilon')\) of \((\tau, a_0)\) lies in the vicinity \((\delta_e)\) of \((\xi, \eta)\). Hence if \((l', a')\) and \((l'', a'')\) are any two distinct points in the vicinity \((\epsilon')\) of \((\tau, a_0)\), their images \((x', y')\) and \((x'', y'')\) must lie in the vicinity \((\delta_e)\) of \((\xi, \eta)\) and can therefore not coincide, according to the definition of \(\delta_e\).

But this is contrary to the result reached under \(b\); the hypothesis from which we started must therefore be wrong and our theorem is proved.

Corollaries: 1. From the continuity of the functions \(\phi(l, a)\), \(\Psi(l, a)\) and the one-to-one correspondence between \(\mathcal{H}_k\) and \(\mathcal{S}_k\) it follows that the image \(\mathcal{L}'\) of the boundary \(\mathcal{L}\) of the rectangle \(\mathcal{H}_k\) is a continuous closed curve without multiple points (a so-called "Jordan-curve"). It divides, therefore, the \(x, y\)-plane into an interior and an exterior. According to a theorem due to Schoenflies\(^2\) the set of points \(\mathcal{S}_k\) is identical with the interior of \(\mathcal{L}'\) together with the boundary \(\mathcal{L}'\).

2. Let \(t_0, t_1\) be two values of \(t\) satisfying the inequality
\[T_0 < t_0 < t_1 < T_1, \]
and let \(\mathcal{C}_0\) denote the arc of the curve (16) corresponding to the interval \((t_0, t_1)\). Since the line: \(a = a_0, t_0 \leq t \leq t_1\) lies in the interior of \(\mathcal{H}_k\), its image \(\mathcal{C}_0\) lies in the interior of \(\mathcal{S}_k\) and has, therefore, no point in common with the boundary \(\mathcal{L}'\). The two curves \(\mathcal{C}_0\) and \(\mathcal{L}'\) being continuous, it follows,\(^3\) therefore, that a neighborhood \((p)\) of the arc \(\mathcal{C}_0\) can be constructed which is entirely contained in \(\mathcal{S}_k\).

3. Since \(\Delta(t, a_0) = 0\) in \((T_0 T_1)\) and \(\Delta(t, a)\) is continuous in \(\mathcal{H}_k\), it follows from the theorem on uniform continuity\(^4\) that \(k\) can be taken so small that

\(^1\)Compare J. I, No. 102. The interior as well as the exterior is a "continuum."
\(^2\)Göttinger Nachrichten, 1899, p. 282; compare also Osgood, *ibid.*, 1900, p. 94; and Bernstein, *ibid.*, 1900, p. 98.
\(^3\)Compare p. 13, footnote 4.
\(^4\)Compare E. II A, pp. 18 and 49; P., Nos. 21 and 100; J. I, No. 62.
\[\Delta(t, a) \neq 0 \quad \text{in } B_k. \]

(18)

We suppose in the sequel that \(k \) has been selected so small that \(B_k \) and \(\mathcal{S}_k \) are in a one-to-one correspondence, and that at the same time (18) is satisfied. Under these circumstances the region \(\mathcal{S}_k \) is called a field about the arc \(C_0 \), formed by the set of curves (15).

4. The one-to-one correspondence (15) between \(B_k \) and \(\mathcal{S}_k \) defines \(t \) and \(a \) as single-valued functions of \(x \) and \(y \) which are of class \(C' \) throughout \(\mathcal{S}_k \); we denote these inverse functions by

\[t = t(x, y), \quad a = a(x, y). \]

(19)

Their derivatives are obtained by the ordinary rules for the differentiation of implicit functions, according to which

\[1 = \phi_t \frac{\partial t}{\partial x} + \phi_a \frac{\partial a}{\partial x}, \quad 0 = \phi_t \frac{\partial t}{\partial y} + \phi_a \frac{\partial a}{\partial y}, \]

\[0 = \psi_t \frac{\partial t}{\partial x} + \psi_a \frac{\partial a}{\partial x}, \quad 1 = \psi_t \frac{\partial t}{\partial y} + \psi_a \frac{\partial a}{\partial y}. \]

(20)

§35. Kneser's Curvilinear Co-ordinates

Our next object is to extend to the general case the results given in §32, b) concerning the introduction of geodesic parallel co-ordinates.

a) Curvilinear co-ordinates in general: Let us introduce, instead of the rectangular co-ordinates \(x, y \), any system of curvilinear co-ordinates

\[u = U(x, y), \quad v = V(x, y) \]

(21)

where the functions \(U(x, y) \) and \(V(x, y) \) are of class \(C'' \) in a region \(\mathcal{S} \) contained in the region \(\mathcal{R} \) of §24, b); in the same region their Jacobian is supposed to be different from zero.

We interpret \(u, v \) as the rectangular co-ordinates of a

1Compare Kneser, Lehrbuch, §16.
point in a \(u, v \)-plane and denote by \(\mathfrak{T} \) the image in the \(u, v \)-plane of the region \(\mathfrak{S} \). We suppose, further, that the correspondence established by (21) between \(\mathfrak{S} \) and \(\mathfrak{T} \) is a one-to-one correspondence. The inverse functions
\[
x = X(u, v), \quad y = Y(u, v)
\]
will then likewise be single-valued and of class \(C'' \) in the region \(\mathfrak{T} \) and moreover their Jacobian
\[
J \equiv \frac{\partial (X, Y)}{\partial (u, v)} = 0 \quad \text{in} \quad \mathfrak{T}.
\]

We consider now the integral
\[
J = \int_{\tau_0}^{\tau_1} F(x, y, \frac{dx}{d\tau}, \frac{dy}{d\tau}) d\tau
\]
taken along an ordinary curve
\[
C: \quad x = \phi(\tau), \quad y = \psi(\tau)
\]
from a point \(A(\tau_0) \) to a point \(B(\tau_1) \), the curve \(C \) being supposed to lie in the interior of the region \(\mathfrak{S} \).

If we introduce the new co-ordinates \(u, v \) into the integral \(J \), it will be changed into
\[
J' = \int_{\tau_0}^{\tau_1} G(u, v, \frac{du}{d\tau}, \frac{dv}{d\tau}) d\tau,
\]
the function \(G \) of the four arguments \(u, v, u', v' \) being defined by
\[
G(u, v, u', v') = F(X, Y, X_u u' + X_v v', Y_u u' + Y_v v').
\]
The integral \(J' \) is taken along the image \(C' \) of \(C \) in the \(u, v \)-plane:
\[
C': \quad u = U(\phi(\tau), \psi(\tau)), \quad v = V(\phi(\tau), \psi(\tau))
\]
from the point \(A' \) (image of \(A \)) to the point \(B' \) (image of \(B \)).

From the equality
\[
J' = J
\]
it follows that if the curve \(C \) minimizes\(^1\) the integral \(J \), its

\(^1\)With the understanding that only such curves are admitted as lie in the regions \(\mathfrak{S} \) and \(\mathfrak{T} \) respectively.
image \mathcal{C}' necessarily minimizes J', and vice versa. Hence the problem to minimize the integral J and the problem to minimize the integral J' may be called equivalent problems.

The following properties of the function $G(u, v, u', v')$ can immediately be derived from its definition (26):

1. $G(u, v, u', v')$ is positively homogeneous\(^1\) of dimension 1 in u', v'.

2. By differentiation we get
 \[G_{u'} = F'_{x'}X_u + F'_{y'}Y_u , \]
 \[G_{v'} = F'_{x'}X_v + F'_{y'}Y_v . \]
 Hence if
 \[x' = X_u u' + X_v v' , \quad \dot{x} = X_u \mu + X_v \nu , \]
 \[y' = Y_u u' + Y_v v' , \quad \dot{y} = Y_u \mu + Y_v \nu , \]
 the following identity holds:
 \[\dot{u} G_{u'}(u, v, u', v') + \dot{v} G_{v'}(u, v, u', v') = \dot{x} F_{x'}(x, y, x', y') + \dot{y} F_{y'}(x, y, x', y') , \quad (28) \]
 from which we infer that the E-function is an absolute invariant for the transformation (21), i.e., if we denote the new E-function by $E'(u, v; u', v'; \mu, \nu)$ we have
 \[E'(u, v; u', v'; \mu, \nu) = E(x, y; x', y'; \dot{x}, \dot{y}) . \quad (29) \]
 3. Also F_1' is an invariant; if we denote the corresponding function derived from G by G_1, we obtain easily
 \[G_1 = D^2 F_1 , \quad (30) \]
 where D is defined by (23).

4. Also the left-hand side of Euler's equation is an invariant; after an easy computation, we obtain
 \[G_{uu'} - G_{u'v'} + G_1(u'v'' - u''v') = D \left[F_{xy} - F_{x'y} + F_1(x'y'' - x''y') \right] . \quad (31) \]
 The image of an extremal of the old problem is therefore an extremal for the new problem; and the same relation holds for the transversals, as follows from (28).

\(^1\)Compare §21, equation (8).
All these results are in accordance with, and can partly be derived \textit{a priori} from, the equivalence of the two problems.

\textit{b) Definition of Kneser's curvilinear co-ordinates:} To the assumptions concerning the set of extremals (1) enumerated in §33, (a), we add the further assumption that
\begin{equation}
\Delta(t, a_0) = 0 \quad \text{in} \quad (t_0, t_1),
\end{equation}
where $\Delta(t, a)$ denotes again the Jacobian
\[
\frac{\partial (\phi, \psi)}{\partial (t, a)}.
\]

It follows, then, from the continuity of $\Delta(t, a)$, that the quantities $t_0 - T_0, T_1 - t_1, k$ can be taken so small that
\begin{equation}
\Delta(t, a) = 0
\end{equation}
throughout the region \mathcal{B}_k.

According to §34, the correspondence between the domains \mathcal{B}_k and \mathcal{S}_k defined by (1) is then a one-to-one correspondence, and the inverse functions
\begin{equation}
t = t(x, y), \quad a = a(x, y)
\end{equation}
are single-valued and of class C'' in the domain \mathcal{S}_k.

We now combine with the transformation (34) the transformation
\begin{equation}
u = u(t, a), \quad v = a
\end{equation}
between the t, a-plane and the u, v-plane, $u(t, a)$ being defined by (7).

Since, according to (6a) and (8),
\[
\frac{\partial u}{\partial t} = F(t, a) = 0 \quad \text{in} \quad \mathcal{B}_k,
\]
it follows that the correspondence between the region \mathcal{B}_k and its image \mathcal{T}_k in the u, v-plane, defined by (35), is a one-to-one correspondence and moreover that the Jacobian
\[
\frac{\partial (u, v)}{\partial (t, a)} = 0 \quad \text{in} \quad \mathcal{B}_k.
\]
Hence, if we combine the two transformations (35) and (34), we obtain a transformation of the form (21) which establishes a one-to-one correspondence between the region \mathcal{S}_k in the x, y-plane and the region \mathcal{T}_k in the u, v-plane, and which satisfies all the conditions imposed under $a)$ upon the transformation (21). For every point (x, y) in the region \mathcal{S}_k defined in §33, $b)$, the function $u = \mathcal{U}(x, y)$ represents, according to the definition of $u(t, a)$ given in §33, the value of the integral J taken along the unique extremal of the set (1) passing through the point (x, y), from the transversal of reference \mathcal{T}^0 to the point (x, y).

c) Properties of Kneser's curvilinear co-ordinates: For Kneser's curvilinear co-ordinates, the images of the extremals are the lines $v =$ const.; the images of the transversals1 the lines $u =$ const. Moreover, the function $G(u, v, u', v')$ has the following characteristic properties:

$$G(u, v, u', 0) = u' \rightleftharpoons G_u(u, v, u', 0) = 1 , \quad G_v(u, v, u', 0) = 0 \quad (36)$$

which hold for every u, v and for every u' which has the same sign2 as $\mathcal{F}(t, a)$.

For the proof of these statements it is convenient to represent a curve \mathcal{C} in the region \mathcal{S}_k of the x, y-plane in the form

$$x = \phi(t, a) , \quad t = g(\tau) ,$$

$$y = \psi(t, a) , \quad a = h(\tau) ,$$

which is always possible on account of the one-to-one correspondence between \mathcal{K}_k and \mathcal{S}_k. The image \mathcal{C}' of \mathcal{C} in the u, v-plane is then represented by

$$u = u(t, a) , \quad t = g(\tau) ,$$

$$v = a , \quad a = h(\tau) ,$$

and on account of (26) the following identity holds:

1Again with the restriction that the transversal must lie in the region \mathcal{S}_k.

2Since $\mathcal{F}(t, a) = 0$ and is continuous in \mathcal{K}_k, it has a constant sign in \mathcal{S}_k.

\[
F\left(\phi(t, a), \psi(t, a), \frac{d}{dt} \phi(t, a), \frac{d}{dt} \psi(t, a)\right) = G\left(u(t, a), a, \frac{d}{dt} u(t, a), \frac{da}{dt}\right).
\]

If \(\mathcal{C} \) is an extremal of the set (1), it can be defined by the equations
\[
t = \tau, \quad a = a',
\]
a constant.\(^1\) Hence the above formula becomes:
\[
F(\tau, a') = G\left(u(\tau, a'), a', u_{\tau}(\tau, a'), 0\right),
\]
and therefore, on account of (8):
\[
u_{\tau}(\tau, a') = G\left(u(\tau, a'), a', u_{\tau}(\tau, a'), 0\right).
\]
Since \(\tau \) and \(a' \) are arbitrary and, moreover,
\[G(u, v, \rho u', 0) = \rho G(u, v, u', 0)\]
for every positive \(\rho \), the first of the three equations (36) is proved.

The second follows immediately by means of the identity
\[u'G_{u'} + v'G_{v'} = G.'\]

To prove the third, let
\[t = \tilde{y}(\sigma), \quad a = \sigma\]
define a transversal; then, according to §33, c):
\[-u\left(\tilde{y}(\sigma), \sigma\right) = \text{const.}\]

Hence the condition of transversality, which must be satisfied at the point of intersection of this transversal with the extremal \(t = \tau, a = a' \), reduces to
\[
\frac{d\tilde{r}}{d\sigma} G_{u'}\left(u(\tau, a'), a', u_{\tau}(\tau, a'), 0\right) = 0,
\]
from which we infer the third of the equations (36), since
\[
\frac{d\tilde{r}}{d\sigma} = 1.
\]

\(^1\)Its image is the line \(\mathcal{C} : u = u(\tau, a'), v = a' \) and the angle \(\theta \) which the positive direction of \(\mathcal{C} \) makes with the positive \(u \)-axis is 0 or \(\pi \), according as the constant sign of \(F(t, a) \) is + or −.
The relations (36) lead to two important consequences:

In the first place, we obtain immediately from the definition of the \mathbf{E}'-function on applying (36):

$$\mathbf{E}'(u, r; u', 0; \hat{u}, \hat{r}) = G(u, r, \hat{u}, \hat{r}) - \hat{u} . \quad (37)$$

In the second place, we get by Taylor's theorem:

$$G(u, v, \hat{u}, \hat{r}) - G(u, v, u', 0) = (\hat{u} - u') G_{u}(u, v, u', 0) + \hat{r} G_{\hat{r}}(u, v, u', 0)$$

$$+ \frac{1}{2} [(\hat{u} - u')^2 \tilde{G}_{u u} + 2 (\hat{u} - u') \hat{r} \tilde{G}_{u \hat{r}} + \hat{r}^2 \tilde{G}_{\hat{r} \hat{r}}] ,$$

where the arguments of $\tilde{G}_{u u}$, etc., are

$$u, v, u' = u' + \theta (\hat{u} - u') \quad \hat{r}' = \theta \hat{r} \quad \text{and} \quad 0 < \theta < 1 .$$

If we simplify the remainder-term by the introduction of G_1, and make use of (36), we obtain:

$$G(u, v, \hat{u}, \hat{r}) - \hat{u} = \frac{1}{2} u'^2 \hat{r}^2 \tilde{G}_1 . \quad (38)$$

From the preceding equation we see that whenever \tilde{G}_1 and \hat{u} are both positive (negative), also $G(u, r, \hat{u}, \hat{r})$ is positive (negative). Hence, if for a given point (u, r), the functions $G(u, v, \hat{u}, \hat{r})$ and $G_1(u, v, \hat{u}, \hat{r})$ are different from zero (and therefore do not change sign) for all values of \hat{u}, \hat{r} (except possibly $\hat{u} = 0$, $\hat{r} = 0$), they must both have the same sign.

Remembering now the relations (26) and (30), we obtain the following result,¹ which will be useful in the sequel:

If at a point (x, y) the functions $F(x, y, \cos \gamma, \sin \gamma)$ and $F_1(x, y, \cos \gamma, \sin \gamma)$ are both different from zero for all values of γ, then they must both have the same sign.

§36. SUFFICIENT CONDITIONS FOR A MINIMUM IN THE CASE OF ONE MOVABLE END-POINT

The introduction of Kneser's curvilinear co-ordinates leads to a number of important consequences:

a) Kneser's sufficient conditions: Through the point A

¹See Kneser, Lehrbuch, p. 53.
(x₀, y₀) of the extremal C₀ (compare Fig. 31, p. 170) we construct the unique transversal¹ \(z : [t = \chi (\alpha)] \); and from an arbitrary point \(A \) of \(z \) we draw any ordinary curve \(C \), joining the points \(A \) and \(B \) and remaining in the region \(S_{k}^{*} \):

\[
C : \quad \tilde{x} = \tilde{\phi} (\tau), \quad \tilde{y} = \tilde{\psi} (\tau), \quad \tau_{0} \equiv \tau \equiv \tau_{1}.
\]

The image of \(C₀ \) in the \(u, v \)-plane is the line \(v = a_0 \); the images of \(z₀ \) and \(z \) are the lines \(u = 0 \) and \(u = u₀ \equiv U(x₀, y₀) \); the image of the curve \(C \) is an ordinary curve \(C' \):

\[
C' : \quad \bar{u} = \bar{u} (\tau), \quad \bar{v} = \bar{v} (\tau); \quad \tau_{0} \equiv \tau \equiv \tau_{1}.
\]

The abscissae \(u₀ \) and \(u₁ \) of the images \(A' \) and \(B' \) of \(A \) and \(B \) are

\[
u₀ = U(x₀, y₀), \quad u₁ = U(x₁, y₁);
\]

and according to the definition² of \(U(x, y) \) we have

\[
J_{v₀}(AB) = u₁ - u₀.
\]

On the other hand

\[
J_{\bar{v}}(\bar{A} \bar{B}) = J_{\bar{v}}(\bar{A}' \bar{B}'); \quad \int_{\tau₀}^{\tau₁} G (\bar{u}, \bar{v}, \frac{d\bar{u}}{d\tau}, \frac{d\bar{v}}{d\tau}) d\tau.
\]

But since³ \(\bar{u} (\tau₀) = u₀, \quad \bar{u} (\tau₁) = u₁ \), we have

\[
\int_{\tau₀}^{\tau₁} d\bar{u} = u₁ - u₀,
\]

and therefore the total variation

\[
\Delta J = J_{\bar{v}}(\bar{A} \bar{B}) - J_{v₀}(AB)
\]

may be written:

\[
\Delta J = \int_{\tau₀}^{\tau₁} \left[G (\bar{u}, \bar{v}, \frac{d\bar{u}}{d\tau}, \frac{d\bar{v}}{d\tau}) - \frac{d\bar{u}}{d\tau} \right] d\tau.
\]

The relation (38), together with (30), leads now to the following result:

¹The arc of \(z \) corresponding to the interval \((a₀ - k, a₀ + k) \) of \(\alpha \) lies entirely in the interior of \(S_{k}^{*} \); for \(A \) lies in \(S_{k}^{*} \) since \(l₀ > l₀' \), and \(z \) and \(z' \) do not intersect in \(S_{k}^{*} \). The image \(z₀ \) of \(S_{k}^{*} \) is that part of \(T_{k} \) in which \(u ≥ 0 \) or \(u ≤ 0 \) according as the constant sign of \(F(t, u) \) is \(+ \) or \(- \).

²Compare §35, b).

³Compare, for this important artifice, §32, b).
If the conditions
$$\Delta(t, a_0) = 0, \quad F(t, a_0) = 0$$
are satisfied for $$t_0 \leq t \leq t_1$$, and if, moreover,
$$F'(x, y, \cos \gamma, \sin \gamma) > 0$$ (Ha')
along the extremal $$C_0$$ for every value of $$\gamma$$, then the extremal $$C_0$$ furnishes for the integral $$J$$ a smaller value than every other ordinary curve which can be drawn in $$\mathbb{H}_k$$ from the transversal $$\Xi$$ to the point $$B$$, provided that $$k$$ be taken sufficiently small; and therefore the extremal $$C_0$$ minimizes the integral $$J$$ if the end-point $$B$$ is to remain fixed while the other end-point is movable on the curve $$\Xi$$.

b) Weierstrass's theorem for the case of one variable end-point: Still another important conclusion can be derived from (39). On account of (37) we obtain from (39)
$$\Delta J = \int_{t_0}^{t_1} E'(u, v; u', 0; \frac{du}{d\tau}, \frac{dv}{d\tau}) d\tau,$$
where $$u'$$ is any quantity having the same sign as $$F(t, a)$$. We may therefore write the last equation:
$$\Delta J = \int_{t_0}^{t_1} E'(u, v; \cos \theta', \sin \theta', \frac{du}{d\tau}, \frac{dv}{d\tau}) d\tau,$$ (40)
where $$\theta'$$ is the angle defined on p. 186, footnote 1, and whose value is 0 or $$\pi$$. But since the $$E$$-function is, according to (29), an absolute invariant for the transformation (21), we obtain, by returning to the original variables $$x, y$$, the extension of Weierstrass's theorem to the case of one movable end-point:
$$\Delta J = \int_{t_0}^{t_1} E(x, y; x', y'; x', y') d\tau,$$ (41)

1To make the connection with the problem: To minimize the integral $$J$$ by a curve joining a given curve $$\Xi$$ with the point $$B$$, the following remark is necessary: After an extremal $$e_0$$ of class $$C$$ has been found which passes through $$B$$, is cut transversely by $$\Xi$$ at $$A$$, not touched by $$\Xi$$ at $$A$$, then it is always possible, according to §23, f) and §30, to determine a set of extremals which has the properties assumed in §33 of the set (1) and to which the curve $$\Xi$$ is a transversal. The transversal $$\Xi$$ of the preceding theory will then coincide with the given curve $$\Xi$$.

2Compare §28, equation (51).
where \((x, y)\) is a point of the curve \(C\); \(x', y'\) refer to the curve \(C\); \(x', y'\) to the unique extremal of the set (1) passing through the point \((\tilde{x}, \tilde{y})\).

Reasoning now as in §28, (d), we infer that in the above enumeration of sufficient conditions the condition \((Ha')\) may be replaced by the milder condition

\[E(x, y; p, q; \tilde{p}, \tilde{q}) > 0 \quad \text{along } C. \quad \text{(IV')} \]

understood in the same sense as in §28, (d).

e) Osgood's theorem concerning a characteristic property of a strong minimum: The introduction of Kneser's curvilinear co-ordinates leads to a theorem due to Osgood\(^1\) concerning the character of the minimum of the integral \(J\), in case the stronger condition \((Ha')\) is satisfied.

If we denote by \(\bar{\theta}\) the angle which the positive tangent to \(C\) at the point \((\tilde{u}, \tilde{v})\) makes with the positive \(u\)-axis, and introduce on \(\bar{C}'\) instead of the parameter \(\tau\) the arc \(s\) of \(\bar{C}'\), we may write (40) in the form:

\[\Delta l = \int_{s_0}^{s_1} E'(\tilde{u}, \tilde{v}; \cos \theta', \sin \theta'; \cos \bar{\theta}, \sin \bar{\theta}) ds. \]

Applying the theorem\(^3\) on the connection between the \(E\)-function and \(F_1'\) to \(E'\) and \(G_1\), we get

\[E'(\tilde{u}, \tilde{v}; \cos \theta', \sin \theta'; \cos \bar{\theta}, \sin \bar{\theta}) = (1 - \cos (\bar{\theta} - \theta')) G_1(\tilde{u}, \tilde{v}; \cos \theta^*, \sin \theta^*) , \]

where \(\theta^*\) is some intermediate value between \(\theta'\) and \(\bar{\theta}\).

Since \(\theta' = 0\) or \(\pi\), the first factor on the right is \(1 + \cos \bar{\theta}\).

But if we suppose that \((Ha')\) is satisfied, we can always take \(k\) so small that

\[F_1(x, y, \cos \gamma, \sin \gamma) > 0 \]

for every \(x, y\) in \(S_k\) and for every \(\gamma\).

\(^3\)Compare §28, equation (54).
From the relation (30) between F_1 and G_1, and from the continuity of G_1, it follows, then, that a positive quantity m can be assigned such that

$$G_1(u, v, \cos \omega, \sin \omega) \equiv m$$

for every u, v in \mathfrak{T}_k and for every ω. Accordingly we obtain

$$\Delta J \equiv m \int_{n_1}^{n_2} (1 + \cos \theta) \, ds$$

or, since

$$\cos \theta = \frac{d\omega}{d\nu},$$

$$\Delta J \equiv m \left[l + (n_1 - n_0) \right],$$

l being the length of the curve \mathcal{C}' from A' to B'.

Now suppose that the curve \mathcal{C} in the x, y-plane passes through a point P of the extremal $u = a_0 + h$ of the set (1), where

$$0 < |h| < \kappa.$$

\mathcal{C}' will then pass through a point P' whose ordinate is $v = a_0 + h$.

Let Q' be the foot of the perpendicular from P' upon the line $u = u_0$. Then

$$l \equiv |Q'P'| + |P'B'| \equiv |Q'B'|,$$

that is,

$$l \equiv \sqrt{h^2 + (u_1 - u_0)^2},$$

and therefore

$$\Delta J \equiv m \left[\sqrt{h^2 + (u_1 - u_0)^2} + (u_1 - u_0) \right] > 0. \quad (42)$$

Hence, if we use the symbol S'_h in the sense analogous to that of S'_k, we may formulate the result as follows:

Under our present assumptions concerning the extremal \mathcal{C}_0 and the functions F and F_1, it is always possible to determine, corresponding to every positive quantity h numerically less than k, a positive quantity ϵ_h such that

$$\Delta J = J_\epsilon(AB) - J_{\epsilon_0}(AB) \equiv \epsilon_h \quad (43)$$
for every ordinary curve \mathcal{C} which joins the transversal \mathcal{Z} with the point B, and remains within \mathcal{S}_k' but not wholly in the interior of \mathcal{S}_k'.

Osgood\(^1\) derives from his theorem a simple proof of Weierstrass's extension\(^2\) of the sufficiency proof to curves without a tangent:

Let, in the notation and terminology of $\S\,31$, \(a)\),

\[\begin{align*}
\gamma : \quad x &= \phi (\tau) , \quad y = \psi (\tau) , \quad \tau_0 \equiv \tau \equiv \tau_i ,
\end{align*} \]

be a curve of class (\(K\)), not coinciding with \mathcal{C}_0, joining the points A and B, and lying wholly in the interior of the region \mathcal{S}_k'. Let Π be a partition of the interval $(\tau_0 \tau_1)$ whose subintervals are chosen so small that the corresponding rectilinear polygon \mathfrak{P}_Π, inscribed in γ, lies in the interior of \mathcal{S}_k'. The polygon being an ordinary curve, we have, if Kneser's sufficient conditions of $\S\,36, a)\) are fulfilled for the extremal \mathcal{C}_0,

\[V_\Pi > J_{\mathcal{C}_0} , \]

if V_Π denotes, as in $\S\,31, c)\), the value of the integral J taken along the polygon \mathfrak{P}_Π.

Hence if we pass to the limit and remember equation (78) of $\S\,31$, we obtain

\[J^* \mathfrak{P} \equiv J_{\mathcal{C}_0} . \]

It remains to show that the equality sign cannot take place.

Let Q be any point of Ω not situated on the extremal \mathcal{C}_0, and denote by $a_0 + h$ the value of the parameter a of the extremal of the field passing through Q. Then: $0 < |h| < k$. Now consider in the above limiting process only such partitions Π for which Q is one of the points of division. There exists, then, according to Osgood's theorem, a positive quantity ϵ_h such that

\[V_\Pi - J_{\mathcal{C}_0} \equiv \epsilon_h . \]

\(^1\)Loc. cit., p. 292. \(^2\)Compare $\S\,31, c)$.\]
Hence if we pass to the limit,
\[J^* \to J_{v_0} \equiv \epsilon_h > 0 \]
and therefore
\[J^* > J_{v_0} \], \quad Q. E. D.

\section{VARIOUS PROOFS OF WEIERSTRASS'S THEOREM.
THE ASSUMPTION $F(t, a) \neq 0$}

The function
\[n = U(x, y) \]
introduced in §35, b) was derived from $u(t, a)$ by substituting for t and a the inverse functions (34):
\[t = t(x, y) , \quad a = a(x, y) . \]

Hence the partial derivatives of $U(x, y)$ with respect to x and y are, on account of (8) and (9):
\[
\frac{\partial U}{\partial x} = F \frac{\partial t}{\partial x} + (F_x \phi_a + F_y \psi_a) \frac{\partial a}{\partial x} ,
\]
\[
\frac{\partial U}{\partial y} = F \frac{\partial t}{\partial y} + (F_x \phi_a + F_y \psi_a) \frac{\partial a}{\partial y} .
\]

Remembering that
\[F = \phi_t F_x + \psi_t F_x , \]
and that by definition
\[\phi(t(x, y), a(x, y)) \equiv x , \quad \psi(t(x, y), a(x, y)) \equiv y , \]
we obtain the important result:\(^1\)
\[
\frac{\partial U}{\partial x} = F_x = P(x, y) ; \quad \frac{\partial U}{\partial y} = F_y = Q(x, y) , \quad (44)
\]
where $P(x, y)$ and $Q(x, y)$ denote those functions of x and y into which $F_x(t, a)$ and $F_y(t, a)$ are transformed when the variables t, a are replaced by their expressions in terms of x, y.

From these expressions of the partial derivatives of U

\(^1\) Kneser, Lehrbuch, p. 47; compare also p. 175, footnote 1.
two further proofs of Weierstrass’s theorem for the case of one variable end-point, can be derived.

a) Kneser’s proof:¹ We repeat the construction of §36, (a), denoting, however, the points \(A_0, A, \bar{A}, B \) by numbers: 5, 0, 0, 1 respectively.

Then we apply Weierstrass’s construction² slightly modified: Through an arbitrary point \(2(\tau_2 - \tau_0) \) of \(\bar{C} \) we draw the unique extremal of the set (1). It meets the transversal \(\mathcal{T}^0 \) at a unique point, 7. Now we consider the integral \(J \) taken from 7 along the extremal 72 to 2, and from 2 along the curve \(C \) to 1, and call its value \(S(\tau_2) \):

\[
S(\tau_2) = J_{72} + J_{21} .
\]

using the same notation as in §§20 and 28.

In particular we have (see Fig. 39):

\[
S(\tau_0) = J_{\bar{0}0} + J_{\bar{0}1} ,
\]

\[
S(\tau_1) = J_{50} + J_{01} .
\]

But according to Kneser’s theorem (§33, c))

\[
J_{\bar{0}0} = J_{50} ;
\]

hence

\[
\Delta J = J_{01} - J_{\bar{0}1} = - \left[S(\tau_1) - S(\tau_0) \right] .
\]

According to the definition of the function \(U(x, y) \) given in §35, b), we have

\[
J_{72} = U(x_2, y_2) ;
\]

on the other hand

\[
J_{21} = \int_{\tau_2}^{\tau_1} F(\bar{x}, \bar{y}, \bar{x}', \bar{y}') \, d\tau .
\]

Hence, making use of (44), we get as in the case of fixed end-points:

¹ Kneser, Lehrbuch, §29. ² Compare §§20 and 28.
Integrating with respect to τ_2 from τ_0 to τ_1, we obtain Weierstrass's theorem \((41)\).

The above deduction leads to the following geometrical interpretation of the E-function, due to Kneser:

Let 3 be the point of \mathcal{C} corresponding to $\tau = \tau_2 + h$, and draw the extremal $S3$ through the point 3, and the transversal 24 through the point 2 (see Fig. 40). Then

$$S(\tau_2 + h) - S(\tau_2) = J_{s1} + J_{s4} - J_{s2} - J_{s3} ;$$

and since

$$J_{s1} = J_{s2},$$

$$S(\tau_2 + h) - S(\tau_2) = J_{s4} - J_{s3} ;$$

Hence we obtain, on account of \((45)\), the result:\(^1\)

$$J_{s3} - J_{s4} = h \left[E \left(\overline{x}_2 ; \overline{y}_2 ; x'_2 ; y'_2 ; \overline{x}'_2 ; \overline{y}'_2 \right) + (h) \right]. \quad (46)$$

b) Proof by means of Hilbert's invariant integral: The important formula \((44)\) leads immediately to Hilbert's invariant integral\(^2\) for the case of parameter-representation.

The integral

$$J^* = \int_{\tau_0}^{\tau_1} \left[P \left(\overline{x} ; \overline{y} \right) \overline{x}' + Q \left(\overline{x} ; \overline{y} \right) \overline{y}' \right] d\tau , \quad (47)$$

taken along \mathcal{C} from 0 to 1 is, according to \((44)\), equal to

$$J^* = \int_{\tau_0}^{\tau_1} \frac{d}{d\tau} U \left(\overline{x} ; \overline{y} \right) d\tau ;$$

hence

$$J^* = U \left(\overline{x}_0 , \overline{y}_0 \right) - U \left(\overline{x}_1 , \overline{y}_1 \right),$$

$\overline{x}_0 , \overline{y}_0$ denoting the co-ordinates of the point 0.

The value of the integral J^* is therefore independent of the curve \mathcal{C} and depends only upon the position of the end-

\(^1\) Kneser, Lehrbuch, p. 79; compare footnote 1, p. 138.

\(^2\) Compare §21. Another proof of the invariance of the integral J^*, following more closely the reasoning of Hilbert's original proof, is given by Bliss, Transactions of the American Mathematical Society, Vol. V (1904), p. 121.
points: it even remains invariant when the point \(\bar{0} \) moves along the transversal \(\mathcal{T} \), since \(U(x, y) = \text{const.} \) along every transversal.

Hence, by letting \(\bar{0} \) coincide with 0 and \(\bar{C} \) with \(C_0 \) we obtain

\[
J^* = J_{01}.
\]

The integral \(J_{01} \) can therefore be expressed by an integral taken along the curve \(\bar{C} \), viz.,

\[
J_{01} = \int_{\tau_0}^{\tau_1} \left[F_{x'}(\bar{x}, y, x', y') \bar{x}' + F_{y'}(\bar{y}, y, x', y') \bar{y}' \right] d\tau.
\]

Substituting this value of \(J_{01} \) in the difference: \(\Delta J = J_{01} - J_{00} \) we obtain immediately Weierstrass's theorem.

c) The assumption \(F(t, a) = 0 \): It is important to notice that in the preceding two proofs of Weierstrass's theorem no use has been made of the assumption (6) that \(F(t, a_0) \neq 0 \) at all points of the interval \((t_0, t_1)\), but only of the two special assumptions

\[
F(t_0, a_0) \neq 0, \quad F(t_0, a_0) = 0 \quad (6b)
\]

which, according to §33, (a), are necessary for the construction of the two transversals \(\mathcal{T}_0 \) and \(\mathcal{T} \).

Hence, also in the sufficient conditions derived from Weierstrass's theorem, the condition (6) may be replaced by the milder condition (6b), whereas, in the former deduction of sufficient conditions by means of Kneser's curvilinear co-ordinates, the assumption (6) was essential.

This apparent discrepancy between the two methods can be removed as follows:

1The first of these may be replaced by \(F(t, a_0) \neq 0 \), because for \(t_0 \) any value of \(t \) between \(t_0 \) and \(t_0 \) may be chosen. Only in very exceptional cases can \(F \) vanish all along an extremal, since the differential equation \(F = 0 \) is, in general, incompatible with Euler's differential equation.

2The discrepancy is still more striking in Kneser's own presentation, since he makes, instead of (6), the stronger assumption

\[
F(x, y, \sin \gamma, \cos \gamma) \neq 0
\]

along \(\varphi_0 \) for every \(\gamma \) (compare Lehrbuch, pp. 49 and 53).
Compare the two problems:

(I) To minimize the integral

\[J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt, \]

and

(II) To minimize the integral

\[J^{(0)} = \int_{t_0}^{t_1} F^{(0)}(x, y, x', y') \, dt, \]

where

\[F^{(0)}(x, y, x', y') = F(x, y, x', y') + \Phi_x(x, y) x' + \Phi_y(x, y) y', \quad (48) \]

\(\Phi(x, y) \) being a function of \(x, y \) alone, of class \(C' \) in \(\mathcal{S}_k \). Since

\[J^{(0)} = J + \Phi(x_1, y_1) - \Phi(x_0, y_0), \quad (49) \]

we obtain

\[\Delta J^{(0)} = \Delta J \]

for all variations which leave the end-points fixed.

If, on the other hand, the integrals are to be minimized with one end-point, say \((x_1, y_1)\), fixed, while \((x_0, y_0)\) is movable on a given curve \(\mathcal{T} \), the same result holds, provided that \(\Phi(x, y) \) remains constant along this curve.

With this condition imposed upon \(\Phi \), the two problems are equivalent; that is, every solution of the one is also a solution of the other. Hence it follows that every extremal for the one is also an extremal for the other.\(^1\) In particular, our set of curves

\[x = \phi(t, a), \quad y = \psi(t, a) \quad (1) \]

is a set of extremals also for \(J^{(0)} \).

We now suppose that the function \(F \) satisfies the two conditions \((6b)\), but not \((6)\), and we propose to show that it is always possible so to select the function \(\Phi(x, y) \) that

\[F^{(0)}(t, a) > 0 \]

throughout the region \(\mathfrak{R}_k \) defined in \(\S 33, a) \).

\(^1\)The analogous statement for transversals is, in general, not true.
Let m be the minimum of $F(t, a)$ in the region \mathbb{R}_k, and let M be a positive constant greater than $|m|$.

Further let, as before,

$$t = t(x, y), \quad a = a(x, y)$$

denote the inverse functions defined in §35, equation (34).

1. Case of fixed end-points: In this case we select

$$\Phi(x, y) = Mt(x, y) . \quad (50)$$

Then

$$F''(t, a) = F(t, a) + M \frac{\partial}{\partial t} \left(\phi(t, a), \psi(t, a) \right) .$$

But by the definition of the inverse functions we have

$$t(\phi(t, a), \psi(t, a)) \equiv t ;$$

hence

$$F''(t, a) = F(t, a) + M ,$$

which is positive in \mathbb{R}_k.

2. Case of one variable end-point: Suppose (x_1, y_1) fixed and (x_0, y_0) movable along the curve Ξ, which is a transversal of the set (1) for the problem (I) and represented, as in §36, (a), in the form

$$x = \phi(t, a), \quad y = \psi(t, a), \quad t = \chi(a) .$$

In this case we select

$$\Phi(x, y) = M \left[t(x, y) - \chi(a(x, y)) \right] ; \quad (51)$$

then $\Phi(x, y) = 0$ along Ξ, and

$$\Phi(\phi(t, a), \psi(t, a)) = M \left(t - \chi(a) \right) .$$

Hence we obtain, as before,

$$F''(t, a) = F(t, a) + M > 0 \quad \text{in } \mathbb{R}_k .$$

It follows, further, that Ξ is a transversal of the set (1) also for problem (II). For
\[F \frac{dF}{da} + (\phi_x F_y + \psi_x F_y) \]
\[= (F \frac{dF}{da} + \phi_x F_y + \psi_x F_y) + \frac{d}{da} \Phi (\phi(t, a), \psi(t, a)) . \]

The first term on the right vanishes for \(t = \chi(a) \), since \(\mathcal{T} \) is a transversal of the set (1) for problem (I); the second term vanishes likewise for \(t = \chi(a) \), and therefore also the left-hand side, which proves our statement.

The assumption (6), upon which the introduction of Kneser’s curvilinear co-ordinates depends, may therefore be made without loss of generality; for, if it should not be satisfied, we can always replace the given problem by an equivalent problem for which it is satisfied.

§38. The focal points

The assumption

\[\Delta(t, a_o) = 0 \quad \text{in} \quad (t_0, t_1) \]

was indispensable in the previous sufficiency proofs for the construction of a field; but our deductions give no indication whether it is at the same time a necessary condition for a minimum.

We are going to prove, according to Kneser,\(^1\) that at least in the milder form

\[\Delta(t, a_o) = 0 \quad \text{for} \quad t_0 < t < t_1 , \]

which corresponds to Jacobi’s condition in the case of fixed end-points, the condition is indeed necessary for a minimum.

We retain all the assumptions of §33 concerning the set of extremals (1), and we suppose moreover that, in the notation of §33, (a),

\[F_1(t, a_o) > 0 \quad \text{in} \quad (t_0, t_1) ; \]

but we drop the assumption (32) and suppose, on the contrary, that
\[\Delta(t_0', a_0) = 0, \]
(53)
where \(t_0 < t_0' < t_1 \), and, moreover, that \(t_0' \) is the smallest value of \(t \), greater than \(t_0 \), for which (53) takes place. The corresponding point \(\mathcal{A}'(x_0', y_0') \) of \(\mathcal{C}_0 \) is then the focal point\(^1\) of the transversal \(\mathcal{T} \) on the extremal \(\mathcal{C}_0 \).

\(a) \) Existence of the envelope: We propose to find all points\(^2\) \([t, a]\) of the \(x, y \)-plane in the vicinity of \([t_0', a_0]\) for which
\[\Delta(t, a) = 0. \]
(54)
For this purpose we notice in the first place that the function \(\Delta(t, a_0) \) is an integral of Jacobi's differential equation
\[F_2 u - \frac{d}{dt} \left(F_1 \frac{du}{dt} \right) = 0. \]
This is proved exactly as the similar statement in §27 b) and c) by substituting in Euler's differential equation \(x = \phi(t, a), \ y = \psi(t, a) \), differentiating with respect to \(a \) and then putting \(a = a_0 \).

Since \(F_1 = F_1(t, a_0) \) is continuous in the vicinity of \(t = t_0' \), and, according to (52), different from zero for \(t = t_0' \), it follows that\(^3\)
\[\Delta_r(t_0', a_0) \neq 0. \]
(55)
Hence it follows, according to the theorem\(^4\) on implicit functions, that there exists a unique solution
\[t = \tilde{t}(a) \]
of (54) which is of class \(C^r \) in the vicinity of \(a = a_0 \), and takes for \(a = a_0 \) the value \(t = t_0' \).

The curve\(^5\) \([t = \tilde{t}(a)]\) in the \(x, y \)-plane, i. e., the curve

\(^1\) Compare §§23 and 30. If \(\tilde{t} \) shrinks to the point \(\mathcal{A} \), the focal point \(\mathcal{A}' \) becomes the "conjugate" point to \(\mathcal{A} \).

\(^2\) For the notation compare §33, a).

\(^3\) Compare p. 38, footnote 2.

\(^4\) Compare p. 35, footnote 2.

\(^5\) For the notation, see §§33, a).
\(\chi : \quad x = \phi(\tilde{t}(a), a) = \tilde{\phi}(a) , \quad y = \psi(\tilde{t}(a), a) = \tilde{\psi}(a) \)

is the *envelope* of the set of extremals (1).

For, since
\[
\frac{dx}{da} = \phi_t \frac{d\tilde{t}}{da} + \phi_a, \quad \frac{dy}{da} = \psi_t \frac{d\tilde{t}}{da} + \psi_a,
\]
it follows that
\[
\frac{d\tilde{x}}{da} \psi_t - \frac{d\tilde{y}}{da} \phi_t = - \Delta (\tilde{t}(a), a) \equiv 0 . \tag{56}
\]

This shows, apart from the points at which
\[
\left(\frac{d\tilde{x}}{da} \right)^2 + \left(\frac{d\tilde{y}}{da} \right)^2 = 0 ,
\]
that the curve \(\chi \) touches all the extremals of the set (1) for which \(a \) is sufficiently near to \(a_0 \), and therefore \(\chi \) is indeed the envelope of the set.

b) *Application of the theorem on envelopes*: We must now distinguish two cases:

Case I: The envelope \(\chi \) does not degenerate into a point, i.e., \(\tilde{\phi}(a) \) and \(\tilde{\psi}(a) \) do not both reduce to constants.

Let us suppose that the functions \(\tilde{\phi}(a) \) and \(\tilde{\psi}(a) \) are of class \(C^r \) in the vicinity of \(a = a_0 \), that for \(a = a_0 \) their derivatives up to the order \(r - 1 \) vanish, but that the \(r^{th} \) derivatives do not both vanish. Then we obtain by Taylor’s formula
\[
\frac{d\tilde{x}}{da} = (a - a_0)^{r-1} [A + a] , \quad \frac{d\tilde{y}}{da} = (a - a_0)^{r-1} [B + \beta] , \tag{57}
\]
where \(A \) and \(B \) are constants which are not both zero, and \(a \) and \(\beta \) approach zero as \(a \) approaches \(a_0 \).

Substituting these values in (56) we get
\[
A = n\phi_t(t', a_0) , \quad B = n\psi_t(t', a_0) , \tag{58}
\]
where \(n \) is a factor of proportionality which is different from zero.

1 Compare E., III D, p. 47, footnote 117.
We now introduce on \(\tilde{\gamma}\) a new parameter \(\tau\) by the transformation
\[
a - a_0 = \epsilon \tau,
\]
where \(\epsilon = \pm 1\) will be chosen later on. Since, according to (2) and (2a) the functions \(\phi_\ell(\tilde{\ell}, a)\) and \(\psi_\ell(\tilde{\ell}, a)\) do not both vanish at \(a = a_0\), it follows from (56) that we may write
\[
\frac{d\tilde{\gamma}}{d\tau} = m\phi_\ell, \quad \frac{d\tilde{\ell}}{d\tau} = m\psi_\ell, \quad (59)
\]
where \(m\) is a function of \(\tau\), which is continuous in the vicinity of \(\tau = 0\), and, on account of (57) and (58), is representable in the form
\[
m = \epsilon \tau^{-1}(m + v),
\]
where \(\tau = 0, v = 0\).

Whenever it is possible so to select the sign \(\epsilon\) that \(m\) is positive for all sufficiently small negative values of \(\tau\), we can construct, according to the theorem II of §33, (d), an admissible variation of the arc \(A'A'\) of \(C_0\) for which \(\Delta J = 0\).

Subcase A): \(v\) odd. If we choose \(\epsilon\) equal to the sign of \(m\), \(m\) is positive for all sufficiently small values of \(\tau\); see Fig. 41.

Subcase B): \(v\) even. \(m\) has the same sign as \(n\), no matter how we choose \(\epsilon\). Therefore

1. If \(n < 0\), \(m\) is positive for negative values of \(\tau\); see Fig. 42.

2. If \(n > 0\), \(m\) is negative for negative values of \(\tau\); see Fig. 43.

In subcase A) and subcase B1) we have

1. This covers the "general" case in which \(\tilde{\gamma}\) has no singular point at \(A'(r = 1)\).

2. If we draw a straight line \(\zeta\) through the point \(A'\) not tangent to \(\epsilon_0\), then \(\tilde{\gamma}\) crosses the line \(\zeta\) in case A); it lies all on one side of \(\zeta\) in case B), on the same side as the arc \(A'A'\) in case B1), on the opposite side in case B2). This follows easily from (57).
\[\Delta J = J_\phi (PQ) + J_\delta (QA') - J_{\psi_0} (A'A') = 0 , \]

according to theorem II of §33, d), and therefore the arc \(AA' \) of the extremal \(\mathcal{E}_0 \) certainly furnishes no proper \(^1\) minimum, and still less the extremal \(\mathcal{E}_0 \) (or \(AB \)) itself.

But it furnishes not even an improper minimum. For\(^2\) the envelope \(\mathcal{E} \) cannot at the same time be itself an extremal, and therefore the integral \(J(QA') \) can be further diminished—and consequently \(\Delta J \) can be made negative—by a suitable variation of the arc \(QA' \).

The statement that \(\mathcal{E} \) itself cannot be an extremal can be proved most conclusively by substituting in the left-hand side of Euler's differential equation for \(x, y \) the functions

\[\tilde{x} = \phi (\tilde{t}, \alpha) , \quad \tilde{y} = \psi (\tilde{t}, \alpha) , \]

and making use of the characteristic property (59) of the envelope.

If we remember the homogeneity properties of \(F' \) and its derivatives, and the fact that \(\phi(t, \alpha), \psi(t, \alpha) \) as functions of \(t \) alone satisfy Euler's differential equation, we obtain after an easy reduction:

\[\tilde{F}_x - \frac{d}{d\tau} \tilde{F}_x = \epsilon F_1 \Delta \psi , \]

\[\tilde{F}_y - \frac{d}{d\tau} \tilde{F}_y = \epsilon F_1 \Delta \phi . \]

The arguments of \(\tilde{F}_x, \) etc., are

\[\tilde{x}, \tilde{y}, \frac{d\tilde{x}}{d\tau}, \frac{d\tilde{y}}{d\tau} ; \]

those of \(\phi_t, \psi_t, F_1, \Delta_t \) are \(\tilde{t}, \alpha. \)

Since, according to our assumptions, \(F_1(t, \alpha) \) and \(\Delta_t(t, \alpha) \)

\(^1\) For the distinction between "proper" and "improper" minimum, compare §3, b).

are different from zero for \(t = t_0', \ a = a_0 \), they remain different from zero in a certain vicinity of this point. Moreover, \(\phi_t \) and \(\psi_t \) are not both zero. Hence the envelope \(\tilde{\gamma} \) does not satisfy Euler’s differential equation.\(^1\)

In subcase \(B_2 \) the same construction cannot be applied, and therefore the question cannot be decided by this method.

Case II: \(\tilde{\gamma} \) degenerates into a point. In this case all the extremals of the set pass through the point \(A' \), and we can directly apply Corollary II of the theorem on transversals, §33, c).

Accordingly, we have for every extremal \(C \) of the set:

\[
\Delta J = J_{\phi}(PA') - J_{\phi_0}(AA') = 0,
\]

and therefore the arc \(AA' \) of the extremal \(C_0 \) certainly furnishes no proper minimum.

Summing up the different cases, we may state the result:

If the end-point \(B \) of the extremal \(AB \) coincides with the focal point \(A' \) (and a fortiori, therefore, if \(B \) lies beyond \(A' : t_1 > t_0' \)) the arc \(AB \) ceases to furnish a minimum, except in the following two cases:

1. **When the envelope \(\tilde{\gamma} \) has at \(A' \) a cusp of the special kind defined under subcase \(B_1 \),** the present method fails to give a decision.\(^2\)

2. **When the envelope degenerates into a point,** the arc \(AA' \) furnishes no proper minimum, but it may furnish an

\(^1\)Another more geometrical proof can be derived from the fact (see §25, b)) that only one extremal can be drawn through a given point in a given direction if \(F_1(x, y, x', y') \neq 0 \) for the given point and direction; compare Darboux’s proof (loc. cit.) for the case of the geodesic.

\(^2\)Under the restricting assumption that \(F(x_0', y_0', \cos \gamma, \sin \gamma) \neq 0 \) for every \(\gamma \), Osgood has shown that the arc \(AA' \) actually furnishes a minimum, if the other sufficient conditions of §36 are satisfied, *Transactions of the American Mathematical Society*, Vol. II (1901), p. 182.
improper minimum. If, however, B lies beyond \(\alpha I' \), the arc \(AB \) furnishes not even an improper minimum.

Thus the necessity of the condition

\[\Delta(t, a_0) = 0 \quad \text{for} \quad t_0 < t < t_1 \quad (32a) \]

is proved for all cases with the one exception just mentioned.

1 The set of geodesics on a sphere which pass through a point affords an example of this kind.

2 For, from \(F_1(t_0', a_0') \neq 0 \) it follows that if \(a \) is sufficiently near to \(a_0 \), the "discontinuous solution" \(PA'B \) (see Fig. 44) cannot satisfy the corner condition (24) of §25, (c) (compare footnote 2, p. 142), and therefore a variation \(PMXB \) can be found for which \(\Delta J < 0 \).

3 This agrees with the result derived by Bliss from the second variation (compare §30); the latter method proves the necessity of (32a) also in the exceptional case.
CHAPTER VI

ISOPERIMETRIC PROBLEMS\(^1\)

§31. Euler's Rule

The special example which has given the name to this class of problems has already been mentioned in §1.

More generally, we understand by an isoperimetric problem one of the following type:

Among all curves joining two given points 0 and 1 for which the definite integral

\[K = \int_{t_0}^{t_1} G(x, y, x', y') \, dt \]

takes a given value \(l \), to determine the one which minimizes (or maximizes) another definite integral

\[J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt . \]

Concerning the two functions \(F \) and \(G \), we make the same assumption as in §24, b) concerning \(F \) alone. The "admissible curves" are here the totality of ordinary curves which join the two points 0 and 1, lie in the domain \(\mathbb{R} \) of the functions \(F \) and \(G \), and for which the integral \(K \) has the given value \(l \). Aside from this one modification, the definition of a minimum is the same as in the unconditioned problem, §24, c). We suppose that a solution has been found:

\[\mathcal{C}: \quad x = \phi(t) , \quad y = \psi(t) , \quad t_0 \leq t \leq t_1 ; \]

and we replace the curve \(\mathcal{C} \) by a neighboring curve

\[\mathcal{\bar{C}}: \quad \bar{x} = x + \xi , \quad \bar{y} = y + \eta , \]

\(^1\)This chapter is based chiefly on Weierstrass's Lectures of 1879 and 1882, and on chap. iv of Kneser's book.

\(^2\)Or: joining a given point and a given curve, etc.

206
where ξ and η are functions of t of class D' satisfying the following conditions:

1. They vanish for $t = t_0$ and $t = t_1$;
2. In the interval (t_0, t_1), they remain in absolute value below a certain limit ρ.
3. The integral K taken along \overline{C} from t_0 to t_1 has the same value as if taken along C (viz., $= l$), or, as we write it,
 \[\Delta K = \overline{K}_{01} - K_{01} = 0 \; ; \tag{1} \]

\[a) \text{ Admissible variations:} \text{ Our next object is to obtain an analytic expression for functions } \xi, \eta \text{ satisfying these conditions, not necessarily the most general expression but one of sufficient generality for the purpose of deriving necessary conditions for the minimizing curve.} \]

Such an analytic expression can be obtained, according to Weierstrass, as follows:

Let p_1, p_2, q_1, q_2 be four arbitrary functions of t of class D' vanishing at t_0 and t_1. Then we consider the functions

\[\xi = \epsilon_1 p_1 + \epsilon_2 p_2 \; , \quad \eta = \epsilon_1 q_1 + \epsilon_2 q_2 \; , \tag{2} \]

where ϵ_1, ϵ_2 are constants, and propose so to determine ϵ_2 as a function of ϵ_1 that the condition (1) is satisfied for every sufficiently small value of ϵ_1.

For this purpose we notice that the integral \overline{K}_{01} is a function of ϵ_1, ϵ_2 which is of class C' in the vicinity of $\epsilon_1 = 0, \epsilon_2 = 0$, and which is equal to K_{01} for $\epsilon_1 = 0, \epsilon_2 = 0$. Further, for $\epsilon_1 = 0, \epsilon_2 = 0$ its partial derivative with respect to ϵ_i has the value

\[N_i = \int_{t_0}^{t_1} (G_x p_i + G_y q_i + G_x' p_i' + G_y' q_i') dt \; . \]

Hence if we introduce the assumption1 that the curve C is not an extremal for the integral K, the functions p_2, q_2 can

1If c were an extremal for the integral K, the curve c (or at least sufficiently small segments of it) would in general minimize or maximize the integral K, and it would therefore be impossible to vary these segments without changing the value of K.
be so chosen that \(N_2 \neq 0 \), and the conditions of the theorem on implicit functions are fulfilled for the equation (1) in the vicinity of the point \(\varepsilon_1 = 0, \varepsilon_2 = 0 \). Accordingly, we obtain a unique solution \(\varepsilon_2 \) of the form

\[
\varepsilon_2 = - \frac{N_1}{N_2} \varepsilon_1 + (\varepsilon_1) \varepsilon_1 .
\]

(3)

where \((\varepsilon_1)\) denotes, as usual, an infinitesimal. Substituting this value in \(\xi, \eta \) we get

\[
\dot{\xi} = \varepsilon_1 \left(p_1 - \frac{N_1}{N_2} p_2\right) + (\varepsilon_1) \varepsilon_1 p_2 ,
\]

\[
\eta = \varepsilon_1 \left(q_1 - \frac{N_1}{N_2} q_2\right) + (\varepsilon_1) \varepsilon_1 q_2 .
\]

(4)

These functions \(\xi, \eta \) have all the required properties for sufficiently small values of \(|\varepsilon_1| \). The same argumentation applies to "partial variations" which vary the curve only along a subinterval \((t' t'')\) of \((t_0 t_1)\). It is only necessary to take the functions \(p_1, p_2, q_1, q_2 \) equal to zero in the whole interval \((t_0 t_1)\) with the exception of the interior of the sub-interval \((t' t'')\).

b) Euler's rule: According\(^2\) to §25, the total variation \(\Delta J \) for the variations (4) may be written

\[
\Delta J = \varepsilon_1 \left(M_1 - \frac{M_2}{N_2} N_1\right) + (\varepsilon_1) \varepsilon_1
\]

where

\[
M_i = \int_{t_0}^{t_1} \left(F_x p_i + F_y q_i + F_x' p_i' + F_y' q_i'\right) dt .
\]

For an extremum it is therefore necessary that

\[
M_1 - \frac{M_2}{N_2} N_1 = 0 .
\]

After a definite choice of the functions \(p_2, q_2 \) has once been made the quotient \(M_2 / N_2 \) is a certain numerical constant which we denote by \(-\lambda\):

\[
\lambda = - \frac{M_2}{N_2} .
\]

(5)

\(^1\)Compare p. 35, footnote 2. \(^2\)Compare, in particular, the footnote on p. 122.
We have then the result that the equation
\[M_1 + \lambda N_1 = 0 \tag{6} \]
must be satisfied for all functions \(p_1, q_1 \) of class \(D' \) which vanish at \(t_0 \) and \(t_1 \). This shows at the same time that the value of the constant \(\lambda \) is independent of the choice of the functions \(p_2, q_2 \).

If we put
\[H = F + \lambda G \tag{7} \]
equation (6) becomes
\[\int_{t_0}^{t_1} (H_x p_1 + H_y q_1 + H_x p_1' + H_y q_1') \, dt = 0 . \]

Hence we infer exactly as in §25 by the method of §6, that \(x \) and \(y \) must satisfy the differential equations
\[H_x - \frac{dt}{dt} H_x' = 0 , \quad H_y - \frac{dt}{dt} H_y' = 0 , \tag{8} \]
which are equivalent to the one differential equation
\[H_{xy}' - H_{xy} + H_1 (x'y'' - x''y') = 0 , \tag{1} \]
where \(H_1 \) is defined by:
\[H_1 = \frac{H_{x'x}}{y''} = - \frac{H_{x'y'}}{x''y'} = \frac{H_{yy'}}{x''y'} . \tag{9} \]

We call, again, every curve which satisfies (1) an extremal for our problem (Kneser).

The above deduction applies to so-called “discontinuous solutions”\(^1\) as well as to solutions of class \(C' \), and shows that the isoperimetric constant \(\lambda \) has the same constant value along the different segments of a “discontinuous solution.” Moreover we obtain, exactly as in §§9 and 25, at a corner \(t = t_2 \), the “corner-condition:”

\(^1\)Compare §9, in particular footnote 3, p. 37.

\(^2\)This important remark is due to A. Mayer, Mathematische Annalen, Vol. XIII (1877), p. 65, footnote; and Weierstrass, Lectures. Even if the minimizing curve contains unfree points or segments, all those segments of the curve whose variation is unrestricted (apart from the condition \(\Delta K = 0 \)) must satisfy the differential equation (1) with the same value of the constant \(\lambda \).
All these results may be summarized in the statement that, so far as the first variation is concerned, our problem is equivalent to the problem of minimizing the integral
\[\int_{t_0}^{t_1} (F + \lambda G) \, dt , \]
the curves being subject to no isoperimetric condition.

This simple rule, which is the analogue of a well-known theorem in the theory of ordinary maxima and minima, is usually called Euler’s rule, according to Euler,\(^1\) who first discovered it.

The rule still holds in the case where the point 0, instead of being fixed, is movable on a given curve
\[\Gamma : \quad \bar{x} = \bar{\phi}(\tau) , \quad \bar{y} = \bar{\psi}(\tau) . \]
For, a reasoning similar to that employed in §30, combined with the remark that for all admissible curves
\[\Delta J = \Delta J + \lambda \Delta K , \]
leads\(^2\) to the condition
\[H_x \bar{x}' + H_y \bar{y}' \bigg|_{t=t_0}^{t=t_1} = 0 . \]

\(c)\) **Example XIII**: Among all curves of given length joining two given points \(A\) and \(B\), to determine the one which, together with the chord \(AB\), bounds the maximum area.

Taking the straight line joining \(A\) and \(B\) for the \(x\)-axis, with \(BA\) for positive direction, we have to maximize the integral\(^3\)
\[J = \frac{1}{2} \int_{t_0}^{t_1} (x y' - x' y) \, dt \]

\(^2\)For details of the proof we refer to Kneser, *Lehrbuch*, §53.

\(^3\)We substitute this analytical problem for the given geometrical one, without entering upon a discussion of the question how far the two are really equivalent. Compare J. I, Nos. 102, 112, and II, Nos. 129-33.
while

$$K = \int_{t_0}^{t_1} \sqrt{x'^2 + y'^2} \, dt$$

has a given value, say l, which we suppose greater than the distance AB.

Since

$$H = \frac{1}{2} (xy' - x'y) + \lambda \int \frac{1}{\sqrt{x'^2 + y'^2}} \, dt,$$

we get

$$H_1 = \frac{\lambda}{(1 - \frac{1}{\sqrt{x'^2 + y'^2}})^2}, \quad (12)$$

and therefore the differential equation (I) becomes

$$\frac{x'y'' - x''y'}{(1 - \frac{1}{\sqrt{x'^2 + y'^2}})^2} = -\frac{1}{\lambda}. \quad (13)$$

Hence the radius of curvature of the maximizing curve is constant and has the value $|\lambda|$, while its direction is determined by the sign of λ.

Again, since H_1 never vanishes, there can be no corners, and therefore the curve must be an arc of a circle of radius $|\lambda|$. The center and the radius of the circle are determined by the conditions that the arc shall pass through the two given points and shall have the given length l. There are two arcs satisfying these conditions, symmetrical with respect to the x-axis.

$d)$ Example XIV: To draw in a vertical plane between two given points a curve of given length such that its center of gravity shall be as low as possible.

Taking the positive y-axis vertically upward, we have to minimize the integral

$$J = \int_{t_0}^{t_1} y \sqrt{x'^2 + y'^2} \, dt$$

while at the same time

$$K = \int_{t_0}^{t_1} \sqrt{x'^2 + y'^2} \, dt$$

has a given value, say l.

Here

$$H = (y + \lambda) \sqrt{x'^2 + y'^2}.$$

1 Compare §25, c) and §28, d); in particular footnote 2, p. 112.
2 Position of equilibrium of a uniform cord suspended at its two extremities.
Using the first of the two differential equations (8), we obtain at once a first integral
\[\frac{x'(y + \lambda)}{\sqrt{x'^2 + y'^2}} = c. \]

On account of (10), \(c \) must have the same constant value all along the curve.

If \(c = 0 \), we obtain \(^1\) the solution
\[x = \text{const.}, \]
which is possible only if the two given points lie in the same vertical line.

If \(c \neq 0 \), we obtain as general solution of Euler’s equation two systems of catenaries:
\[x = a + \beta t, \]
\[y + \lambda = \pm \beta \cosh t. \quad (14) \]

Determination of the constants: If we suppose \(x_0 < x_1 \), the constant \(\beta \) must be positive in order that we may have \(t_0 < t_1 \).

Since the curve is to pass through the two given points, the following equations must be satisfied:
\[x_0 = a + \beta t_0, \quad y_0 + \lambda = \pm \beta \cosh t_0, \]
\[x_1 = a + \beta t_1, \quad y_1 + \lambda = \pm \beta \cosh t_1. \]

Moreover, the curve must have the given length \(l \); this furnishes the further equation
\[\dot{z} (\sinh t_1 - \sinh t_0) = l. \]

From these five equations we have to determine the five constants \(a, \beta, \lambda, t_0, t_1 \).

If we introduce instead of \(t_0 \) and \(t_1 \) the two quantities\(^2\)
\[\mu = \frac{t_1 + t_0}{2} = \frac{x_1 + x_0 - 2a}{2\beta}, \]
\[\nu = \frac{t_1 - t_0}{2} = \frac{x_1 - x_0}{2\beta}, \]
we derive from the above equations the following:

\(^1 y + \lambda = 0 \) is not a solution, since it does not satisfy the second differential equation (8).

\(^2\) Weierstrass, Lectures, 1879.
\[y_1 - y_0 = \pm 2\beta \sinh \mu \sinh \nu , \]
\[l = 2\beta \cosh \mu \sinh \nu . \]

Hence we get
\[\tanh \mu = \pm \frac{y_1 - y_0}{l} . \]

Since we suppose
\[l > 1 \quad (x_1-x_0)^2 + (y_1 - y_0)^2 > |y_1 - y_0| , \]
each of the two equations comprised in (16) has a unique solution \(\mu \).

Further, we obtain from (15):
\[l^2 - (y_1 - y_0)^2 = 4\beta^2 \sinh^2 \nu , \]
and therefore
\[\frac{\sinh \nu}{\nu} = \frac{l^2 - (y_1 - y_0)^2}{x_1-x_0} , \quad \text{say } k . \]

Since \(k > 1 \) the transcendental equation (17) has one positive root \(\nu \).

After \(\mu \) and \(\nu \) have been determined, the values of \(a, \beta, \lambda, t_0, t_1 \) follow immediately.

Each of the two systems of catenaries (14) contains, therefore, one catenary satisfying the initial conditions.

\[\text{§ 40. THE SECOND NECESSARY CONDITION} \]

We suppose that the general solution\(^1\) of the differential equation (1) has been found:
\[x = f(t, a, \beta, \lambda) , \quad y = g(t, a, \beta, \lambda) . \]

It contains, besides the two constants of integration \(a, \beta \), the isoperimetric constant \(\lambda \).

Moreover, we suppose that a particular system of values of these constants
\[a = a_0 , \quad \beta = \beta_0 , \quad \lambda = \lambda_0 \]
has been determined\(^2\) so that the extremal

\(^1\) Compare the remarks in §25, a).

\(^2\) There are five equations for the determination of the five unknown quantities \(a, \beta, \lambda, t_0, t_1 \).
passes through the two given points 0 and 1 (for \(t = t_0 \) and \(t = t_1 \) respectively), and furnishes for the integral \(K \) the prescribed value \(l \):

\[K_{01} = l \]

We suppose that the functions \(f, g, f_t, g_t, f_{tt}, g_{tt} \) and their first partial derivatives with respect to \(a, \beta, \lambda \) are continuous functions of their four arguments in a domain

\[T_0 \equiv t \equiv T_1 \], \quad |a - a_0| \equiv d \], \quad |\beta - \beta_0| \equiv d \], \quad |\lambda - \lambda_0| \equiv d \],

where \(T_0 < t_0 \) and \(T_1 > t_1 \).

Further, we assume that for the particular extremal \(\mathcal{C}_0 \)

\[f_t^2 + g_t^2 = 0 \quad \text{in} \quad (T_0, T_1), \]

\[f_t g_{\lambda} - f_{\lambda} g_t \bigg|_{t_0} = 0 , \]

and that \(f_t g_{\alpha} - f_{\alpha} g_t \) and \(f_t g_\beta - f_\beta g_t \) are linearly independent.\(^1\)

Finally we retain the assumption introduced in §39 that \(\mathcal{C}_0 \) is not an extremal for the integral \(K \).

\(a \) A lemma on a certain type of admissible variations: In §39 the existence of admissible variations of the form

\[\xi = \xi(t, \epsilon) \], \quad \eta = \eta(t, \epsilon) \]

has been established, satisfying the conditions enumerated on p. 122, footnote 1, and besides the isoperimetric condition

\[\Delta K = 0 \]

for every sufficiently small value of \(|\epsilon| \).

From the latter condition it follows that also

\[\frac{\partial \Delta K}{\partial \epsilon} \equiv 0 . \]

Hence we obtain in particular for \(\epsilon = 0 \):

\(^1\)Compare §13, end.
\[\int_{t_0}^{t_1} \left(G_x p + G_y q + G_x' p' + G_y' q' \right) dt = 0 . \] (22)

where
\[p = \xi(t, 0) , \quad q = \eta(t, 0) . \] (23)

If we transform the left-hand side of (22) by integration by parts, and remember that, as in §25, \(a \),
\[G_x - \frac{d}{dt} G_x' \equiv y' U , \quad G_y - \frac{d}{dt} G_y' \equiv -x' U , \]
where
\[U \equiv G_{xy} - G_{xy} + G_1(x'y'' - x''y') , \]
\[G_1 = \frac{G_{xx}}{y''} = -\frac{G_{xy}}{x'y'} = \frac{G_{yy}}{x''} , \]
we obtain
\[\int_{t_0}^{t_1} U w dt = 0 , \]
where
\[w = y' p - x' q . \]

Since \(p \) and \(q \) vanish at \(t_0 \) and \(t_1 \), the same is true of \(w \).

\textbf{Vice versa}, the following \textit{lemma}\(^1\) holds:

Let \(w \) be any function of class \(D' \) which satisfies the conditions
\[w(t_0) = 0 , \quad w(t_1) = 0 , \] (24)
\[\int_{t_0}^{t_1} U w dt = 0 ; \] (25)
then it is always possible to construct an admissible variation of type (21) for which
\[\frac{\partial}{\partial \epsilon} (y' \xi - x' \eta) \bigg|_{\epsilon=0} = w . \]

\textbf{Proof:} Since \(\xi_0 \) is not an extremal for the integral \(K \), it follows that \(U \equiv 0 \); it is therefore always possible so to select a function \(w_1 \), of class \(D' \), and vanishing at \(t_0 \) and \(t_1 \), that

\(^1\)Due to \textit{Weierstrass}; see \textit{Kneser, Mathematische Annalen}, Vol. LV, p. 100.
Now let
\[\omega = \epsilon \omega + \epsilon_1 w_1 , \]
and choose
\[\xi = \frac{y'' \omega}{x'' + y''}, \quad \eta = \frac{-x'' \omega}{x'' + y''}. \]

These functions vanish at \(t_0 \) and \(t_1 \) for all values of the constants \(\epsilon, \epsilon_1 \): they represent admissible variations if, moreover, the condition
\[\Delta K = 0 \quad (1) \]
is satisfied.

But by the same process as above, we find:
\[
\begin{align*}
\frac{\partial \Delta K}{\partial \epsilon} \bigg|_{\epsilon = 0}^\epsilon &= \int_{t_0}^{t_1} U w \, dt = 0, \\
\frac{\partial \Delta K}{\partial \epsilon_1} &\bigg|_{\epsilon_1 = 0} = \int_{t_0}^{t_1} U w_1 \, dt = 0. \\
\end{align*}
\]

On account of (26a) we can apply the theorem on implicit functions to the equation (1), and obtain for \(\epsilon_1 \) a unique solution which, on account of (26), is of the form\(^1\)
\[\epsilon_1 = (\epsilon) \epsilon. \]

Hence
\[y'' \xi - x'' \eta = \omega = \epsilon \omega + (\epsilon) \epsilon , \]
which proves our statement.

b) Weierstrass’s expression for the second variation: Since \(\Delta K = 0 \), we may write
\[\Delta J = \Delta J + \lambda_0 \Delta K . \quad (27) \]
Hence if we apply to the increment \(\Delta F + \lambda_0 \Delta G \) Taylor’s formula, we obtain for every admissible variation of type (21)
\[
\begin{align*}
\Delta J &= \int_{t_0}^{t_1} (H_x \xi + H_y \eta + H_x' \xi' + H_y' \eta') \, dt \\
&\quad + \frac{1}{2} \int_{t_0}^{t_1} (H_{xx} \xi^2 + \cdots + H_{yy} \eta^2) \, dt + (\epsilon) \epsilon^2 ,
\end{align*}
\]
\(^1\) Compare p. 35, footnote 2.
where

\[H = F + \lambda_n G \, . \]

The first integral is zero since \(C_0 \) is an extremal.

To the second integral we apply the transformation of \(\S 27, a \). We thus obtain the result:

\[\Delta J = \frac{\epsilon^2}{2} \int_{t_0}^{t_1} \left(H_1 \left(\frac{dw}{dt} \right)^2 + H_2 w^2 \right) dt + (\epsilon) \epsilon^2 \, . \quad (28) \]

where \(H_1 \) and \(H_2 \) are derived from \(H \) in the same manner as \(F_1 \) and \(F_2 \) from \(F' \); see \(\S 24, b \) and \(\S 27, a \). We shall denote the first term on the right-hand side by \(\frac{1}{2} \Delta S J \).

For a minimum it is therefore necessary that

\[\int_{t_0}^{t_1} \left(H_1 \left(\frac{dw}{dt} \right)^2 + H_2 w^2 \right) dt \equiv 0 \, ; \quad (29) \]

and on account of the lemma proved under \(a \) this condition must be fulfilled for every function \(w \) of class \(D' \) which satisfies the equations (24) and (25).

c) The second necessary condition: Since we can construct admissible variations\(^1\) which vary the arc \(C_0 \) only along any given subinterval \((t' t'') \) of \((t_0 t_1) \), we can apply to the above integral the reasoning of \(\S 11, b \). Hence the second necessary condition for a minimum (maximum) is that

\[H_1 \equiv 0 \quad (\equiv 0) \, \quad (II) \]

along the arc \(C_0 \).

This is the analogue of Legendre’s condition. Also the second necessary condition for the isoperimetric problem coincides, therefore, with the second necessary condition in the problem to minimize the integral

\[\int_{t_0}^{t_1} H(x, y, x', y') \, dt \]

without an isoperimetric condition.

\(^1\) Compare \(\S 39, a \).
§41. THE THIRD NECESSARY CONDITION AND THE CONJUGATE POINT

We assume in the sequel that (II) is satisfied in the stronger form

\[H_1 > 0 \quad \text{along } \mathcal{C}_0. \]

(II')

It follows, then, by the method of §11, that (29) is satisfied, provided that the point 1 is sufficiently near to the point 0.

We have next to determine how near the point 1 must be taken to the point 0 in order that the inequality (29) may remain true. And it is at this point that the equivalence of the two problems, which we have been comparing, ceases.\(^1\) In the unconditioned problem the inequality (29) must be fulfilled for all functions \(w \) of class \(D' \) which vanish at \(t_0 \) and \(t_1 \); in the isoperimetric problem only for those which besides satisfy the equation (25). It is therefore \(a \ priori \) clear that the condition (29) is certainly fulfilled for the isoperimetric problem if it is fulfilled for the unconditioned problem. Hence if we denote by \(T'' \) the upper limit of the values of \(t_1 \) for which the inequality (29) remains true in the isoperimetric problem, by \(T''' \) the corresponding upper limit for the unconditioned problem, then \(T'' \) is at least equal to \(T''' \), but it may be greater, and in general it actually is greater, as will be seen later.

\(a) \) Determination of the conjugate point: The point \(T'' \) can be determined by a proper modification, due to Weierstrass, of the method for the determination of the conjugate point in the unconditioned problem;\(^2\) Since we consider only those functions \(w \) for which

\(^2\)Compare §§12, 13, 16, 27, b).
we may write $\delta^2 J$ in the form

$$\delta^2 J = \varepsilon^2 \int_{t_0}^{t_1} (H_1 w'^2 + H_2 w^2 + \mu w U) \, dt,$$

μ being an arbitrary constant. Transforming the first term by integration by parts (see §12) and remembering that w vanishes at t_0 and t_1, we obtain, if w' is continuous in (t_0, t_1),

$$\delta^2 J = \varepsilon^2 \int_{t_0}^{t_1} w \left[\Psi(w) + \mu U \right] \, dt,$$

where

$$\Psi(w) = H_2 w - \frac{d}{dt} (H_1 w') \ . \quad (31)$$

To obtain the general integral of the differential equation

$$\Psi(w) + \mu U = 0 \quad (32)$$

we substitute in the differential equation

$$\frac{d}{dt} H_x = 0$$

for x and y the general integral (18), differentiate with respect to a, β, λ respectively, and finally put $a = a_0$, $\beta = \beta_0$, $\lambda = \lambda_0$.

If we denote

$$\begin{align*}
\theta_1(t) &= g_t f_a - f_t g_a \\
\theta_2(t) &= g_t f_\beta - f_t g_\beta \\
\theta_3(t) &= g_t f_\lambda - f_t g_\lambda
\end{align*} \quad \left(a = a_0, \quad \beta = \beta_0, \quad \lambda = \lambda_0 \right) ,$$

the result is as follows:

1H means here: $F + \lambda G$.

2For the computation compare §27, b). In the differentiation with respect to λ an additional term appears on account of the factor λ which occurs explicitly in $F + \lambda G$. The immediate result of the differentiation is

$$y \Psi \left(\theta_3(t) \right) + \left(G_x - \frac{d}{dt} G_x \right) = 0 ;$$

but according to §25, equation (18),

$$G_x - \frac{d}{dt} G_x = y U ;$$

hence the above result.
\[\Psi (\theta_1(t)) = 0, \quad \Psi (\theta_2(t)) = 0, \quad \Psi (\theta_3(t)) + U = 0. \tag{33} \]

Hence we infer that the function

\[w = c_1 \theta_1(t) + c_2 \theta_2(t) + \mu \theta_3(t), \]

in which \(c_1 \) and \(c_2 \) are arbitrary constants, is the general integral of the differential equation (32).

Now if it were possible to find values for \(c_1, c_2, \mu \) and a value \(t' \) such that

\[w(t_0) = c_1 \theta_1(t_0) + c_2 \theta_2(t_0) + \mu \theta_3(t_0) = 0, \]
\[w(t) = c_1 \theta_1(t') + c_2 \theta_2(t') + \mu \theta_3(t') = 0, \]
\[\int_{t_0}^{t'} U w(t') dt' = c_1 \int_{t_0}^{t'} U \theta_1(t') dt' + c_2 \int_{t_0}^{t'} U \theta_2(t') dt' + \mu \int_{t_0}^{t'} U \theta_3(t') dt' = 0, \]

\[t_0 < t' \equiv t_1, \]

the second variation could be made equal to zero (and therefore presumably \(\Delta J < 0 \)) by choosing \(w \) equal to zero in \((t'\neg u)\), and equal to this particular integral in \((t_0\neg u)\).

In order that \(\delta^2 J > 0 \) for all admissible functions \(w \), it is therefore necessary \(^1\) that

\[D(t, t_0) \equiv \begin{vmatrix} \theta_1(t_0) & \theta_2(t_0) & \theta_3(t_0) \\ \theta_1(t) & \theta_2(t) & \theta_3(t) \\ \int_{t_0}^{t} U \theta_1 dt & \int_{t_0}^{t} U \theta_2 dt & \int_{t_0}^{t} U \theta_3 dt \end{vmatrix} \equiv 0 \tag{34} \]

for \(t_0 < t \equiv t_1 \).

\(^1\) Weierstrass, Lectures, 1872. This condition, together with \(H_1 \pm 0 \) in \((t_0\neg u)\), is also sufficient for a permanent sign of \(\delta^2 J \) (Mayer, Mathematische Annalen, Vol. XIII (1878), p. 53). The proof is based upon the following extension of Jacobi's formula (14) of \$12 for the unconditioned problem:

\[(pu + qv) \Psi (pu + qv) = H_1 (p'u + q'v)^2 - 2q (p'w + q'un) + \frac{d}{dt} \left[H_1 (pu + qv) (p'u + q'v) - (pm + qn) q \right], \]

where \(u, v, m, n \) are the functions introduced below, under \(b \), and \(p \) and \(q \) are two arbitrary functions. Compare Bolza, "Proof of the Sufficiency of Jacobi's Condition for a Permanent Sign of the Second Variation in the So-called Isoperimetric Problems," Transactions of the American Mathematical Society, Vol. III (1902), p. 305, and Decennial Publications of the University of Chicago, Vol. IX, p. 21.
If we denote by t'_0 the root next greater than t_0 of the equation
\[D(t, t_0) = 0, \]
the above inequality (34) may also be written
\[t_1 < t'_0. \]

The point t'_0 of the extremal C_0 is again called the conjugate of the point t_0.

b) The third necessary condition: The preceding result makes it highly probable that the minimum cannot exist beyond the conjugate point. And indeed it can be proved by a modification of the method employed by Weierstrass for the analogous purpose in the unconditioned problem that if $t'_0 < t_1$, the second variation, and therefore also ΔJ, can be made negative.

For the proof it is convenient to throw the determinant $D(t, t_0)$ into another form in which its properties can be more easily discussed.

Let
\[u \equiv \theta_1(t_0) \theta_2(t) - \theta_2(t_0) \theta_1(t) \equiv u(t, t_0), \]
\[v \equiv C_1 \theta_1(t) + C_2 \theta_2(t) - \theta_3(t) \equiv v(t, t_0), \]
where the constants C_1, C_2 satisfy the equation
\[C_1 \theta_1(t) + C_2 \theta_2(t) = \theta_3(t_0) = 0. \]

These two functions satisfy the two differential equations

1 $D(t, t_0)$ cannot vanish identically; see below, under b).

2 Compare remarks in §14, p. 59.

3 The proof has been given by Kneser, Mathematische Annalen, Vol. LV (1902), p. 86. From the statements in Hoermann's Dissertation (Göttingen, 1887) it appears that Weierstrass was in possession of essentially the same proof, but I have been unable to ascertain whether he has ever given it in his lectures. I reproduce in the text Kneser's proof in a slightly simplified form. In §10 of his Lehrbuch, Kneser gives another proof which, however, presupposes that $D_1(t_0, t_0) = 0$

4 Compare §16, p. 65, footnote 1.

5 Neither u nor v can be identically zero. For since, according to (20), $\theta_2(t)$ and $\theta_2(t)$ are linearly independent and $H_1 \neq 0$ in t_0, $\theta_1(t_0)$ and $\theta_2(t_0)$ are not both zero, and therefore $u \neq 0$. v cannot be identically zero since $U \neq 0$.

\[\text{[41]} \text{Isoperimetric Problems} 221 \]
\[\Psi(u) = 0, \quad \Psi(v) = U \] (35)

respectively, and both vanish at \(t_0 \):

\[u(t_0) = 0, \quad v(t_0) = 0. \] (36)

Hence the determinant \(D(t, t_0) \) reduces, after an easy transformation, to

\[D(t, t_0) = uv - nu, \] (37)

where

\[m = \int_{t_0}^{t_1} U u \, dt, \quad n = \int_{t_0}^{t_1} U v \, dt. \]

From (35) follows:

\[v\Psi(u) - u\Psi(v) = \frac{d}{dt} H_1(uv' - u'v) = -uv. \]

Integrating and remembering (36) we get

\[H_1(uv' - u'v) = -m. \] (38)

Again, we obtain by differentiating (37) with respect to \(t \):

\[D' = mv' - nu', \]

and therefore

\[Du' - D'u = \frac{m^2}{H_1}. \] (39)

From the preceding equation it follows that \(D \) has at \(t_0 \) a zero\(^2\) of an odd order, except when \(u(t_0) = 0 \).

After these preliminaries, we write the second variation in the form

\[\delta^2 J = -\frac{d^2}{dt^2} \left[\int_{t_0}^{t_1} w^2 \, dt + \epsilon^2 \int_{t_0}^{t_1} w \left[\Psi(w) + \mu U \right] \, dt \right], \]

\(^1\)If we denote by \(t_0' \) the root next greater than \(t_0 \) of the equation \(u(t) = 0 \), the relation (39) shows that \(t_0' \leq t_0 \). For, since \(u \) has at \(t_0 \) a zero only of the first order, the quotient \(D/u \) vanishes for \(t_0 \), and therefore

\[\frac{D}{u} = -\int_{t_0}^{t_0'} \frac{m^2}{H_1 u^2} \, dt, \]

which proves that \(D \neq 0 \) for \(t_0 < t < t_0' \).

\(^2\)\(D \) cannot vanish identically; otherwise \(m \) and therefore also \(u \) would vanish identically, which is incompatible with our assumptions.
where \(k \) is an arbitrary positive constant and
\[
\tilde{\Psi}(w) \equiv (H_2 + k) w - \frac{d}{dt} \left(H_1 \frac{dw}{dt} \right).
\]

Now let \(\tilde{u} \) and \(\tilde{v} \) denote those particular integrals of the differential equations
\[
\tilde{\Psi}(\tilde{u}) = 0, \quad \tilde{\Psi}(\tilde{v}) = U
\]
respectively, which satisfy the initial conditions:
\[
\tilde{u}(t_0) = u(t_0) = 0, \quad \tilde{u}'(t_0) = u'(t_0), \quad \tilde{v}(t_0) = v(t_0) = 0, \quad \tilde{v}'(t_0) = v'(t_0);
\]
then it follows from a general theorem\(^1\) on differential equations containing a parameter that
\[
L_k \tilde{u}(t) - u(t) = 0, \quad L_k \tilde{v}(t) - v(t) = 0,
\]
uniformly with respect to the interval \((t_0, t_1)\) of \(t \).

Hence, if we put
\[
\tilde{m} = \int_{t_0}^{t'} U \tilde{u} dt, \quad \tilde{n} = \int_{t_0}^{t'} U \tilde{v} dt,
\]
we have also
\[
\tilde{D}(t, t_0) = m \tilde{v} - \tilde{u} \tilde{u},
\]
\[
L_k \tilde{D}(t, t_0) = D(t, t_0), \quad \text{uniformly in } (t_0, t_1).
\]

Now suppose that
\[
t_0' < t_1
\]
and that
\[
u(t_0') \neq 0.
\]

Then \(D(t, t_0) \) changes sign at \(t_0' \), as has been shown above; we can therefore choose two quantities \(t_3 \) and \(t_4 \) satisfying the inequalities
\[
t_0 < t_3 < t_0' < t_4 < t_1,
\]
\(^1\)Poincaré, Mécanique céleste, Vol. I, p. 58; Picard, Traité d’Analyse, Vol. III, p. 157; and E. H. A, p. 205. The assumption \(H_1 \neq 0 \) in \((t_0, t_1)\) is essential for this conclusion.
and so near to \(t_0 \) that \(D(t, t_0) \) has opposite signs at \(t_3 \) and \(t_4 \). Now select \(k \) so small that also \(\tilde{D}(t, t_0) \) has opposite signs at \(t_3 \) and \(t_4 \); then \(\tilde{D}(t, t_0) \) vanishes at least once at a point \(\tilde{t}_0' \) between \(t_3 \) and \(t_4 \).

But since \(\tilde{D}(\tilde{t}_0', t_0) \) is equal to zero, we can determine two constants \(c_1, c_2 \), not both zero, so that

\[
\begin{align*}
c_1 \tilde{u}(\tilde{t}_0') + c_2 \tilde{v}(\tilde{t}_0') &= 0, \\
c_1 \tilde{u}(\tilde{t}_0') + c_2 \tilde{v}(\tilde{t}_0') &= 0.
\end{align*}
\]

Now if we choose

\[
\begin{align*}
w &= c_1 \tilde{u} + c_2 \tilde{v} & \text{in} & (t_0 \tilde{t}_0'), \\
w &\equiv 0 & \text{in} & (\tilde{t}_0' t_1),
\end{align*}
\]

and give the arbitrary constant \(\mu \) the value \(-c_2\), then \(w \) satisfies the differential equation

\[
\tilde{\Psi}(w) + \mu u = 0,
\]

and the conditions (24) and (25).

This function \(w \) makes \(\delta^2 J \) negative, viz.,

\[
\delta^2 J = -c^2 k \int_{t_0}^{t_1} w^2 dt.
\]

It remains to consider the exceptional case\(^1\) when \(u(t_0') = 0 \). This can only happen when at the same time \(m(t_0') = 0 \) and \(r(t_0') = 0 \), as follows at once from (39) and (38), if we remember that \(H_1 = 0 \) in \((t_0' t_1)\) and that \(u \) and \(u' \) cannot vanish simultaneously.

In this case we can make \(\delta^2 J = 0 \) by choosing \(\mu = 0 \) and

\[
\begin{align*}
w &= u & \text{in} & (t_0 t_0'), \\
w &\equiv 0 & \text{in} & (t_0' t_1);
\end{align*}
\]

and by a slight modification of the method used by Schwarz\(^2\) for the proof of the necessity of Jacobi's condition in the unconditioned problem, it can be shown that \(\delta^2 J \) can be made negative by choosing

\footnote{For this exceptional case, see Bolza, Mathematische Annalen, Vol. LVII (1903), p. 44.}

\footnote{Compare §16, p. 65, footnote 1.}
where
\[s(t_a) = 0, \quad s(t_1) = 0, \quad s(t_0') = 0, \quad \int_{t_a}^{t_1} s U dt = 0. \]

We thus reach in all cases the result that the third necessary condition for a minimum is that
\[D(t, t_a) \equiv 0 \quad \text{for} \quad t_0 < t < t_1, \quad \text{(III)} \]
or
\[t_0' \equiv t_1. \]

c) Kneser's form of the determinant \(D(t, t_a) \): Let \(5(t = t_{50}) \) be a point on the continuation of the extremal \(\mathcal{E}_0 \) beyond the point 0, taken sufficiently near to 0, or else the point 0 itself. Then it follows from our assumptions concerning the general solution (18) of the differential equation (I) that there exists a doubly infinite system \(\Sigma \) of extremals passing through the point 5:
\[x = \phi(t, a, b), \quad y = \psi(t, a, b), \quad \text{(40)} \]
and satisfying the following conditions:
1. The extremal \(\mathcal{E}_0 \) is contained in the system \(\Sigma \), say for \(a = a_0, b = b_0 \).
2. The functions
\[\phi, \psi, \phi_t, \psi_t, \phi_{tt}, \psi_{tt} \]
and their first partial derivatives with respect to \(a \) and \(b \) are continuous in a domain
\[T_0 \equiv t \equiv T_1, \quad |a - a_0| \equiv d_1, \quad |b - b_0| \equiv d_1, \quad \text{(41)} \]
where \(T_0 < t_{50} < t_0 < t_1 < T_1 \) and \(d_1 \) is a sufficiently small positive constant.
3. \(\phi_t^2 + \psi_t^2 \equiv 0 \) in the domain (41).
4. The value \(t = t_5 \), to which corresponds on the extremal \((a, b)\)

\[1 \text{If } x = f(t, a, \beta, \lambda), y = g(t, a, \beta, \lambda) \text{ represents an extremal passing through the point } 5 (\text{say for } t = t_5), \text{the quantities } a, \beta, \lambda, t_5 \text{ must satisfy the two equations} \]
\[f(t_5, a, \beta, \lambda) - f(t_{50}, a_0, \beta_0, \lambda_0) = 0, \]
\[g(t_5, a, \beta, \lambda) - g(t_{50}, a_0, \beta_0, \lambda_0) = 0. \]
Solving with respect to \(t_5 \) and \(\lambda \) and remembering (20), we obtain the results stated in the text.
the point 5_1 is a function of a and b, of class C^r in the vicinity of a_0, b_0.

From the definition of t_5, according to which,
\[x_5 = \phi(t_5, a, b) \quad y_5 = \psi(t_5, a, b) \]
it follows by differentiation that
\[
\phi_t \left|_{t_5} \right. \frac{\partial l_5}{\partial a} + \phi_a \left|_{t_5} \right. = 0 \quad \psi_t \left|_{t_5} \right. \frac{\partial l_5}{\partial a} + \psi_a \left|_{t_5} \right. = 0 \quad (42)
\]
\[
\phi_t \left|_{t_5} \right. \frac{\partial l_5}{\partial b} + \phi_b \left|_{t_5} \right. = 0 \quad \psi_t \left|_{t_5} \right. \frac{\partial l_5}{\partial b} + \psi_b \left|_{t_5} \right. = 0 .
\]

5. λ is a function of a, b of class C^r in the vicinity of a_0, b_0, and the two derivatives
\[\lambda_1 = \lambda_a(a_0, b_0) \quad \lambda_2 = \lambda_b(a_0, b_0) \]
are not both zero, since $\theta_1(t)$ and $\theta_2(t)$ are two linearly independent integrals of $\Psi(a) = 0$ (compare (33)).

We shall denote by
\[F(t, a, b) \quad G(t, a, b) \quad H(t, a, b) \quad G_x(t, a, b) \quad \text{etc.} \]
the functions of t, a, b into which F, G, H, G_x, etc., change on substituting
\[x = \phi(t, a, b) \quad y = \psi(t, a, b) \]
\[x' = \phi_t(t, a, b) \quad y' = \psi_t(t, a, b) . \]

The integral K taken along any extremal (a, b) of the system Σ from the point $5((t_5) to an arbitrary point t, is a function of t, a, b, which we denote by $\chi(t, a, b)$:
\[\chi(t, a, b) = \int_{t_5}^t G(t, a, b) dt . \quad (43) \]

Finally we denote by $\Delta(t, a, b)$ the Jacobian of ϕ, ψ, χ:
\[\Delta(t, a, b) = \frac{\partial (\phi, \psi, \chi)}{\partial (t, a, b)} . \]

Then Weierstrass's function $D(t, t_5)$ differs from the Jacobian $\Delta(t, a_0, b_0)$ only by a constant factor:
\[D(t, t_5) = C \Delta(t, a_0, b_0) . \quad (44) \]
Proof: For the partial derivatives of $\chi(t, a, b)$ we obtain the following values

$$\chi_t = G = \phi_t G_x + \psi_t G_y, \quad \chi_a = \int_{t_5}^{t'} (G_x \phi_a + G_y \psi_a) \, dt - G \bigg|_{t_5}^{t} \frac{\partial t}{\partial a}. \quad (43)$$

Applying the usual integration by parts and remembering that \(G_x \bigg|_{t_5}^{t} \frac{\partial t}{\partial a} = y'U, \quad G_y \bigg|_{t_5}^{t} \frac{\partial t}{\partial a} = -x'U \),

we get

$$\chi_t = \int_{t_5}^{t'} U(\psi_t \phi_a - \phi_t \psi_a) \, dt + \left[G_x \phi_a + G_y \psi_a \right]^{t'}_{t_5} - G \bigg|_{t_5}^{t} \frac{\partial t}{\partial a}. \quad (43a)$$

The terms outside of the sign of integration reduce to

$$G_x \phi_a + G_y \psi_a \bigg|_{t_5}^{t'}, \quad \text{on account of (42).}$$

A similar transformation applies to χ_a.

We substitute these values of χ_t, χ_a, χ_b in $\Delta(t, a, b)$ and then put $a = a_0, b = b_0$, which makes $t_5 = t_{50}$.

Writing for brevity

$$A = \psi_t \phi_a - \phi_t \psi_a \bigg|_{a=a_0}^{b=b_0}, \quad B = \psi_t \phi_b - \phi_t \psi_a \bigg|_{a=a_0}^{b=b_0},$$

$$M = \int_{t_5}^{t'} U A \, dt, \quad N = \int_{t_5}^{t'} U B \, dt,$$

we obtain for the Jacobian the expression\(^2\)

$$\Delta(t, a_0, b_0) = MB - NA. \quad (45)$$

It is now easy to establish the relation (44); for if we substitute in one of the differential equations (8) for x, y the functions $\phi(t, a, b), \psi(t, a, b)$, differentiate with respect to a and then put $a = a_0, b = b_0$, we get

$$\Psi(A) + \lambda_1 U = 0; \quad \Psi(B) + \lambda_2 U = 0;$$

similarly:

\(^1\)Compare equation (18) of §25.

Hence if we set
\[u = \lambda_2 A - \lambda_1 B, \]
\[v = -\frac{\lambda_1}{\lambda_1^2 + \lambda_2^2} A - \frac{\lambda_2}{\lambda_1^2 + \lambda_2^2} B, \]
\(\bar{u}\) and \(\bar{v}\) satisfy the same differential equations as the functions \(u, v\) introduced under b). Moreover, \(\bar{u}\) and \(\bar{v}\) vanish for \(t = t_{50}\), since, on account of (42),
\[A(t_{50}) = 0, \quad B(t_{50}) = 0. \]

Hence it follows that
\[\bar{u} = c u(t, t_{50}), \quad \bar{v} = v(t, t_{50}) + c'u(t, t_{50}); \]
where \(c\) and \(c'\) are constants. Taking now \(D(t, t_{50})\) in the form corresponding to (37) we obtain immediately the relation (44).

\(d\) Mayer's law of reciprocity for isoperimetric problems: The problem: To maximize or minimize the integral \(J\) while the integral \(K\) remains constant, and the "reciprocal problem": To maximize or minimize \(K\) while \(J\) remains constant, lead to the same totality of extremals.\(^1\)

For, if we distinguish the quantities referring to the second problem by a stroke and make the substitution
\[\bar{\lambda} = \frac{1}{\lambda}, \quad (46) \]
we have
\[H = \frac{H}{\bar{\lambda}}. \]
which shows that the differential equations for the two problems become identical by the substitution \(\bar{\lambda} = 1/\lambda\).

Now suppose that in both problems the given end-points are the same and that, moreover, the values prescribed in the two problems for the second integral are such that one and the same extremal \(\mathcal{C}_0\), for which \(\lambda_0 \neq 0\), satisfies the

\(^1\)This remark had already been made by Euler; see Stäckel, Abhandlungen aus der Variationsrechnung, I, p. 102.
initial conditions for both problems. Then the equivalence of the two problems still holds for the second variation.

For since

\[H_1 = \frac{H}{\lambda}, \quad (47) \]

\(H_1 \) has a permanent sign so long as \(H_1 \) has, and vice versa. The sign is the same if \(\lambda \) is positive, the opposite if \(\lambda \) is negative.

Further, the conjugate to the point 0 is the same in both problems:

\[\vec{t}_0 = t'_0. \quad (48) \]

For the system \(\Sigma \) of extremals through the point 0 is the same in both problems.

Besides

\[\vec{U} = T; \]

hence since the extremal \(\xi_0 \) satisfies the differential equation

\[T + \lambda_0 U = 0, \]

we have, along \(\xi_0 \):

\[\vec{U} = -\lambda_0 U, \]

and therefore, according to (45),

\[\Delta(t, a_0, b_0) = -\lambda_0 \Delta(t, a_0, b_0), \quad (49) \]

which proves our statement.

This result is due to A. Mayer, and has been called by him the law of reciprocity for isoperimetric problems.\(^1\)

e) Example XIII (see p. 210): From the expression (12) for \(H_1 \) it follows that \(\lambda \) must be negative in case of a maximum. Equation (13) shows, then, that the vector from any point of the curve to the center must be to the left\(^2\) of the positive tangent. Of the two arcs which satisfy the differential equation and the initial condi-

\(^1\)Mathematische Annalen, Vol. XIII (1878), p. 60; compare also Kneser, Lehrbuch, pp. 131 and 136.

\(^2\)If, as we always suppose, the positive \(y \)-axis lies to the left of the positive \(x \)-axis.
tions only the one above the \(x \)-axis satisfies this condition. This are may be represented in the form

\[
\begin{align*}
x &= a_0 - \lambda_0 \cos t, \\
y &= \beta_0 - \lambda_0 \sin t, \\
t_0 &\leq t \leq t_1 < t_0 + 2\pi.
\end{align*}
\] (50)

Hence we obtain

\[
\begin{align*}
\theta_1 (t) &= - \lambda_0 \cos t, \\
\theta_2 (t) &= - \lambda_0 \sin t, \\
\theta_3 (t) &= \lambda_0.
\end{align*}
\]

Again,

\[
U = \frac{x' y'' - x'' y'}{(1 + x'^2 + y'^2)^{\frac{3}{2}}},
\]

which is equal to \(-1/\lambda_0\) along \(\mathcal{C}_0 \), according to (13). This leads to the following expression for \(D(t, t_0) \):

\[
D(t, t_0) = 4\lambda^2 \sin \omega (\sin \omega - \omega \cos \omega),
\]

where

\[
\omega = \frac{t - t_0}{2}.
\]

Hence we easily infer that the parameter \(t_0' \) of the conjugate point is:

\[
t_0' = t_0 + 2\pi.
\]

The arc \(\mathcal{C}_0 \) satisfies, therefore, the condition

\[
t_1 < t_0'.
\]

On the other hand, in the problem to maximize the integral

\[
\int_{t_0}^{t_1} \left[\frac{1}{2} (xy' - x' y) + \lambda_0 \sqrt{x'^2 + y'^2} \right] dt,
\]

without an isoperimetric condition, the conjugate point \(t_0'' \) is determined by the equation

\[
\Theta(t, t_0) \equiv - \lambda_0^2 \sin (t - t_0) = 0,
\]

whence\(^1\)

\[
t_0'' = t_0 + \pi.
\]

\(^1\) The same result follows from the geometrical interpretation of Jacobi's criterion: The extremals through \(A \) are circles of radius \(\lambda_0 \); their envelope is a circle about \(A \) of radius \(2\lambda_0 \), which is touched by each circle \(\mathcal{C} \) through \(A \) at the point diametrically opposite to \(A \) on \(\mathcal{C} \).
so that, in accordance with the general theory,
$$t_0' > t_0'' .$$

f) Example XIV (see p. 211): We have here

$$H_1 = \frac{y + \lambda}{\left(1 + x'^2 + y'^2\right)^3} ; \quad (53)$$

hence for a minimum it is necessary that

$$y + \lambda > 0 .$$

Of the two solutions (14) of the differential equation (I) which satisfy the initial conditions, only the one in which the upper sign is taken in the expression for $y + \lambda$, fulfils this condition.

For this solution we obtain

$$\theta_1(t) = \beta_0 \sinh t , \quad \theta_2(t) = \beta_0 (t \sinh t - \cosh t) , \quad \theta_3(t) = \beta_0 ,$$

$$U = \frac{x' y'' - x'' y'}{\left(1 + x'^2 + y'^2\right)^3} = \frac{1}{\beta_0 \cosh^2 t} .$$

Hence follows

$$\int_{t_0}^{t} U \theta_1 dt = \left[- \frac{1}{\cosh t} \right]_{t_0}^t ,$$

$$\int_{t_0}^{t} U \theta_2 dt = \left[- \frac{t}{\cosh t} \right]_{t_0}^t ,$$

$$\int_{t_0}^{t} U \theta_3 dt = \left[\tanh t \right]_{t_0}^t ,$$

and the expression for $D(t, t_0)$ reduces to

$$D (t, t_0) = \beta_0^2 \left(2 \cosh (t - t_0) - 2 - (t - t_0) \sinh (t - t_0) \right) , \quad (54)$$

or, if we put

$$t - t_0 = 2\omega ,$$

$$D (t, t_0) = 4\beta_0^2 \sinh \omega (\sinh \omega - \omega \cosh \omega) . \quad (54a)$$

The function $\sinh \omega$ is positive for every positive ω, and the function

$$\phi (\omega) = \sinh \omega - \omega \cosh \omega$$

is negative for every positive ω, since $\phi(\omega) = 0$ and

$$\phi' (\omega) = - \omega \sinh \omega .$$

Hence there exists no conjugate point, and the third necessary condition is always satisfied.

The same result is even more easily obtained by using Kneser's method:

If we let the point 5 coincide with the point 0 and choose for the two parameters a, b the quantities

$$a = t, \quad b = \beta,$$

the system of extremals through the point 0 is represented by the equations

$$x - x_0 = b(t - a), \quad y - y_0 = b(\cosh t - \cosh a),$$

Hence we obtain

$$\chi(t, a, b) = \int_a^t \left(x'^2 + y'^2 \right) dt = b(\sinh t - \sinh a),$$

and therefore

$$\Delta(t, a, b) = b^2 \left[2 \cosh (t - a) - 2 - (t - a) \sinh (t - a) \right],$$

which for $a = a_0(= t_0), b = b_0(= \beta_0)$ reduces to the expression (54) for $D(t, t_0)$.

§42. SUFFICIENT CONDITIONS

The argumentation of §28 applies, with slight modifications, to the present problem, and leads to a fourth necessary condition for a minimum:

1. Compare Kneser. Lehrbuch, p. 143. 2. Compare the introductory lines of §41, c.

3. These modifications are:
 1. The variations ξ, η must now satisfy the isoperimetric condition:

 $$K_{04} + K_{12} = K_{02},$$

 in addition to the conditions stated in §28, a). To obtain such variations, let

 $$p_f, q_k (i = 1, 2, 3)$$

 be arbitrary functions of t of class C satisfying the conditions:

 $$p_1(t_0) = 0, \quad q_1(t_0) = 0, \quad p_1(t_2) = 0, \quad q_1(t_2) = 0,$$

 $$p_2(t_2) q_3(t_2) - p_3(t_2) q_2(t_2) = 0, \quad N_f = 0,$$

 N_f having the same signification as in §39, a). Then the functions

 $$\xi = \epsilon_1 p_1 + \epsilon_2 p_2 + \epsilon_3 p_3, \quad \eta = \epsilon_1 q_1 + \epsilon_2 q_2 + \epsilon_3 q_3$$

 will satisfy all the required conditions if $\epsilon_1, \epsilon_2, \epsilon_3$ are determined by the equations

 $$\xi(t_2) = \xi_2, \quad \eta(t_2) = \eta_2, \quad K_{04} - K_{02} = - K_{12},$$

 which is always possible under the above assumptions concerning p_f, q_k.

2. ΔJ has to be replaced by $\Delta J + \lambda \Delta K$.
If we denote by \(E(r, y; p, q; \tilde{r}, \tilde{q}, \lambda) \) the function derived from \(H = F + \lambda G \) exactly in the same manner in which the \(E \)-function for the unconditioned problem is derived from the function \(F \) (see equation (48) of §28), then the fourth necessary condition for a minimum consists in the inequality

\[
E(x, y; p, q; \tilde{r}, \tilde{q} | \lambda_0) \leq 0
\]

(IV)

which must be fulfilled along the arc \(C_0 \) for every direction \(\tilde{r}, \tilde{q} \).

The question arises now whether the four conditions (I)–(IV) are sufficient for a minimum.

a) Weierstrass’s construction: Let

\[
\bar{C}: \quad x = \bar{\phi}(s), \quad y = \bar{\psi}(s), \quad s_0 \leq s \leq s_1, \quad (57)
\]

be any curve of class \(C' \), different from \(C_0 \), joining the points 0 and 1, lying in the region \(\Re \) and satisfying likewise the isoperimetric condition

\[
\bar{K}_{01} = t;
\]

for \(s \) we take for simplicity the arc of the curve \(\bar{C} \).

We propose to express the difference

\[
\Delta J = J_{01} - J_{01}
\]

in terms of the \(E \)-function.

For this purpose we take a point 5 on the continuation of the arc \(C_0 \) beyond 0, but not on \(\bar{C} \), and consider with Kneser the doubly infinite system \(\Sigma \) of extremals through the point 5:

\[
\widetilde{C}: \quad x = \tilde{\phi}(t, a, b), \quad y = \tilde{\psi}(t, a, b) \quad (58)
\]

introduced in §41, c), the arc \(C_0 \), being given by

\[
x = \phi(t, a_0, b_0), \quad y = \psi(t, a_0, b_0), \quad t_0 \leq t \leq t_1.
\]

1Weierstrass, Lectures, 1879.
2In the same sense as in §28, a).
3Compare §24, b) and §39.
4Weierstrass considers instead the set of extremals through 0. Compare p. 240, footnote 1.
We shall say that for the curve \(\mathcal{C} \) *Weierstrass's construction is possible*\(^1\) if the point 5 can be so chosen that the following conditions are fulfilled:

A) Through every point 2 of the curve \(\mathcal{C} \) there passes a uniquely defined extremal \(\mathcal{C}_2 \) of the system \(\Sigma \):

\[
\mathcal{C}_2: \quad x = \phi(t, a_2, b_2) , \quad y = \psi(t, a_2, b_2) , \quad (59)
\]

lying wholly in the region \(\mathcal{B} \) and such that the integral \(K \) taken along \(\mathcal{C}_2 \) from 5 to 2 has the same value as when taken from 5 to 0 along \(\mathcal{C}_0 \) and then from 0 to 2 along \(\mathcal{C} \):

\[
K_{52} = K_{50} + K_{02} ; \quad (60)
\]

and when 2 coincides with 0 or 1, the extremal \(\mathcal{C}_2 \) coincides with \(\mathcal{C}_0 \).

This means analytically: There exists a system of three single-valued functions

\[
t = t(s) , \quad a = a(s) , \quad b = b(s)
\]

such that

\[
\phi(t(s), a(s), b(s)) = \bar{\phi}(s) ,
\]
\[
\psi(t(s), a(s), b(s)) = \bar{\psi}(s) ,
\]
\[
\chi(t(s), a(s), b(s)) = \chi(s) + K_{50}
\]

where \(\chi(t, a, b) \) has the same signification as in equation \((43) \), and

\[
\bar{\chi}(s) = \int_{s_0}^{s} G(\bar{\phi}(s), \bar{\psi}(s), \bar{\phi}'(s), \bar{\psi}'(s)) \, ds .
\]

Moreover:

\[
t(s_0) = t_0 , \quad a(s_0) = a_0 , \quad b(s_0) = b_0 ,
\]
\[
t(s_1) = t_1 , \quad a(s_1) = a_0 , \quad b(s_1) = b_0 . \quad (62)
\]

B) The three functions \(l(s), a(s), b(s) \) are of class \(C' \) in \((s_0, s_1) \).

\(^1\)Compare Kneser, Lehrbuch, p. 135.
C) If s_2 be any value of s of the interval (s_0, s_1) and we denote:

$$ t_2 = t(s_2), \quad a_2 = a(s_2), \quad b_2 = b(s_2), \quad t_{32} = t_3(a_2, b_2), $$

then the functions

$$ \phi, \psi, \phi_1, \psi_1, \phi_{11}, \psi_{11} $$

and their first partial derivatives with respect to a and b are continuous in the domain

$$ t_{32} \equiv t \equiv t_2, \quad |a - a_2| \equiv d_2, \quad |b - b_2| \equiv d_2, $$

d_2 being a sufficiently small positive quantity, and moreover the function $\lambda(a, b)$ is continuous at (a_2, b_2).

These conditions admit of the following geometrical interpretation:

We adjoin to the two equations (58) the equation

$$ z = \chi(t, a, b). \tag{58a} $$

Interpreting then x, y, z as rectangular co-ordinates in space, the equations (58) and (58a) represent a curve in space, C', whose projection upon the x, y-plane is the extremal C, and whose z-co-ordinate indicates at every point l the value of the integral K taken along C from the point 5 to the point l.

We thus obtain, corresponding to the system Σ, a doubly infinite system Σ' of curves in space, all passing through the point 5:

$$ x = x_5, \quad y = y_5, \quad z = 0. $$

The particular curve C'_0 adjoined to the curve C_0 passes, besides, through the two points $0'$ and $1'$:

$$ 0': \quad x = x_0, \quad y = y_0, \quad z = z_0 \equiv K_{50}, $$

$$ 1': \quad x = x_1, \quad y = y_1, \quad z = z_1 \equiv K_{50} + l. $$

In like manner we adjoin to the curve C a curve in space,

1 For the notation see §41, c).

2 Compare §41, c).

3 Weierstrass, Lectures, 1879; compare also Kneser, Lehrbuch, p. 140.
by combining with the two equations (57) the third equation
\[z = \chi(s) + K_{50} . \]

The curve \(\mathcal{C}' \) passes likewise through the points \(0' \) and \(1' \).

The above assumptions A) and B) may then be couched in geometrical language as follows:

Through every point \(2' \) of the curve \(\mathcal{C}' \) there passes a uniquely defined curve of the set \(\Sigma' \); it changes continuously as the point \(2' \) describes the curve \(\mathcal{C}' \) from \(0' \) to \(1' \) and coincides with \(\mathcal{C}_0' \) when \(2' \) coincides with \(0' \) or \(1' \).

Under the assumption that Weierstrass's construction is possible for the curve \(\mathcal{C} \), we consider as in §20, b) and §28, d) the integral \(J \) taken from 5 to an arbitrary point \(2(s = s_2) \) of \(\mathcal{C} \) along the uniquely defined extremal \(\mathcal{C}_{2} \), and from 2 to 1 along \(\mathcal{C} \), and denote its value regarded as a function of \(s_2 \) by \(S(s_2) \):

\[S(s_2) = J_{52} + J_{21} . \]

Then as in §20, b)
\[\Delta J = - \left[S(s_1) - S(s_0) \right] . \]

The integral \(K \) taken along the same path has the constant value \(l + K_{50} \):
\[K_{50} + l = K_{52} + K_{21} , \]

since \(K_{01} = K_{02} + K_{21} = l \) and \(K_{52} = K_{02} + K_{50} \). Hence it follows that we may write
\[\frac{dS(s_2)}{ds_2} = \left(\frac{dJ_{52}}{ds_2} + \lambda_2 \frac{dK_{52}}{ds_2} \right) + \left(\frac{dJ_{21}}{ds_2} + \lambda_2 \frac{dK_{21}}{ds_2} \right) . \] \hspace{1cm} (63)

Proceeding now as in §28, d) and remembering that the extremal \(\mathcal{C}_{2} \) satisfies the differential equations
\[H_x - \frac{d}{dt} H_x = 0 , \quad H_y - \frac{d}{dt} H_y = 0 , \]

where
\[H = F + \lambda_2 G , \]
we obtain the result
§421

Isoperimetric Problems 237

dS(s_2) \over ds_2 = - E(x_2, y_2; \rho_2, q_2; \bar{p}_2, \bar{q}_2; \lambda_2)

the direction-cosines \(p_2, q_2 \) and \(\bar{p}_2, \bar{q}_2 \) referring to the curves \(C_2 \) and \(\bar{C} \) respectively.

The result can again easily be extended to curves \(C \) having a finite number of corners.

Thus we finally reach the result\(^1\) that whenever Weierstrass's construction is possible for the curve \(C \), Weierstrass's theorem also holds:

\[\Delta J = \int_{s_0}^{s_1} E(\bar{x}_2, \bar{y}_2; \rho_2, q_2; \bar{p}_2, \bar{q}_2; \lambda_2) ds_2 \]

(64)

b) Hence we infer that \(\Delta J \geq 0 \) whenever

\[E(\bar{x}_2, \bar{y}_2; \rho_2, q_2; \bar{p}_2, \bar{q}_2; \lambda_2) \geq 0 \quad \text{throughout} \quad (s, s_i) . \]

If, moreover, the \(E \)-function vanishes only when \(p_2 = \bar{p}_2, \ q_2 = \bar{q}_2 \), and if besides

\[\Delta (t_2, a_2, b_2) = 0 \quad \text{along} \quad \bar{C} , \]

\(\Delta J \) cannot be zero, and therefore

\[\Delta J > 0 . \]

Proof:\(^2\) If we differentiate equations (61) with respect to \(s \), we obtain

\[\phi_t \frac{dt}{ds} + \phi_a \frac{da}{ds} + \phi_b \frac{db}{ds} = \phi' , \]

\[\psi_t \frac{dt}{ds} + \psi_a \frac{da}{ds} + \psi_b \frac{db}{ds} = \psi' , \]

\[\chi_t \frac{dt}{ds} + \chi_a \frac{da}{ds} - \chi_b \frac{db}{ds} = \chi' . \]

Now if \(p_2 = \bar{p}_2, \ q_2 = \bar{q}_2 \), we have at the point 2:

\[\phi' = k \phi_t , \quad \psi' = k \psi_t . \quad (k > 0) \]

and therefore, since\(^3\)

\(^1\)Weierstrass, Lectures, 1879; compare Kneser, Lehrbuch, p. 131.

\(^2\)Due to Kneser, Lehrbuch, p. 131.

\(^3\)Compare §41, c).
Calculus of Variations

\[\ddot{x}' = G, \quad \dot{x}' = k \dot{x}', \]
on account of the homogeneity of \(G \).

Substituting these values in the above equations, we see that either

\[\Delta(t_2, a_2, b_2) = 0, \]
or else

\[\frac{da}{ds} = 0, \quad \frac{db}{ds} = 0. \]

Hence if

\[\Delta(t_2, a_2, b_2) \neq 0 \quad \text{along} \ t \in \xi, \]
a_2 and \(b_2 \) must be constant along \(\xi \), and, on account of (62), their constant values must be

\[a(s) = a_0, \quad b(s) = b_0, \]
that is: \(\xi \) is identical with the extremal \(\xi_0 \), which is in contradiction to our assumption that \(\xi \) shall not coincide with \(\xi_0 \). Hence the statement is proved.

c) In many examples the above theorem is sufficient to establish the existence of an extremum.

Example XIII (see p. 229): The system \(\Sigma \) is the totality of circles through the point 5:

\[
\begin{align*}
x - x_5 &= b (\cos t - \cos a), \\
y - y_5 &= b (\sin t - \sin a),
\end{align*}
\]
the parameters being \(a = t_5, b = -\lambda \).

The ordinate \(z \) erected at the point \(t \) of the circle \((a, b)\) is the length of the arc of this circle from the point 5 \((t = a)\) to the point \(t \):

\[z = |b(t - a)|. \]

The system \(\Sigma' \) of curves in space is therefore a system of helices.

Through every point \((x, y, z)\) for which

\[z > \sqrt{(x - x_5)^2 + (y - y_5)^2} > 0, \]

1This means geometrically: If \(c_5 \) touches \(\xi \), then also \(c_5' \) touches \(\xi' \).

2The result remains true if \(\Delta(t_2, a_2, b_2) = 0 \) at a finite number of points.
there passes one and but one curve of the system \(\Sigma \) for which
\[
\alpha < t < \alpha + 2\pi, \quad b > 0.
\]
(68)

Moreover the inverse functions \(t, \alpha, b \) of \(x, y, z \) thus defined are regular\(^1\) in the vicinity of every point \((x_2, y_2, z_2)\) satisfying the inequality (67), and take, at the points \((x_0, y_0, z_0)\) and \((x_1, y_1, z_1)\) the values \(t_0, \alpha_0, b_0 \) and \(t_1, \alpha_0, b_0 \) respectively.\(^2\)

Now we join the two points 0 and 1 by an ordinary curve \(\bar{C} \), whose length has the given value \(l \) and which does not pass through 5.

Then for every point 2 of \(\bar{C} \) the sum of the lengths of the arcs 50 of the circle \(\bar{C}_0 \) and of the arc 02 of \(\bar{C} \) is greater than—never equal to—the distance between the two points 5 and 2, which in its turn is greater than zero, since \(\bar{C} \) does not pass through 5, \(i.e. \),

the condition

\(^1\)Proof: On setting
\[
\frac{t + \alpha}{2} = \gamma, \quad \frac{t - \alpha}{2} = \omega
\]

the equations for the determination of \(t, \alpha, b \) become
\[
\begin{align*}
x - x_3 &= -2b \sin \gamma \sin \omega, \\
y - y_5 &= 2b \cos \gamma \sin \omega, \\
z &= 2b \omega,
\end{align*}
\]
(69)

Hence if we put
\[
\frac{1}{2} (x - x_3)^2 + (y - y_5)^2 = u,
\]

and suppose \(0 < \omega < \pi \), we get
\[
u = 2b \sin \omega,
\]

and therefore we obtain for the determination of \(\omega \) and \(\gamma \) the equations:
\[
\frac{\sin \omega}{\omega} = \frac{v}{\gamma}, \quad y - y_5 - i(x - x_3) = \omega e^{i\gamma},
\]
(70)

where \(v = u \cdot z \). Since, according to equation (67), \(0 < v < 1 \), the transcendental equation for \(\omega \) has one and but one solution in the interval: \(0 < \omega < \pi \).

Moreover if \(0 < v < 1 \) be any particular value of \(v \), this solution \(\omega \) is regular in the vicinity of \(v = v_2 \), since the derivative of the function \(\sin \omega / \omega \) is \(\pm 0 \) for \(0 < \omega < \pi \).

Similarly the equation for \(\gamma \) has a unique solution in the interval \(0 \leq \gamma < 2\pi \), which is a regular function of \(x, y \) in the vicinity of every point \((x_2, y_2)\) different from \((x_2, y_2)\).

The values of \(\omega \) and \(\gamma \) being found, the quantities \(t, \alpha, b \) are obtained immediately. They satisfy the inequalities (68) and are regular functions of \(x, y, z \) in the domain (67).

\(^2\)For, of the two arcs of circles of the system \(\Sigma \) which pass through the point \((x, y)\) and have the given length \(z \), the one is described in the positive sense (so that the center is to the left) if we start from the point 5, the other in the negative sense. For the former the inequalities (68) are fulfilled, for the latter, they are not.

On the other hand the arcs 50 and 51 of \(\bar{C}_0 \), are, according to §11, \(\circ \), described in the positive sense, and are therefore contained in the above system of uniquely defined solutions.
\[z_2 > 1 \quad (x_2 - x_1)^2 + (y_2 - y_1)^2 > 0 \]

is fulfilled.\(^1\)

Hence it follows that Weierstrass's construction is possible for the curve \(\overline{C} \).

Further we find easily that

\[E(x_2, y_2; \bar{p}_2, q_2; \bar{p}_2, q_2 \mid \lambda_2) = \lambda_2 (1 - \cos a_2) \tag{71} \]

where \(a_2 \) is the angle between the positive tangents to the two curves \(\overline{C}_2 \) and \(\overline{C} \) at the point 2.

\(\lambda_2 \) is negative in \((s, s_0)\) (since it is equal to \(-b_2\)) and \(a_2 \) cannot vanish identically in \((s, s_1)\).

For, according to (51),

\[\Delta(t_2, a_2, b_2) = 4 \lambda_2^2 \sin \omega_2 (\sin \omega_2 - \omega_2 \cos \omega_2), \]

and therefore

\[\Delta(t_2, a_2, b_2) \geq 0 \quad \text{in} \quad (s, s_1), \]

since \(0 < \omega_2 < \pi \).

Hence it follows that

\[\Delta J < 0, \]

and thus we reach the result that the arc of circle \(\overline{C}_0 \) furnishes a greater value for the area \(J \) than any other ordinary curve of the same length which can be drawn between the two points 0 and 1.

The same reasoning, slightly modified,\(^2\) leads to the theorem

\(^1\)If we had taken, instead of the system of extremals through \(t \), the system through 0, the above inequality would be true only with certain exceptions which would require a special discussion. Compare p. 233, footnote 4.

\(^2\)The curve \(\bar{c} \) is now closed; accordingly the points 0 and 1 coincide. If we let also the point 5 coincide with 0 and consider two points 3 and 4 of \(\bar{c} \) for which \(s_0 < s_3 < s_4 < s_1 \), we obtain by the same reasoning as above

\[S(s_1) - S(s_3) = - \int_{s_3}^{s_1} \lambda_2 (1 - \cos a_2) \, ds_2. \]

Now let \(s_3 \) and \(s_4 \) approach \(s_0 \) and \(s_1 \) respectively, then we get

\[J_{01} - J_{01} = - \int_{s_0}^{s_1} \lambda_2 (1 - \cos a_2) \, ds_2, \]

\(J_{01} \) being the area of a circle of the given perimeter \(t \). Hence

\[J_{01} < J_{01}. \]

The previous method is not applicable when the curve \(\bar{c} \) begins at the point 0 with a segment of a straight line, because then the inequality (65) is not satisfied for the point 3. In this case, take the point 3 beyond the end-point 6 of this rectilinear segment and let 3 approach 6. Then \(S(s_3) \) approaches again \(J_{01} \) with the same result as before.
that among all closed curves of given length the circle includes the maximum area.

Example XIV (see p. 231): Any admissible curve \(C \) being given, we choose the point 5 so that for every point 2 of \(C \)
\[
x_2 > x_5.
\]

Then through every point 2' of the space curve \(C \) one and but one curve of the system\(^1\) \(\Sigma' \):

\[
\begin{align*}
x - x_5 &= b(t - a), \\
y - y_5 &= b(\cosh t - \cosh a), \\
z &= b(\sinh t - \sinh a),
\end{align*}
\]

(72)

\(x_2 \) is drawn for which
\[
t > a, \quad b > 0.
\]

This follows from the determination of constants given in \(\S 39, d \). At the same time it is easily seen, in the same manner as in the preceding example, that all the conditions for Weierstrass's construction are fulfilled.

Further we find
\[
\mathbf{E}(x_2, y_2; p_2, q_2; \bar{p}_2, \bar{q}_2 | \lambda_2) = (y_2 + \lambda_2)(1 - \cos \alpha_2). \quad (73)
\]

where \(\alpha_2 \) has the same signification as in (71). But, according to \(\S 41, f \),
\[
y_2 + \lambda_2 = b_2 \cosh t_2 > 0,
\]

since \(b_2 > 0 \), and \(\alpha_2 \) cannot vanish identically along \(C \) since
\[
\Delta(t_2, \alpha_2, \bar{b}_2) \neq 0
\]

along \(C \). Hence we infer that
\[
J_{01} > J_{01}, \quad i.e.,
\]

the catenary \(C \), has its center of gravity lower than any other ordinary curve of equal length which can be drawn between the two points 0 and 1.

d) "Field" about the arc \(C_0' \): Returning now to the general case, we meet with a peculiar difficulty which has

\(^1\) Compare equations (55) and (56).
no analogue in the unconditioned problem. Suppose that for the arc \mathcal{C}_0, which we assume to be free from multiple points, the conditions

$$H_1 > 0 \quad (\text{II}')$$

and

$$t_1 < t_0' \quad (\text{III}')$$

are fulfilled.

Does it follow, then, that the arc \mathcal{C}_0 can be surrounded by a neighborhood (ρ) such that for every admissible curve \mathcal{C} which lies wholly in this neighborhood, Weierstrass's construction is possible?

In the unconditioned problem and under the analogous assumptions, this question could be answered in the affirmative: for the isoperimetric problem the question has not yet been answered.

Only the following milder statement can be proved:

If conditions (II') and (III') are fulfilled, a neighborhood $^2 (\rho')$ of the space curve \mathcal{C}_0' adjoined to the arc \mathcal{C}_0 can be assigned such that Weierstrass's construction is possible for every admissible curve \mathcal{C} whose corresponding space curve lies wholly in the neighborhood (ρ') of \mathcal{C}_0'.

The proof proceeds by the following steps:

1. If conditions (II') and (III') are fulfilled, we can take the point 5 so near to 0 that for the system of extremals through the point 5 not only the conditions enumerated in §41, (c) are satisfied, but, besides, the following:

$$\Delta (t, a_0, b_0) \equiv 0 \quad \text{for} \quad t_0 \equiv t \equiv t_1 \quad (74)$$

1Compare §28, d) and §34.

2We understand by the neighborhood (ρ') of the arc \mathcal{C}_0' the portion of space swept out by a sphere of radius ρ' whose center describes the arc \mathcal{C}_0'.

3For the proof remember (44), and notice that the condition for a permanent sign of $\delta^2 J$ may also be written

$$D (t_1, t) \equiv 0 \quad \text{for} \quad t_0 \equiv t < t_1,$$

(compare §41, a)). The statement follows then by a slight modification of the analogous proof given by C. Jordan, Cours d'Analyse, Vol. III, No. 393.
2. By an extension of the method of §34 we can now prove the existence of a "field" \mathcal{S}' about the arc \mathcal{C}':

If \mathcal{D}_k denotes the domain

$$t_0 - \epsilon \equiv t \equiv t_1 + \epsilon,$$

and \mathcal{S}'_k the image of \mathcal{D}_k in the x, y, z-space defined by the transformation

$$x = \phi(t, a, b), \quad y = \psi(t, a, b), \quad z = \chi(t, a, b),$$

then the two positive quantities k and ϵ can be taken so small that the correspondence between \mathcal{D}_k and \mathcal{S}'_k is a one-to-one correspondence, and that at the same time

$$\Delta(t, a, b) \equiv 0 \quad \text{(75)}$$

in \mathcal{D}_k.

The single-valued functions t, a, b of x, y, z thus defined are of class C' in \mathcal{S}'_k, and a neighborhood (ρ') of the arc \mathcal{C}_0' can be inscribed in \mathcal{S}'_k.

It follows now easily that for every admissible curve $\bar{\mathcal{C}}$ whose adjoined space curve lies wholly in the "field" \mathcal{S}', Weierstrass's construction is possible.

c) Sufficient conditions for a semi-strong minimum:

Suppose now that in addition to the conditions (II') and (III') the inequality

$$E(x, y; p, q; \tilde{p}, \tilde{q}|\lambda) > 0 \quad \text{(IV')}$$

holds along the arc \mathcal{C}_0 for every direction \tilde{p}, \tilde{q} except $\tilde{p} = p$, $\tilde{q} = q$.

Then it follows from continuity considerations that we can take k so small that

$$E(x_2, y_2; p_2, q_2; \tilde{p}_2, \tilde{q}_2|\lambda_2) > 0$$

along every admissible curve $\bar{\mathcal{C}}$ satisfying the above additional condition, except at the points where $p_2 = p_2$, $q_2 = q_2$, at which E vanishes.
From Weierstrass's theorem and the inequality (75) it follows now that for every such curve C

$$\Delta J > 0.$$

Hence, if we modify our original definition of a minimum and say: "The arc C_0 furnishes a semi-strong minimum for the integral J if there exists a neighborhood (ρ') of the adjoined arc C_0' such that $\Delta J \geq 0$ for every admissible curve \tilde{C} whose adjoined space curve \tilde{C}' lies wholly in this neighborhood $(\rho')"," we can enunciate the

Theorem: The extremal C_0 (which we suppose free from multiple points) furnishes a semi-strong minimum for the integral J with the isoperimetric condition $K = 1$, if the conditions (II'), (III'), (IV') are fulfilled.

It must, however, be admitted that the restriction which we impose in the "semi-strong" minimum upon the variations of the arc C_0, is rather artificial and alters completely the character of the original problem.¹

¹Weierstrass, Lectures, 1882; compare Kneser, Lehrbuch, §§36 and 38.

Mayer's law of reciprocity extends to the sufficient conditions for a semi-strong extremum, since, in the notation of §44, $E = 1$ λE. Compare Kneser, Lehrbuch, §36.

²As a matter of fact the preceding theorem does not contain a solution of the isoperimetric problem originally proposed, but a solution of the following problem, which is usually (but unjustly) considered as equivalent to the isoperimetric problem, viz.:

Among all curves in space which pass through the two points

$$x = x_0, \quad y = y_0, \quad z = 0$$

and

$$x = x_1, \quad y = y_1, \quad z = l$$

and satisfy the differential equation

$$\frac{dz}{dt} = G(x', y', x, y),$$

to determine the one which maximizes or minimizes the integral

$$J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt.$$
If a function \(f(x) \) is defined for an interval \((ab)\), it has in this interval a lower (upper) limit, finite or infinite, which may or may not be reached. If, however, the function is continuous in \((ab)\), then the lower (upper) limit is always finite and is always reached at some point of the interval: the function has a minimum (maximum) in the interval.

Similarly, if the integral
\[
J = \int_{a}^{b} F(x, y, x', y') \, dt
\]
is defined for a certain manifoldness \(\mathfrak{M} \) of curves, we can, in general, not say \textit{a priori} whether the values of the integral have a minimum or maximum. But the question arises whether it is not perhaps possible to impose such restrictions either upon the function \(F' \) or upon the manifoldness \(\mathfrak{M} \) (or upon both), that the existence of an extremum can be ascertained \textit{a priori}.

In a communication to the "Deutsche Mathematiker-Vereinigung" (\textit{Jahresberichte}, Vol. VIII (1899), p. 184), HILBERT has answered this question in the affirmative. He makes the following general statement:

"Eine jede Aufgabe der Variationsrechnung besitzt eine Lösung, sobald hinsichtlich der Natur der gegebenen Grenzbedingungen geeignete Annahmen erfüllt sind und nötigenfalls der Begriff der Lösung eine sinngemässe Erweiterung erfährt," and illustrates the gist of his method by the example of the shortest line upon a surface and by Dirichlet's
problem. In a subsequent course of lectures (Göttingen, summer, 1900) he gave the details of his method for the shortest line on a surface, and some indications\(^1\) concerning its extension to the problem of minimizing the integral

\[
J = \int_{x_0}^{x_1} F(x, y, y') \, dx.
\]

We propose to apply, in this last chapter, Hilbert's method to the problem of minimizing the integral\(^2\)

\[
J = \int_{t_0}^{t_1} F(x, y, x', y') \, dt,
\]

with fixed end-points, under the following assumptions, where \(\mathcal{R}\) denotes, as before, a region of the \(x, y\)-plane, and \(\mathcal{R}_0\) a finite closed region contained in the interior of \(\mathcal{R}\):

A) The function \(F(x, y, x', y')\) is of class \(C^{r+1}\) and satisfies the homogeneity condition

\[
F(x, y, kx', ky') = kF(x, y, x', y'), \quad k > 0
\]

throughout the domain

\[
\mathcal{T}: \quad (x, y) \in \mathcal{R}, \quad x'^2 + y'^2 \neq 0.
\]

B) The function \(F(x, y, \cos \gamma, \sin \gamma)\) is positive throughout the domain

\[
\mathcal{T}_0: \quad (x, y) \in \mathcal{R}_0, \quad 0 \leqslant \gamma \leqslant 2\pi.
\]

C) The function \(F_1(x, y, \cos \gamma, \sin \gamma)\) is positive throughout the domain \(\mathcal{T}_0\).

\(^1\)In his thesis, Eine neue Methode in der Varationsrechnung (Göttingen, 1901), §§5-14, NOBLE has discussed the details of the proof for this case. But his conclusions do not possess the degree of rigor which is indispensable in an investigation of this kind. In particular, the reasoning in §§9, 10 and 13 is open to serious objections.

\(^2\)For the special case where \(F\) is of the form \(f(x, y)\sqrt{x'^2 + y'^2}\), LEBOEGGE has given a rigorous existence proof by an elegant modification of Hilbert's method in a recent paper, "Integrale, longueur, aire," Annali di Matematica (3), Vol. VII (1902), pp. 312-359. LEBOEGGE applies Hilbert's method also to the more difficult case of a double integral of the form

\[
\int \int \sqrt{EG - F^2} \, dudv.
\]
D) The region \mathbb{R}_0 is convex (i.e., the straight line joining any two points of \mathbb{R}_0 lies entirely in the region \mathbb{R}_0) and contains the two given points which we denote\(^1\) with Hilbert by A^0 and A^1.

Under these assumptions we propose to prove

1. That for every rectifiable curve \mathcal{L} in the region \mathbb{R}_0 the generalized integral J^* (according to Weierstrass's definition) has a determinate finite value.

2. That there always exists, in the region \mathbb{R}_0, at least one rectifiable curve \mathcal{L}_0, joining the two given points A^0 and A^1, which furnishes for the generalized integral J^* an absolute minimum with respect to the totality of all rectifiable curves which can be drawn in \mathbb{R}_0 from A^0 to A^1.

3. That this minimizing curve \mathcal{L}_0 is either a single arc of an extremal of class C', or else is made up of a finite number or of a numerable infinitude of such arcs separated by points or segments of the boundary of the region \mathbb{R}_0.

§44. THEOREMS CONCERNING THE GENERALIZED INTEGRAL J^*

In §31 we have considered Weierstrass's extension of the meaning of the definite integral

$$J = \int_{A}^{B} F(x, y, x', y') \, dt$$

to curves having no tangent.

Another definition of the generalized integral has been given by Hilbert\(^2\) in his lectures. This definition, while

1 The advantage of this notation will appear in §43.

2 Hilbert's own definition is as follows (see Noble, loc. cit., p. 13). Let H_1 be a partition of the arc AB of a continuous curve into segments. Consider the totality of all analytic curves which can be drawn from A to B and which have at least one point in common with each of the segments. Let J_1 denote the lower limit of the values of the integral J taken along these curves. Next, let H_2 be a new partition derived from H_1 by subdivision, J_2 the corresponding lower limit, and so on. Then Hilbert defines the upper limit of the quantities $J_1, J_2, J_3, \ldots, J_n, \ldots$ if it be finite, as the value of the definite integral J taken along the arc AB.

leading to the same value for the generalized integral as Weierstrass's definition, is better adapted to our present purpose, especially in the simplified form which has been given to it by Osgood.¹

a) Hilbert-Osgood's definition of the generalized integral: We shall use the following notation: \(P' \) and \(P'' \) being any two points of the region \(\mathbb{R}_0 \), we denote by \(\mathfrak{M}(P'P'') \) the totality of all ordinary curves which can be drawn in the region \(\mathbb{R}_0 \) from \(P' \) to \(P'' \), and by \(i(P'P'') \) the lower limit of the values which the integral

\[
J = \int F(x, y, x', y') \, dt
\]

takes along the various curves of \(\mathfrak{M}(P'P'') \).

This lower limit is always positive. For, according to A) and B), the function \(F(x, y, \cos \gamma, \sin \gamma) \) has a positive minimum value \(m \) in the closed domain \(\mathfrak{T}_0 \). Hence, if \(C \) be any curve of \(\mathfrak{M}(P'P'') \), we obtain, by taking the arc as independent variable on the curve \(C \),

\[
0 < m|P'P''| \equiv ml \equiv J_C(P'P'') ,
\]

where \(l \) denotes the length of the curve \(C \) and \(|P'P''| \) the distance between the two points \(P', P'' \). Hence it follows that

\[
0 < m|P'P''| \equiv i(P'P'') .
\]

After these preliminaries, let

\[
\mathcal{C}: \quad x = \phi(t) , \quad y = \psi(t) , \quad t_0 \equiv t \equiv t_1
\]

be a continuous curve lying wholly in the region \(\mathbb{R}_0 \). If the functions \(\phi(t) \), \(\psi(t) \) are not differentiable, the integral \(J \) taken along \(\mathcal{C} \) has no meaning. In order to give it a meaning also in this case, we consider any partition \(\Pi \) of the interval \((t_0t_1)\)

II: \[t_0 < \tau_1 < \tau_2 \cdots < \tau_{n-1} < t_1, \]

and denote by
\[A = P_0, P_1, P_2, \cdots, P_{n-1}, B = P_n \]

the corresponding points of the curve \(\mathcal{C} \).

Then we form the sum
\[S_{\Pi} = \sum_{r=0}^{n-1} i(P_r P_{r+1}). \]

The upper limit of the values of \(S_{\Pi} \) for all possible partitions \(\Pi \) we define as the value of the integral \(J \) taken along the curve \(\mathcal{C} \) from \(A \) to \(B \), and we denote it by \(J^{**}(AB) \), or simply \(J^{**} \).

It is easily seen that \(S_{\Pi} \) may also be defined\(^1\) as the lower limit of the values of the integral \(J \) taken along all ordinary curves which can be drawn in \(\mathcal{R}_0 \) from \(A \) to \(B \) and which pass in succession through the points \(P_1, P_2, \cdots, P_{n-1} \).

Hence it follows that it is always possible to select a sequence \(\{ \mathcal{C}_v \} \) of ordinary curves joining \(A \) and \(B \), lying in \(\mathcal{R}_0 \), and such that
\[\lim_{v \to \infty} \int_{\mathcal{C}_v} J = J^{**}. \]

The above definition of the generalized integral is a direct generalization of Peano's\(^2\) definition of the length of a curve. For, in the particular case
\[F' = \sqrt{x'^2 + y'^2}, \]

the sum \(S_{\Pi} \) reduces to the length of the rectilinear polygon with the vertices \(A, P_1, P_2, \cdots, P_{n-1}, B \).

We must next investigate under what conditions the generalized integral \(J^{**} \) is finite, and show that for ordinary

\(^1\)This is the form which Osgood gives to Hilbert's definition; see the reference on p. 248, footnote 1.

curves the generalized integral is identical with the ordinary definite integral.

b) Conditions for the finiteness of the generalized integral: The function \(F(x, y, \cos \gamma, \sin \gamma) \) has a finite maximum value \(M \) in the domain \(\mathcal{V}_0 \). Hence it follows that for every curve \(\mathcal{C} \) of \(\mathcal{M}(P'P'') \)

\[
i(P'P'') \leq J_v(P'P'') \leq Ml . \tag{2a}
\]

\(l \) denoting again the length of the curve \(\mathcal{C} \). We may choose for the curve \(\mathcal{C} \) the straight line \(P'P'' \), since, according to assumption D), the line \(P'P'' \) lies wholly in the region \(\mathcal{K}_0 \). Then we obtain the further inequality

\[
i(P'P'') \equiv M'P'P'' \tag{3}
\]

From (2) and (3) follows at once

\[
m \sum_{v=0}^{u-1} P_v P_{v+1} \equiv S_n \equiv M \sum_{v=0}^{u-1} |P_v P_{v+1}| . \tag{4}
\]

But the upper limit of the sum

\[
\sum_{v=0}^{u-1} |P_v P_{v+1}|
\]

is, according to Peano's definition, the length of the curve \(\mathcal{S} \). Hence we obtain the

Lemma: In order that the generalized integral \(J_{**} \) may be finite, it is necessary and sufficient that the curve \(\mathcal{S} \) shall have a finite length (in Peano's sense).

We confine ourselves, therefore, in the sequel to continuous curves \(\mathcal{S} \) having a finite length ("rectifiable curves" in Jordan's terminology).\(^1\) From (4) it follows further that

\[
m |AB| \equiv J_{**}(AB) \equiv ML , \tag{5}
\]

where \(L \) denotes the length of the curve \(\mathcal{S} \).

\(^1\) J. I. No. 110.
c) Properties of the generalized integral: From the two characteristic properties of the lower limit it follows readily that for any three points \(P, P', P'' \) of \(\mathbb{R}_0 \) the inequality holds:
\[
i (PP') + i (P'P'') \geq i (PP'') .
\] (6)
Hence it follows that if \(\Pi_1 \) denotes a partition derived from \(\Pi \) by subdivision of the intervals of \(\Pi \), then
\[
\Pi_1 \equiv \Pi .
\]
Hence we easily infer that we get the same upper limit \(J^* \) for the values of \(S \) if we confine ourselves to those partitions \(\Pi \) for which
\[
\tau_{\nu+1} - \tau_\nu < \delta ,
\]
\[
(\nu = 0, 1, 2, \ldots, \nu - 1; \tau_0 = t_0, \tau_\nu = t_\nu) ,
\]
\(\delta \) being an arbitrary positive quantity.

Following now step by step the same reasoning which JORDAN uses in his discussion of the length of a curve, we can easily establish the following properties of the generalized integral, always under the assumption that the curve \(\xi \) is rectifiable:

1. The generalized integral \(J^* (AB) \) is at the same time the limit which the sum \(S \) approaches as all the differences \(\tau_{\nu+1} - \tau_\nu \) approach zero.\(^1\)

Combining this result with the inequality (4) we obtain the new inequality
\[
mL \leq J^* (AB) .
\] (7)

2. If \(P \) be a point on the curve \(\xi \) between \(A \) and \(B \), dividing the arc \(\xi \) into the two arcs \(\xi_1 \) and \(\xi_2 \), then also the integrals \(J_{\xi_1}^* (AP) \) and \(J_{\xi_2}^* (PB) \) are finite, and\(^2\)
\[
J^* (AB) = J_{\xi_1}^* (AP) + J_{\xi_2}^* (PB) .
\] (8)

3. The generalized integral \(J^* (AP) \) is a continuous\(^3\)

\(^1\) Compare J. I, No. 107. \(^2\) Compare J. I, No. 108. \(^3\) Apply (8) and (5).
function of the parameter t of the point P and increases continually as P describes the arc AB from A to B.

d) Comparison with Weierstrass's definition of the generalized integral: If P' and P'' are two points of R_0 whose distance from each other is less than the quantity ρ_0 defined at the end of §28, e), P' and P'' can be joined by an extremal C of class C' which furnishes for the integral J a smaller value than any other ordinary curve which can be drawn in the region R_0 from P' to P''. If the extremal C itself lies entirely in the region R_0, the value which it furnishes for the integral J is equal to $i(P'P'')$; if C lies partly outside of R_0, this value is equal to or less than $i(P'P'')$.

Now consider any partition Π for which

$$\tau_{v+1} - \tau_v < \delta, \quad (v = 0, 1, \ldots, n - 1),$$

δ being chosen so small that $|P'P''| < \rho_0$ for any two points P', P'' of \mathscr{L} whose parameters t', t'' satisfy the inequality $|t' - t''| < \delta$. Then we can inscribe in the curve \mathscr{L} a polygon of minimizing extremals with the vertices

$$A, P_1, P_2, \ldots, P_{n-1}, B.$$

As in §31, d), let U_{Π} denote the value of the integral J taken along this polygon of extremals.

If the curve \mathscr{L} lies entirely in the interior of R_0, δ can be taken so small that the polygon lies in the region R_0, and therefore

$$U_{\Pi} = S_{\Pi}.$$

Hence $J_{\ast\ast}$ may in this case also be defined as the limit of U_{Π}.

If \mathscr{L} has points in common with the boundary of R_0, U_{Π} may be less than S_{Π}.

Nevertheless, also in this case the limit of U_{Π} for $L\Delta \tau = 0$ is $J_{\ast\ast}$.

In order to prove this statement we consider, along with
the two sums S_Π and U_Π, the sum V_Π defined in §31, c), i. e., the value of the integral J taken along the rectilinear polygon $AP_1P_2\cdots P_{n-1}B$. Since the region R_0 is convex, this polygon lies entirely in R_0, and therefore we have the double inequality

$$U_\Pi \equiv S_\Pi \geqslant V_\Pi.$$

(9)

From the first part of this inequality it follows that U_Π has a finite upper limit $\equiv J^*$. This upper limit is at the same time the limit which U_Π approaches for $L\Delta \tau = 0$, as can be inferred1 from the fact (proved in §31, c)) that if Π' be a partition derived from Π by subdivision, then $U_{\Pi'} \equiv U_\Pi$. Hence it follows, according to §31, c) and d), that V_Π approaches the same limit as U_Π; therefore we obtain, on account of (9), and remembering the equations (77) and (80) of §31:

$$J^* = J^*$$

(10)

i. e., we have the result that Hilbert-Osgood's definition leads for the generalized integral to the same value as Weierstrass's definition.

Hence it follows, according to §31, b), that for an "ordinary" curve the generalized integral coincides with the ordinary definite integral.

§45. HELBERT'S CONSTRUCTION

We are now prepared to apply Hilbert's method to the integral$^2 J^*$. Accordingly we consider the totality of all rectifiable curves 2 which can be drawn in the region R_0 from the point A^0 to the point A^1. The corresponding values of the integral J^* have a positive3 lower limit. We propose to

1Compare J. J. No. 107.

2On account of (10) we may use the symbol J^* instead of J^*.

3According to (5).
prove that under the assumptions A)–D) enumerated in §43, there exists at least one rectifiable curve \(\xi_0 \) drawn in \(\mathfrak{R}_0 \) from \(A^0 \) to \(A^1 \) for which the integral \(J_\xi \) actually reaches its lower limit.

a) Construction of the point \(A^\frac{1}{2} \): We consider the totality of ordinary curves \(\mathfrak{M}(A^0 \to A^1) \) which can be drawn in the region \(\mathfrak{R}_0 \) from \(A^0 \) to \(A^1 \), and denote the lower limit \(i(A^0 \to A^1) \) of the corresponding values of the integral \(J \) by \(K \).

\[
i(A^0 \to A^1) = K.
\]

We can then select\(^1\) an infinite sequence of curves

\[C_1, C_2, \ldots, C_r, \ldots, \]

belonging to \(\mathfrak{M}(A^0 \to A^1) \) such that the corresponding sequence of values of the integral \(J \), which we denote by

\[J_1, J_2, \ldots, J_r, \ldots, \]

approaches \(K \) as limit:

\[
\lim_{r \to \infty} J_r = K.
\]

On the curve \(C_r \) there exists\(^2\) one and but one point \(A^\frac{1}{2}_r \) such that

\[
J_{e_r}(A^0 \to A^\frac{1}{2}_r) = \frac{1}{2} J_r.
\]

These points \(A^\frac{1}{2}_r \) are infinite in number;\(^3\) they lie in the finite\(^4\)

\(^1\)Compare Jordan's definition of "point limite," *loc. cit.*, No. 20, and an analogous remark in E. II A, p. 11.

\(^2\)Since \(F \) is positive along \(e_r \), the integral \(J \) taken along the curve \(e_r \) from \(A^0 \) to a variable point \(P \), increases continually as \(P \) describes the curve \(e_r \) from \(A^0 \) to \(A^1 \); hence it passes through every value between 0 and \(J_r \) once and but once.

\(^3\)They need not all be distinct; the conclusion holds even if there are only a finite number of distinct points among them. For in this case an infinitude of the points \(A^\frac{1}{2}_r \) must coincide with at least one of the distinct points; this point has then the properties of the point \(A^\frac{1}{2} \).

\(^4\)The existence of the accumulation point \(A^\frac{1}{2} \) can also be proved without making use of the finiteness of \(\mathfrak{R}_0 \). From (1) it follows that

\[
|A^0 A^\frac{1}{2}_r| \leq \frac{J_r}{2m}.
\]

Hence if we select \(G > J_r (r = 1, 2, 3, \ldots) \), which is always possible since \(L J_r \) is finite, the points \(A^\frac{1}{2}_r \) lie in the interior of the circle \((A^0, G 2m) \), and therefore have an accumulation point.
closed region $\mathfrak B_0$; hence there must exist at least one point A^4 in $\mathfrak B_0$ such that every vicinity of A^4 contains an infinitude of the points A^4. Moreover, we can select a subsequence $\{C^r_k\}$ of the sequence $\{C^r\}$ such that

$$L A^4_{r_k} = A^4.$$

b) Hilbert's lemma concerning the point A^4: We consider next the totality of curves

$$\mathfrak R (A^n A^4).$$

Then the fundamental lemma holds that the lower limit of the corresponding values of the integral J is $\frac{1}{2} K$:

$$i (A^n A^4) = \frac{1}{2} i (A^n A^4) = \frac{1}{2} K. \quad (11)$$

Proof: We denote by C^r_k the curve made up of the arc $A^0 A^4_{r_k}$ of the curve C^r_k, and of the straight line $A^4_{r_k} A^4$; the latter lies entirely in $\mathfrak B_0$ since $\mathfrak B_0$ is convex.

According to (2a) the integral J taken along the straight line $A^4_{r_k} A^4$ is at most equal to $M A^4_{r_k} A^4$. Therefore

$$L J_{r_k} (A^n A^4) = \frac{1}{2} K$$

since

$$L \frac{1}{2} J_{r_k} = \frac{1}{2} K \quad \text{and} \quad L \frac{1}{2} A^4_{r_k} A^4 = 0.$$

Hence it follows from the characteristic properties of the lower limit that

$$i (A^n A^4) \equiv \frac{1}{2} K.$$

In the same way we prove that

$$i (A^4 A^4) \equiv \frac{1}{2} K.$$

But, on the other hand, according to (6):

$$i (A^n A^4) + i (A^4 A^4) \equiv i (A^n A^4).$$

The three inequalities are compatible only if separately:

$$i (A^n A^4) = \frac{1}{2} K \quad \text{and} \quad i (A^4 A^4) = \frac{1}{2} K.$$
c) The points $A^q 2^r$: Repeating the process of section $a)$ with the points A^0 and A^1 we obtain a new point, A^1, lying in the region \mathcal{B}_0 and having the characteristic property that

$$i(A^0 A^1) = i(A^1 A^1) = \frac{1}{2} i(A^0 A^1) = \frac{1}{2} K.$$

In like manner we derive from the two points A^0 and A^1 a point, A^3, satisfying the relation

$$i(A^0 A^3) = i(A^3 A^1) = \frac{1}{2} i(A^3 A^1) = \frac{1}{2} K.$$

By an indefinite repetition of this process we obtain an infinite set of points

$$\left\{ A^{2^q} \right\}, \quad q = 0, 1, 2, \ldots, 2^n,$$

all lying in the region \mathcal{B}_0 and having the characteristic property that

$$i(A^{2^n} A^{2^q}) = \frac{1}{2^n} K. \quad (12)$$

More generally

$$i(A^{r} A^{r'}) = (\tau'' - \tau') K, \quad (13)$$

if

$$\tau' = \frac{q}{2^n}, \quad \tau'' = \frac{q''}{2^n},$$

where n', n'' are integers, q', q'' odd integers, and

$$0 \equiv \tau' < \tau'' \equiv 1.$$

For, reducing τ' and τ'' to the same denominator

$$\tau' = \frac{q}{2^n}, \quad \tau'' = \frac{q + r}{2^n},$$

we obtain, according to (6) and (12),

$$i(A^n A^{2^n}) = \sum_{\mu = 0}^{q - 1} i(A^{2^n} A^{2^n}) = \frac{q}{2^n} K,$$

$$i(A^{2^n} A^{2^n}) = \sum_{\mu = 0}^{q + r - 1} i(A^{2^n} A^{2^n}) = \frac{r}{2^n} K,$$

$$i(A^{2^n} A^{2^n}) = \sum_{\mu = 0}^{2^n - 1} i(A^{2^n} A^{2^n}) = \frac{2^n - q - r}{2^n} K,$$
whence
\[i \left(A^0 A^{2^n} \right) + i \left(A^{2^n} A^{2^{n+1}} \right) + i \left(A^{2^{n+1}} A^1 \right) \equiv K. \]

But on the other hand, we have, on account of (6),
\[K = i \left(A^0 A^1 \right) \equiv i \left(A^0 A^{2^n} \right) + i \left(A^{2^n} A^{2^{n+1}} \right) + i \left(A^{2^{n+1}} A^1 \right). \]

The two inequalities are compatible only if in each of the above three formulae the equality sign holds, which proves (13).

From (2) and (13) follows the important inequality
\[|A^\tau A^{\tau'}| \equiv (\tau'' - \tau') K \]
where \(|A^\tau A^{\tau'}| \) denotes again the distance between the two points \(A^\tau, A^{\tau'} \).

Let us now denote by
\[x(\tau), \quad y(\tau) \]
the rectangular co-ordinates of the point \(A^\tau \), \(\tau \) being one of the fractions \(q/2^n \) considered above. Then
\[|x(\tau') - x(\tau'')| \equiv |A^\tau A^{\tau'}|, \quad |y(\tau') - y(\tau'')| \equiv |A^\tau A^{\tau'}|, \]
and therefore on account of (14)
\[\begin{aligned} &|x(\tau') - x(\tau'')| \equiv (\tau'' - \tau') K \frac{m}{m}, \\
&|y(\tau') - y(\tau'')| \equiv (\tau'' - \tau') K \frac{m}{m}. \end{aligned} \]

\[(15) \]

\(d) \) The remaining points of Hilbert's curve: The meaning of the two functions \(x(t), y(t) \), which so far have been defined only for values of \(t \) of the set
\[S = \left\{ \frac{q}{2^n} \right\}, \quad q = 0, 1, 2, \ldots, 2^n - 1, \]
\[n = 0, 1, 2, \ldots, \]
can now be extended to all values of \(t \) in the interval
\[0 \leq t \leq 1 \]
as follows:

From the inequalities (15) we infer by means of the gen-
eral criterion\(^1\) for the existence of a limit, that if the independent variable \(t\) approaches \textit{in the set} \(S\) any particular value \(t = a\) of the interval \((0,1)\), then the functions \(x(t), y(t)\) approach determinate finite limits. In symbols, the limits\(^2\)

\[
\lim_{t \to a} x(t) \quad \text{and} \quad \lim_{t \to a} y(t)
\]

exist and are finite.

Moreover, if \(a\) itself belongs to the set \(S\), then

\[
\lim_{t \to a} x(t) = x(a) \quad \text{and} \quad \lim_{t \to a} y(t) = y(a).
\]

(16)

If \(a\) does not belong to the set \(S\), we define, according to Hilbert, the functions \(x(t)\) and \(y(t)\) for \(t = a\) by the equations (16).

The two functions \(x(t), y(t)\) thus defined for the whole interval \((0,1)\) are \textit{continuous} and \textit{"of limited variation."}\(^3\) For, the two inequalities (15), which have been proved for values \(\tau' < \tau''\) of the set \(S\), can easily be shown to hold for any two values \(t' < t''\) of the interval \((0,1)\), by considering two sequences \(\{\tau'_{v}\}\) and \(\{\tau''_{v}\}\) belonging to the set \(S\) and such that

\[
\lim_{v \to \infty} \tau'_{v} = t' \quad \text{and} \quad \lim_{v \to \infty} \tau''_{v} = t''.
\]

From the inequalities (15) thus extended, it follows at once that the two functions \(x(t), y(t)\) are continuous and \textit{"of limited variation."}

\(^3\) Compare J. I, No. 67. Let \(f(t)\) be finite in the interval \((t_0, t_1)\), and let

\[\Pi: \quad t_0 < \tau_1 < \tau_2 < \cdots < \tau_{n-1} < t_1\]

be a partition of this interval. If then the upper limit of the sum

\[
\lim_{n \to \infty} \sum_{v=1}^{n-1} |f(\tau_{v+1}) - f(\tau_v)|, \quad (\tau_0 = t_0, \tau_n = t_1)
\]

for all possible partitions \(\Pi\) is finite, \(f(t)\) is said to be \textit{"of limited variation."}
Hence the curve \(\mathcal{E}_0 \) defined by the two equations

\[
\begin{align*}
x &= x(t), \\
y &= y(t),
\end{align*}
\]

is continuous and has a finite length, \(\text{i.e.} \) it is a \textit{rectifiable curve}. As \(t \) increases from 0 to 1 the point \((x, y)\) describes the curve \(\mathcal{E}_0 \) from the point \(A^0 \) to the point \(A^1 \). Moreover, the curve \(\mathcal{E}_0 \) lies entirely in the region \(\mathcal{R}_0 \), since \(\mathcal{R}_0 \) is closed.

\section*{§46. Properties of Hilbert's Curve}

It remains now to prove that the curve \(\mathcal{E}_0 \) actually minimizes the integral \(J^* \) and has the further properties stated in §43.

\textbf{a) Minimizing property of Hilbert's curve:} The fundamental equation (13) which has been proved for values \(\tau', \tau'' \) of the set \(S \) only, can easily be extended\(^2\) to any two values \(l' < l'' \) of the interval \((01)\):

\[
i(A^{l'}A^{l''}) = (l'' - l')\, K.
\]

(13a)

But from (13a) it follows immediately that the \textit{generalized integral}

\text{1} Compare J. I, Nos. 105, 110.

\text{2} For the proof, we introduce the same two sequences \(\frac{1}{2}\tau_\ell, \frac{1}{2}\tau_\ell' \) as above. Then we have, on account of (6),

\[
i(A^{l'}A^{l''}) + i(A^{l''}A^{l'}') + i(A^{l'}A^{l''}) \equiv i(A^{l'}A^{l''}).
\]

Passing to the limit \(r = x \) we obtain, on account of the continuity of the functions \(x(t), y(t) \),

\[
L_{r=x} A^{l'}A^{l''} = 0, \quad L_{r=x} A^{l''}A^{l'}' = 0,
\]

and therefore, on account of (3),

\[
L_{r=x} i(A^{l'}A^{l''}) = 0, \quad L_{r=x} i(A^{l''}A^{l'})' = 0.
\]

Moreover

\[
L_{r=x} i(A^{l''}A^{l'})' = (l'' - l')\, K,
\]

on account of (13). Thus we obtain

\[
i(A^{l'}A^{l''}) \equiv (l'' - l')\, K.
\]

And by the method employed in proving (13) we finally show that the inequality sign is impossible.
taken along Hilbert's curve \(\zeta_0 \) is finite and that its value is equal to \(i(A^0A^1) \).

For let \(\Pi \) be any partition of the interval \((01) \):

\[
\Pi : \quad \tau_0 = 0 < \tau_1 < \tau_2 \cdots < \tau_{n-1} < 1 = \tau_n .
\]

Then we obtain, according to (13a),

\[
S_{\Pi} = \sum_{r=0}^{n-1} i(A^{\tau_r}A^{\tau_{r+1}}) = K = i(A^0A^1) .
\]

Hence also the upper limit of the values of \(S_{\Pi} \) is equal to \(K \), that is

\[
J^*_{\zeta_0}(A^0A^1) = i(A^0A^1) . \tag{18}
\]

From the definition of the symbol \(i(A^0A^1) \) as lower limit it follows now that if \(\mathcal{C} \) be any ordinary curve drawn in \(\mathbb{R}_0 \) from \(A^0 \) to \(A^1 \), then

\[
J^*_{\zeta_0}(A^0A^1) \equiv J^*_{\mathcal{C}}(A^0A^1) .
\]

Moreover, if \(\mathcal{E} \) be any rectifiable curve drawn in \(\mathbb{R}_0 \) from \(A^0 \) to \(A^1 \), and \(\epsilon \) any preassigned positive quantity, we can always find, according to §44, a), an ordinary curve \(\mathcal{C} \) of \(\mathfrak{M}(A^0A^1) \) such that

\[
| J^*_{\mathcal{E}}(A^0A^1) - J^*_{\mathcal{C}}(A^0A^1) | < \epsilon .
\]

Hence it follows that

\[
J^*_{\zeta_0}(A^0A^1) \equiv J^*_{\mathcal{E}}(A^0A^1) . \tag{19}
\]

This proves the theorem enunciated at the beginning of this section:

If the conditions A)–D) enumerated in §43 are fulfilled, then there always exists at least one rectifiable curve joining the two points \(A^0 \) and \(A^1 \) and lying entirely in the region \(\mathbb{R}_0 \), which furnishes for the integral

\[
J = \int F(x, y, x', y') \, dt ,
\]

generalized, an absolute minimum with respect to the totality of rectifiable curves which can be drawn in \(\mathbb{R}_0 \) from \(A^0 \) to \(A^1 \).
b) Analytic character of Hilbert's curve: Let T' denote the totality of those values of t in the interval (01) which furnish points of the curve \mathcal{L}_0 in the interior of the region \mathfrak{R}_0, T'' the totality of those which furnish points of \mathcal{L}_0 on the boundary of \mathfrak{R}_0. From the continuity of \mathcal{L}_0 it follows that every point t' of T' is an inner point of T''. Hence an interval (a, b) contained in (01) and containing t' in its interior can be determined such that all points in the interior of (a, b) belong to T', whereas the end-points belong to T'' except when they coincide with the points 0 or 1. The set T' consists, therefore, of a finite or infinite number of such intervals (a, b) which do not overlap. According to a theorem of Cantor's, the totality of these intervals is numerable, so that we may denote them by

$$\{ (a_r, b_r) \} .$$

The curve \mathcal{L}_0 consists, therefore, either of a finite number or of a numerable infinitude of interior arcs separated by points of the boundary of \mathfrak{R}_0.

We are going to prove, according to Hilbert, that each interior arc of \mathcal{L}_0 is an arc of an extremal of class $^4C''$.

For let $P(t)$ be a point of Hilbert's curve \mathcal{L}_0 in the interior of the region \mathfrak{R}_0. Then according to §28, c a circle (P, σ) can be constructed about P such that any two points P', P'' in the interior of the circle can be joined by an extremal \mathcal{E} of class C'' which lies entirely in the region \mathfrak{R}_0 and which furnishes a smaller value for the integral J than any other ordinary curve which can be drawn in \mathfrak{R}_0 from P' to P''.

1 Except the end-points of the interval (01) in case they should belong to T'.
2 Compare J. I, No. 22.
4 From our assumption C) it follows according to §6, c that every arc of an extremal of class C which lies in \mathfrak{R}_0, is *ipso facto* also of class C''.
5 Let d be a positive quantity, taken so small that the circle (P, ϵ) lies in the interior of \mathfrak{R}_0, and let ρ_0 be defined for the region \mathfrak{R}_0 as in §28, $c)$. Then choose for ϵ the smaller of the two quantities $d/3$ and $\rho_0/3$.

On account of the continuity of the functions \(x(t), y(t) \) there exists a vicinity \((t - \delta, t + \delta) \) of \(t \) such that the arc of the curve \(\mathcal{C}_0 \) corresponding to the interval \((t - \delta, t + \delta) \) lies wholly in the interior of the circle \((P, \sigma)\). Let \(P_1(t_1) \) and \(P_3(t_3) \) be two points of this arc \((t_1 < t_3)\), and denote by \(\mathcal{E}_2 \) the minimizing extremal joining \(P_1 \) and \(P_3 \).

We propose to prove that the arc \(P_1P_3 \) of Hilbert’s curve \(\mathcal{C}_0 \) is identical with the extremal \(\mathcal{E}_2 \).

Consider any point \(P_2(t_2) \) of the arc \(P_1P_3 \) of \(\mathcal{C}_0 \) and denote by \(\mathcal{E}_3, \mathcal{E}_1 \) the minimizing extremals joining \(P_1, P_2 \) and \(P_2, P_3 \) respectively. Then it follows from the minimizing properties of the extremals \(\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3 \) and from (13a) that

\[
\begin{align*}
J_{\mathcal{E}_3}(P_1P_2) &= i(P_1P_2) = (t_2 - t_1) K, \\
J_{\mathcal{E}_1}(P_2P_3) &= i(P_2P_3) = (t_3 - t_2) K, \\
J_{\mathcal{E}_2}(P_1P_3) &= i(P_1P_3) = (t_3 - t_1) K ;
\end{align*}
\]

hence, adding:

\[
J_{\mathcal{E}_2}(P_1P_3) = J_{\mathcal{E}_3}(P_1P_2) + J_{\mathcal{E}_1}(P_2P_3) .
\]

The extremal \(\mathcal{E}_2 \) furnishes therefore the same value for the integral \(J \) as the curve made up of the two arcs \(\mathcal{E}_3 \) and \(\mathcal{E}_1 \). But this is in contradiction to the minimizing property of \(\mathcal{E}_2 \) unless the compound curve \(\mathcal{E}_3, \mathcal{E}_1 \) coincides with \(\mathcal{E}_2 \). Therefore the point \(P_2 \) must be a point of \(\mathcal{E}_2 \); moreover

\[
J_{\mathcal{E}_2}(P_1P_2) = i(P_1P_2) = (t_2 - t_1) K .
\]

Conversely, every point of the extremal \(\mathcal{E}_2 \) belongs at the same time to the arc \(P_1P_3 \) of \(\mathcal{C}_0 \). For, let \(P_4 \) be any point of \(\mathcal{E}_2 \) between \(P_1 \) and \(P_3 \), and let

\[
u = J_{\mathcal{E}_2}(P_1P_4) .
\]

Then

\(^1\)Or \((0, \delta)\), or \((1 - \delta, 1)\) in case \(P \) coincides with the point \(A^0 \) or \(A^1 \).
Hence if we define \(t_4 \) by the relation
\[
u = (t_4 - t_1) K,
\]
t_4 lies between \(t_1 \) and \(t_3 \) and is therefore the parameter of some point \(P_4 \) of \(\mathcal{E}_0 \) between \(P_1 \) and \(P_3 \). The point \(P_4 \) belongs therefore also to \(\mathcal{E}_2 \) and we have
\[
J_{v_2}(P_1 \overline{P_4}) = (t_4 - t_1) K = J_{v_2}(P_1 P_4).
\]
Hence it follows that \(\overline{P_4} \) must coincide with \(P_4 \) since \(F \) is positive along \(\mathcal{E}_2 \).

From the relation between \(t_4 \) and the quantity \(u \) (which may be taken as the parameter on \(\mathcal{E}_2 \)), it follows, moreover, that the points are ordered on both arcs in the same manner, which completes the proof that the arc \(P_1 P_3 \) of \(\mathcal{E}_0 \) is identical with the extremal \(\mathcal{E}_2 \).

Hence it follows that Hilbert's curve \(\mathcal{E}_0 \) is of class \(C'' \) and satisfies Euler's differential equation in the vicinity of every interior point \(P \), and therefore every interior arc of \(\mathcal{E}_0 \) is indeed an arc of an extremal of class \(C'' \).

From the assumption B) that \(F \) is always positive it follows finally that Hilbert's curve \(\mathcal{E}_0 \) can have no multiple points.
ADDENDA

P. 58, l. 5: In order to justify the terms "next greater," "next smaller," it must be shown that an integral \(u \) of a homogeneous linear differential equation of the second order

\[
\frac{d^2u}{dx^2} + p \frac{du}{dx} + qu = 0
\]

can have only a finite number of zeros in an interval \((a,b)\) in which \(p\) and \(q\) are continuous.

Proof: According to the existence theorem (compare footnote 1, p. 50), \(u \) is of class \(C'' \) in \((a,b)\). Suppose \(u \) had an infinitude of zeros in \((a,b)\); then there would exist in \((a,b)\) at least one accumulation point (compare footnote 1, p. 178) for these zeros. Now either \(u(c) = 0 \); then a vicinity of \(c \) can be assigned in which \(u(x) \neq 0 \). Or else \(u(c) \neq 0 \); then \(u'(c) = 0 \) (compare footnote 3, p. 58), and

\[
u(c + h) = h(u'(c) + (h))
\]
hence a vicinity of \(c \) can be assigned in which \(c \) is the only zero of \(u(x) \). In both cases we reach therefore a contradiction with the assumption that \(c \) is an accumulation-point.

The same lemma has to be used, p. 108, l. 6 up; p. 135, l. 13; p. 200, l. 4; p. 221, l. 1.

P. 59, l. 11. Simpler as follows:

Choose \(x_2 \) so that \(x_1 < x_2 < x_3 \) and at the same time \(x_2 < X_1 \) (the quantity introduced on p. 55). Then \(\Delta(x, x_2) \) and \(\Delta(x, x_3) \) are two linearly independent integrals of (9). Applying Sturm's theorem to these two functions we obtain the result that

\[
\Delta(x, x_2) = 0 \quad \text{in} \quad (x_0, x_1).
\]

P. 62, l. 6. Simpler proof: \(\phi_2(x, \gamma_0) \) and \(\Delta(x, x_0) \) are integrals of Jacobi's differential equation; both vanish for \(x = x_0 \) without being identically zero. Hence they can differ only by a constant factor. Compare footnote 2, p. 58, and footnote 1, p. 137.

P. 81, l. 18. From what has been proved in the first paragraph of p. 81, it follows that \(S_k \) is indeed a region in the specific sense of \(\S \).
P. S3. l. 13. Add:

d) The Field-Integral for the set of extremals through the point A.

Let $P(x_2, y_2)$ be any point in the field \mathcal{F}_k formed by the set of extremals through the point $A(x_3, y_3)$, and let $\gamma_2 = \psi(x_2, y_2)$ be the value of γ for the unique extremal of the field which passes through the point P. Then the integral J taken along this extremal

$$J_2: \gamma = \phi(x, \gamma_2)$$

from the point A to the point P is a single-valued function of x_2, y_2 which we denote by $J(x_2, y_2)$. Its value is

$$J(x_2, y_2) = \int_{x_3}^{x_2} F(x, \phi(x, \gamma_2), \phi_x(x, \gamma_2)) \, dx,$$

where it is understood that γ_2 is replaced by its expression $\psi(x_2, y_2)$ in terms of x_2 and y_2.

The partial derivatives of $J(x_2, y_2)$ with respect to x_2 and y_2 have the following values:

$$\frac{\partial J(x_2, y_2)}{\partial x_2} = F(x_2, y_2, \rho_2) - \rho_2 F_y(x_2, y_2, \rho_2),$$

$$\frac{\partial J(x_2, y_2)}{\partial y_2} = F_y(x_2, y_2, \rho_2), \quad (15a)$$

where ρ_2 denotes the slope of the extremal \mathcal{C}_2 at the point P.

For

$$\frac{\partial J(x_2, y_2)}{\partial x_2} = F(x_2, y_2, \rho_2) + \frac{\partial \gamma_2}{\partial x_2} \int_{x_3}^{x_2} (F_y \phi_y + F_y \phi_{xy}) \, dx,$$

$$\frac{\partial J(x_2, y_2)}{\partial y_2} = \frac{\partial \gamma_2}{\partial y_2} \int_{x_3}^{x_2} (F_y \phi_y + F_y \phi_{xy}) \, dx.$$

If we transform the integral as in §20, c), and make use of (12) we obtain (15a).

In many respects it would have been preferable first to prove the formulae (15a) and to make use of them in the demonstration of Weierstrass's theorem.

Compare the analogous formulae (44) in §37, and the still more general formulae (14) in §34.

P. 142, ll. 4 and 5. After θ insert: $+2m\pi$ where m is an integer.
Addenda

P. 152, l. 8. Weierstrass himself gives the condition in the following slightly different form:

Let δ_2 and δ_2^+ denote the numerical values of the angles which the directions $\overline{p}_2, \overline{q}_2$ and $\overline{p}_2, \overline{q}_2^+$ respectively make with the direction $\overline{p}_2, \overline{q}_2$, so measured that δ_2 and δ_2^+ are $\leq \pi$. Then

$$\sin \delta_2 : \sin \delta_2^+ = E \left(x_2, y_2; \overline{p}_2, \overline{q}_2; \overline{p}_2, \overline{q}_2^+ \right) : E \left(x_2, y_2; \overline{p}_2, \overline{q}_2; \overline{p}_2, \overline{q}_2^+ \right).$$

(64a)

This form of the condition follows immediately from (64). For on account of (48) equation (64) may be written

$$\tilde{\overline{p}}_2 F_x (x_2, y_2, \overline{p}_2, \overline{q}_2) + \tilde{\overline{q}}_2 F_y (x_2, y_2, \overline{p}_2, \overline{q}_2) =$$

$$\tilde{\overline{p}}_2 F_x (x_2, y_2, \overline{p}_2, \overline{q}_2^+) + \tilde{\overline{q}}_2 F_y (x_2, y_2, \overline{p}_2, \overline{q}_2^+) .$$

But

$$\tilde{\overline{p}}_2 = l \left[\sin \delta_2 \overline{p}_2 + \sin \delta_2^+ \overline{p}_2^+ \right]$$

$$\tilde{\overline{q}}_2 = l \left[\sin \delta_2 \overline{q}_2 + \sin \delta_2^+ \overline{q}_2^+ \right],$$

where l is a factor of proportionality. Substituting these values in the last equation, we obtain (64a).

P. 169, l. 7, and p. 175, l. 15. Instead of “region” read “domain.” Compare §2, a).

P. 180, l. 18. Add: Hence it follows that \mathfrak{S}_k is a region in the specific sense of §2, a).

P. 182, l. 7, and p. 185, ll. 4 and 6. The image of a region by a transformation of the kind here considered is again a region. Hence $\mathfrak{T}_k, \mathfrak{T}_k', \mathfrak{S}_k'$ are indeed regions.

P. 200, l. 7. Add: t_0 is therefore identical with the quantity designated on p. 155 by t_0^*. The use of the notation t_0 in the present discussion is justified by the fact that in KNESER’s theory the conjugate point appears as a special case of the focal point corresponding to the case when the transversal \mathfrak{T} degenerates into the point A.

P. 246, l. 1. HILBERT has published the details of his proof of

P. 246, l. 2. I had at my disposal a set of notes of this course for which I am indebted to Professor J. I. Hutchinson.

P. 253, l. 17. After "result" add: due to Osgood; see the reference on p. 248, footnote.
parameter-representation, 122, 123; for
isoperimetric problems, 208.
Focal point: of a transverse curve on
an extremal: defined, 109; equation
for its determination, according to
Bliss, 105, 155; according to Kneser, 209;
geometrical interpretation, 111. 156;
case where end-point B coincides with
focal point, 204.
Fourth necessary condition (see
under Weierstrass).
Free variation, points of, 41.
Function E(x, y; p, ṗ): defined 34, 55;
relation between E(x, y; p, ṗ) and
F(x, y; p, ṗ): geometrical interpretation
of this relation, 71. 156.
Function E1(x, y; p, ṗ), 76.
Function E(x, y; p, q; ṗ, q̇): defined, 138;
homogeneity properties, 140; relation
between E-function and F1, 141;
ordinary and extraordinary vanishing, 142;
Kneser's geometrical interpretation, 155.
Function E1(x, y; p, q; ṗ, q̇), 145.
Function F1, 121.
Function F2, 132.
Fundamental lemma, of the Calculus
of Variations, 20.
Generalized integral, 157, 248 (com-
pare integral taken along a curve).
Geodesic curvature, 120.
Geodesic distance, 175.
Geodesic parallel co-ordinates, 184.
Geodesics, 138, 146, 157; Gauss's theo-
rems on, 164, 195; theorem on the en-
velope of a set of, 196.
Hilbert's: construction, 233; existence
theorem, 245; invariant integral, 92, 165.
Homogeneity condition, 119; conse-
quences of, 120.
Implicit functions, theorem on, 92.
Improper: field, 83; maximum, mini-
num, 11.
In a domain, use of the word explained,
5, 16.
Infiniteesimal, 6.
Inner point, 5.
Integrability condition, 29.
Integrable functions, theorems on, 181, 89.
Integral, taken along a curve, defini-
tion and notation, 8; for case of par-
ter-representation, 117; condition
for invariance under parameter-repre-
sentation, 119; extension to curves
without a tangent, (a) Weierstrass's,
157, (b) Hilbert-Osgood's, 248.
Integration, by parts, 20, 21.
Interval, defined, 5.
Invariance, of E and F1, 183.
Isoperimetric constant, 207; Mayer’s
theorem for case of discontinuous solu-
tions, 209.
Isoperimetric problems: in general.
200-44; special, 1, 210, 229, 238; with
variable end-points, 113.
Jacobian, 57.
Jacobian's condition, 61; proofs of its
necessity, 63, 65; Weierstrass's form
of, 135; Kneser's form of, 136; for case
of one variable end-point, 129, 156, 209;
for isoperimetric problems, 225, 226.
Jacobian's: criterion, 60, 135; differential
equation, 49, 133; theorem concerning
the integration of Jacobian's differential
equation, 54, 135; transformation of the
second variation, 51.
Jordan curve, 180.
Kneser's: theory, 164-205; curvilinear
co-ordinates, 184; sufficient conditions,
187; theorem on transversals, 172.
Lagrange's differential equation, 225.
Legendre's condition, 47; Weier-
strass's form of, 135; for isoperimetric
problems, 217; Legendre's differential
equation, 46.
Length of a curve: Jordan's defini-
tion, 151; Peano's definition, 249.
Limit: definition and notation, 10; uni-
form convergence to a, 19; criterion
for the existence of, 258.
Limited variation, functions of, 258.
Limit: lower and upper, 3, 10; attained
by continuous function, 13, 80.
Limit-point (see Accumulation-point).
Lindelöf's construction, 64.
Linear differential equations of the second order: existence theo-
rem, 50; Abel's theorem, 58; Sturm's
theorem, 58.
Lower limit, 3, 10.
Maximum (see Minimum).
Mayer's law of reciprocity for isoperi-
metric problems, 220, 241.
Mean-value theorem, first, for definite
integrals, 24.
Minimum: of a continuous function, 13,
80; of a definite integral, absolute and
relative, 10; proper and improper, 11;
weak and strong, 69, 70; for case of
parameter-representation, 121; semi-
strong in case of isoperimetric prob-
lems, 244; existence of a minimum "im
kleinen," 146; Hilbert's a-priori exis-
tence proof of a minimum "im Gross-
Neighborhood of a curve, 10; neigh-
borhood(p) of a curve, 13, 121.
Neighboring curve, 11.
Numerable set of points, 261, 268.
One-sided variations (see also Bo-
dary conditions): analytic expression
for, 4, 18; necessary conditions for a
minimum with respect to, 42, 149; suf-
ficient conditions, 42.
Open region, 5.
Ordinary curves, defined, 117.
Osgood’s theorem concerning a characteristic property of a strong minimum, 190.
PARAMETER REPRESENTATION, CURVES IN, 115.
PARAMETER-TRANSFORMATION, 116.
PARTIAL DERIVATIVES (SEE DERIVATIVES).
PARTIAL VARIATION, OF A CURVE, 37.
POINT-BY-POINT VARIATION, OF A CURVE, 110.
POINT OF A SET, 12.
POSITIVELY HOMOGENEOUS, 119.
PROGRESSIVE DERIVATIVE, 71.
PROPER MINIMUM, 11.
REGION: DEFINED, 5; OPEN, 5; CLOSED, 5.
REGRESSIVE DERIVATIVE, 71.
REGULAR CURVES, 117; FUNCTIONS, 212; PROBLEMS, 29, 40, 97, 125.
RELATIVE MAXIMUM OR MINIMUM, 10, 10.
SECOND NECESSARY CONDITION (SEE LEGENDRE’S CONDITION).
SECOND VARIATION, 41-67: LEGENDRE’S TRANSFORMATION OF, 45; JACOBI’S TRANSFORMATION OF, 31; FOR CASE OF VARIABLE END-POINTS, 102; WEIERSTRASS’S TRANSFORMATION OF, FOR CASE OF PARAMETER-REPRESENTATION, 131; FOR CASE OF VARIABLE END-POINTS IN PARAMETER-REPRESENTATION, 102, 155; FOR ISOPERIMETRIC PROBLEMS, 216-25.
SEMISTRONG EXTREMA, 241; SUFFICIENT CONDITIONS FOR, 241.
SET OF POINTS: DEFINITION, 10; INNER POINT OF, 5; BOUNDARY POINT OF, 5; ACCUMULATION POINTS OF, 158; CLOSED, 178, 267; NUMERABLE, 261, 268; UPPER AND LOWER LIMITS OF ONE-DIMENSIONAL SET, 3, 10; CONNECTED, 5; CONTINUUM, 5.
SIGN OF SQUARE ROOTS, AGREEMENT CONCERNING, 2.
SLOPE RESTRICTIONS, 101.
SOLUTION OF EQUATION, OF MINIMUM RESISTANCE, 75, 112.
STRONG EXTREMA: DEFINED, 70; SUFFICIENT CONDITIONS FOR (SEE SUFFICIENT CONDITIONS).
STRONG VARIATION, 72.
STURM’S THEOREM, ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER, 58.
SUBSTITUTION SYMBOL, 5, 6.
SUFFICIENCY PROOF, FOR GEODESICS, 165.
SUFFICIENT CONDITIONS FOR WEAK MINIMUM, 10.
SUFFICIENT CONDITIONS FOR STRONG MINIMUM: WHEN x INDEPENDENT, IN TERMS OF E-FUNCTION, 85; IN TERMS OF $F_y y$, 96; FOR ONE-SIDED VARIATIONS, 42; IN CASE OF ONE MOVABLE END-POINT, 109; IN CASE OF TWO MOVABLE END-POINTS, 113.
SUFFICIENT CONDITIONS FOR STRONG MINIMUM: FOR CASE OF PARAMETER-REPRESENTATION, WEIERSTRASS’S, 143-46; EXTENSION TO CURVES WITHOUT A TANGENT, WEIERSTRASS’S PROOF, 161, OSGOOD’S PROOF, 192; Kneser’s sufficient conditions for case of one movable endpoint, 167; for isoperimetric problems, WEIERSTRASS’S, 237, 238.
SURFACE OF REVOLUTION OF MINIMUM AREA, 1, 27, 48, 64, 97, 153.
TAYLOR’S THEOREM, 14.
THIRD NECESSARY CONDITION (SEE JACOBI’S CONDITION).
THIRD VARIATION, 59.
TOTAL DIFFERENTIAL, 25.
TOTAL VARIATION, 14.
TRANSVERSE: CURVE TRANSVERSE TO AN EXTREMAL, 106; CONDITION OF TRANSVERSALITY, 36, 106; IN PARAMETER-REPRESENTATION, 155; FOR ISOPERIMETRIC PROBLEMS, 210.
TRANSVERSAL: TO SET OF EXTREMALS, 168; DEGENERATE, 169; Kneser’s theorem on transversals, 172.
UNFREE VARIATION, POINTS OF, 11.
UNIFORM CONTINUITY, 80.
UNIFORM CONVERGENCE, TO A LIMIT, 19.
UPPER LIMIT, 3, 10.
VARIABLE END-POINTS: GENERAL EXPRESSION OF FIRST VARIATION FOR CASE OF, 102; OF SECOND VARIATION, 102; ONE END-POINT FIXED, THE OTHER MOVABLE ON GIVEN CURVE, TREATED (a) BY THE METHOD OF DIFFERENTIAL CALCULUS, 102, 113, (b) BY Kneser’s method, 164-65 (FOR DETAILS SEE TRANSVERSALITY, FOCAL POINT, SUFFICIENT CONDITIONS); CASE WHEN BOTH END-POINTS MOVABLE ON GIVEN CURVES, 113.
VARIATION: OF A CURVE, 11; TOTAL, 11; DEFINITION FOR FIRST, SECOND, ETC., 16; SPECIAL VARIATION OF TYPE EQ. (5); OF TYPE $\alpha(x, c)$, 18; FOR CASE OF PARAMETER-REPRESENTATION, 123, 122; WEAK AND STRONG, 72.
VARIED CURVE, 11.
VICINITY (3) OF A POINT, 5.
WEAK EXTREMA: DEFINED, 69; SUFFICIENT CONDITION FOR, 70.
WEAK VARIATIONS, 72.
WEIERSTRASS’S CONSTRUCTION, 81, 114, 234; CORNER-CONDITION, 133; E-FUNCTION, 35, 138; FORM OF EULER’S EQUATION, 123, OF LEGENDRE’S CONDITION, 133, OF JACOBI’S CRITERION, 133; FOURTH NECESSARY CONDITION, 73, 138, 258; LEMMA ON A SPECIAL CLASS OF VARIATIONS, 33, 139; TRANSFORMATION OF SECOND VARIATION, 131.
WEIERSTRASS’S SUFFICIENT CONDITIONS, 95, 96, 143; EXTENSION TO CURVES WITHOUT A TANGENT, 161; FOR ISOPERIMETRIC PROBLEMS, 237, 238.
WEIERSTRASS’S THEOREM (EXPRESSION OF Δ^2 IN TERMS OF THE E-FUNCTION), 89, 144; HILBERT’S PROOF OF, 31; FOR CASE OF VARIABLE END-POINTS, 189, 191, 195; FOR ISOPERIMETRIC PROBLEMS, 237.
WORMS STAN DETERMINANT, 57.
ZERMELLO’S THEOREM, ON THE ENVELOPE OF A SET OF EXTREMALS, 174.