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Celebrating Escher 

Doris Schattschneider 

The year 1998 saw many centennial celebrations of the Dutch graphic artist 
M.C. Escher (1898-1972). One of these, an international congress held in June 
of that year in Rome and Ravello, brought together a wide array of of people who 
not only appreciate Escher's work, but give testimony to his lasting legacy in art, 
science, and education. 

Shortly before the congress, a review by a New York Times art critic had pro
claimed Escher "Just a nonartist in the art world." I find the "art world" a funny 
place - it often seems that if an artist's work is popular with the public, then it 
must follow that the work is "nonart." The 1998 exhibition "M.e. Escher: A Cen
tennial Tribute" held at the National Gallery of Art in Washington, D.e. drew 
record crowds - 364,000 people visited the exhibit, more than for any other print 
show. Perhaps for the "art world," Escher's art is an acquired taste. In retrospect, 
the official critics may come to see and understand the wonderful qualities in his 
work that have made it endure. e.V.S. Roosevelt, an avid admirer and collector 
of Escher's work once remarked, "When an art critic petulantly stamps his foot 
and remarks he quite despises Escher, one is reminded of the cartoon caption: 
'There they go! I must hurry after them, for I am their leader' ." 

What draws people to Escher's work? I can only hazard a personal and very 
incomplete answer to that question. I believe the qualities that make Escher's 
work so appealing are also the ones that inspire and challenge others. Escher was 
an acute observer, a thinker, a meticulous craftsman, whose prints evoke admira
tion and wonderment. "Cool!" (rather than "Beautiful !") is an oft-heard remark 
at Escher exhibitions. 

The constant challenge of the artist is to create artifice. Escher created some 
highly original artifices that tease and enchant. In trying to place him in the 
spectrum of 20th century art, his work defies categorization. Roosevelt observed: 

Regardless of what the world thought of him, Escher imperturbably 
always went his own way. He reminds us of a modern alchemist inge
niously and fanatically experimenting with his magic balls and mirrors, 
animals and books, his magic spells and magic concepts. A wonderfully 
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obstinate figure, now artist, now thinker, philosopher, and shaman, Escher 
insisted, "All my works are games, serious games."* 

Escher loved to challenge our eyes and understanding by tweaking the cer
tainties of the "laws" that we expect to be obeyed. By working in the plane, he 
could confound our perception of what is two-dimensional and what is three
dimensional. Not only does he make us wonder at what point does one dimension 
transform into the next, but he has us ask "what is figure? what is ground?" His 
device of using interlocking shapes, each shape recognizable on its own, yet each 
interchangeable in the role of figure or ground, is one of his trademarks. Few 
artists have been as fascinated by tessellation as Escher was. For him, "regular 
division" was not an end in itself, but rather a device to express the idea of duality 
(contrasting opposites), and metamorphosis. 

Escher used geometry masterfully in his works. His early scenes of Italian 
villages clinging to steep mountainsides with valleys sweeping out below seem 
carefully sculpted from geometric forms. His later works celebrate polyhedra, 
spheres, knots, and Mobius bands. Geometry works magic in his prints - classi
cal Euclidean geometry, spherical geometry, projective geometry, transformation 
geometry, hyperbolic geometry, and self-similarity all are skillfully employed to 
achieve intricate and surprising visual effects. Not only was he a master of the 
craft of graphic art, he was also (despite his denials) an original researcher in the 
realm of science and mathematics. 

Escher has left us a rich legacy in his work. 

This book and CD Rom continue the 1998 celebration of Escher's legacy. The 
section "Escher's World" contains essays that give deeply personal reflections on 
Escher's work and stories of those who have literally walked some of the paths 
trodden by Escher. 

It is often said that Escher belonged to no "school" of art and founded no 
"movement," and so it is assumed that there are no contemporary artists who 
continue to explore and express in manners directly inspired by his work. In 
the section "Escher's Artistic Legacy," the large number of artists who speak 
here and display their work show that assumption is clearly false. Escher's work 
planted seeds in the minds of these artists, seeds that have borne fruit that is inge
nious and original, some employing his careful graphic techniques, others using 
more modern media, including digital art. They, like Escher, play with illusion, 
with perspective and projections, with constructions (both real and impossible), 
with mirrors, with symmetry and division of the plane, and with metamorphosis. 
They, too, use geometry masterfully, inspired by Escher, yet are guided by ideas 
that are wholly their own. 

Scientists and educators have drawn inspiration from Escher-his works 
have provided visual metaphors for their theories, raised new questions about 

* From the catalog of the exhibition "A Mathematician Views Escher", Moravian 
College, April 1987. 
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their assumptions, suggested new problems to investigate, and provided en
joyable explorations for students of all ages. The section "Escher's Scientific 
and Educational Legacy" contains a variety of essays by scientists (of many 
disciplines) and educators, a testimony to the enduring influence of Escher's 
work. 

The CD Rom is an extension of the book. It contains color versions of many 
of the art works that are shown in the book in black and white, as well as 
additional work by the artists. It gives vignettes of the conference and the breath
taking beauty of the Ravello setting. It also affords a medium beyond print: there 
are animations, short videos, and interactive puzzles. 

Editing this book has been a pleasurable challenge. The authors come from 
eleven different countries, with many languages and with a myriad of different 
computer programs that encode word and picture. Yet I have received wonderful 
cooperation from all, and thanks to email, zip disks, and CD Roms, they were 
able to quickly respond to the many requests to put this all together. I want to 
thank Moravian College for its support of my editorial work, making available 
to me the necessary technology and technological help. Michele Emmer and I are 
grateful for the encouragement and cooperation of Springer-Verlag, Heidelberg, 
in making this book and CD Rom a reality. 

Bethlehem, August 2001 



Escher, in Rome, Again 

Michele Emmer 

Why a conference and an exhibition dedicated to the works of Mau
rits Cornelis Escher? Escher had a very strange destiny. His works are 
probably among the best known in the world. But perhaps his great 
success and the dispersion of his work all over the world are reasons why 
his work as a graphic artist is not investigated seriously and not well
considered by historians of art. This is one of the reasons why the idea 
of organizing a conference and an exhibition of Escher's work was taken 
up by a Mathematics Department, the Mathematics Department of the 
University of Rome "La Sapienza." 

Among the most popular ideas of our time are multimedia presenta
tions and interdisciplinarity, including the relationships between art and 
science. Escher, for a great part of his artistic life, was an "attractor" 
and produced connections among mathematicians, physicists, crystallo
graphers, and experts in visual perception. It is well known that his first 
important exhibition was mounted during the International Congress of 
Mathematicians in Amsterdam in 1954. 

So here is a conference designed for many to discuss symmetry, visual 
perception, computer graphics, architecture, history of art, mathematics, 
and psychology, always having Escher as a starting point. The fact that so 
many people from different countries and from different disciplines wish 
to participate in this conference is the main reason for its organization. 

The above paragraphs are not my opening to the Escher Centennial congress 
held in Rome in 1998, but rather they are taken from the introduction I wrote for 
the catalog of the exhibition of Escher's work held at the Dutch Institute in Rome 
in March 1985. That exhibition took place during the last international confer
ence on Escher, with lectures in the same "Aula Magna" at the University of 
Rome "La Sapienza" 14 years ago. The title of that conference was M. C. Escher: 
Art and Science [1]. The 6000 copies of the catalog ofthe exhibition [2] sold out 
in three weeks. 

I can use the same words to write this introduction to the proceedings of the 
1998 congress because now the fascination with the work of Escher is perhaps 
even greater than 14 years ago, even though much of the world has completely 
changed. In 1985 there was the Soviet Union and the wall in Berlin. I was very 
sorry that professor Vladimir Koptsik from Moscow State University, who was 
an invited speaker for the 1998 congress, at the last moment was not able to 
attend. I remember very well (and perhaps others who were at the previous con
ference will also remember), that during the conference in 1985 the Red Brigades 
killed a professor from our university, professor Tarantelli. The world is really 
different now, but interest in Escher is still alive and unchanged. 
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This special congress to celebrate the centennial of Escher's birth was also 
organized in Rome This is fitting since Escher was in Italy and lived in Rome 
for many years; for the same reason a session of the congress was organized in 
Ravello, on the Amalfi coast. And a last, but not least reason: my family name 
Emmer is originally Dutch and very similar to "Escher." 

The 1998 congress differed from the 1985 one in several respects. There were 
many new faces, including several contemporary artists, as well as some familiar 
participants. Some participants at the previous conference were not able to attend 
this one, in particular, my co-editors of the 1985 Proceedings: H.S.M. (Donald) 
Coxeter, Marianne Teuber, and Sir Roger Penrose [1]. Another difference is that 
in 1985, Johannes Offerhaus, the energetic and enthusiastic director the Dutch 
Institute, arranged for the Escher exhibition to be held there and The Queen of 
Holland came to open the exhibition. Unfortunately, Offerhaus died a few years 
ago. This time the Dutch Embassy and the Dutch Institute in Rome had no in
terest in supporting an exhibition. (Ironically, the cultural attache of the Dutch 
Embassy, answering my letter of 1996 asking if there would be interest in spon
soring a new exhibition, answered that an exhibition was held in 1985 - of course 
he did not know I was the organizer.) 

This time the M.e. Escher Foundation gave us wonderful support for the 
art exhibitions in Rome and in Ravello. I want to thank them for their encour
agement and cooperation in every aspect of the congress, and their enthusiastic 
attendance at the sessions. In 1998 we had a private three-day exhibition at 
the Museo Laboratorio di Arte Contemporanea of the University of Rome "La 
Sapienza," held during the congress. Here, along with many of Escher's prints, 
the work of contemporary artists from many countries was shown, in an Homage 
to Escher [3]. (The exhibit was held despite many difficulties of importing the 
works of art for the show, thanks to the rules of the Italian and other European 
Customs). The exhibit in Ravello featured almost exclusively the little-known 
prints of Escher's beloved Italian scenes. Its opening reception was a special part 
of the congress session in Ravello, and was open to the public for an extended 
period. Two different catalogs were printed; one for each exhibition in Rome and 
in Ravello [4]. 

I want to thank many people who helped with the hundreds of details of 
organization of this congress: 

First of all Doris Schattschneider. She first presented the results of her study 
on the symmetry notebooks of Escher at the previous congress; a few years later 
she published the book Visions of Symmetry [5]. Without her handling the per
sonal contacts with all the speakers, exhibitors, and participants, it would have 
been impossible to organize the congress. 

My colleagues Valentina Barucci and Stefania Gabelli for organizing the 
Rome exhibition and its catalog. Alessandra Seghini, the director of the com
puter science lab of my department, Alessandro Franchi the computer technician, 
and Angelo Bardelloni of our library: they solved many seemingly impossible 
technical problems. The electricians of the Aula Magna, the private cops, the 
staff of Latour catering. Michele dell' Aquila for the congress web site, Matteo 
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Emmer for the congress logo, animated on the web site, and shown at the be
ginning of this preface (yes, he is my son and an architect). Maria Pia Cavaliere 
and Orietta Pedemonte of the University of Genova, Laura Tedeschini Lalli, of 
the University of Rome III, who helped with local arrangements and registration. 
Mr. Bruno, for the Apple computers and the technical help. 

The helpful staff of the Museo Laboratorio di Arte Contemporanea: Maurizio 
Calvesi, the director, Francesca Lamanna, Maurizio Pierfranceschi, who was 
always at the artists' disposal; Linda Riti, Bruno di Martino for the video and 
film presentations. 

The students and graduate students who performed many tasks: Marta 
Angelilli, Massimiliano Amoroso, Daniela Bassi, Alessia Sao, Monica Amore, 
Maria Silvia Cosma, Maria Silvia De Angelis, Andrea di Marco, Daniele 
Mancini. 

Mr. Pedrocchi of the travel agency Touring Viaggi. And for all local arrange
ments in Ravello: Eugenia Apicella and all the staff of the Centro Universitario 
Europeo per i Beni Culturali. Francesco Fortunato, Antonio Gisolfi of the Uni
versity of Salerno, the organization of the concert, the public administration of 
the City Hall of Ravello and of the Province for their help. In particular for the 
beautiful weather and the sea. A particular thank you to the Mayor of the town 
Secondo Amalfitano and to the Soprintendente dei Beni Ambientali, Artistici e 
Storici di Salerno e Avellino Ruggero Martines. 

A very, very special thank you to Mark and Wim F. Veldhuysen, George 
Escher, and all the Escher family for their unflagging enthusiasm and support. 

The congress received financial support from the University of Rome "La 
Sapienza," the Dipartimento di Matematica "G. Castelnuovo," the National 
Council of Research e.N.R., the M.e. Escher Foundation, and Michele 
Emmer. 

In the proceedings of the previous conference I wrote, "I would like to thank 
my son Matteo and my wife Valeria, and in particular my son Tommaso. With
out their continuing encouragement (and my friends know how true this is) the 
congress would never have taken place." I can now reveal that Tommaso was bat
tling leukemia during the conference in 1985; thankfully, he recovered and he is 
now a medical doctor. It was Valeria who was suffering from cancer during the 
1998 conference. She died October 8,1998. This is why this volume is dedicated 
to her. I must thank Matteo, Tommaso, and Marta very, very much. 

Rome, February 1999 
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Note on the CD Rom 

When the icon shown above appears at the beginning of an article, it indicates 
there is additional material by that author on the CD Rom that accompanies this 
book. The CD Rom contains collections of artwork (in color) by the contributing 
artists, several short videos, a video-essay based on a letter ofM.C. Escher, some 
animations, and an interactive puzzle. 

The CD Rom will run on either a PC with Windows 98 or higher or Macin
tosh with OS 8.S or higher, 200 MHz processor or higher, and 800x600 minimum 
screen resolution with high color setting. It uses Acrobat Reader and Quicktime, 
which may be installed from the CD Rom if your machine does not have them. 
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Escher's Fondness for Animals* 

H.S.M. Coxeter 

to Valeria 

It is clear from the abundance of lizards and other live creatures in Escher's 
pictures, that he had a great fondness for animals. An essay written at school [2, 
p. 16] ends with the words: "While I was sitting so quietly alone, a very small 

Fig.I. M.e. Escher, Saint Francis 
{Preaching to the Birds], 1922. Wood
cut 

* This article is reprinted, with permission, from the catalog of the exhibition of Escher's 
work held at the 1985 Escher Congress at the University of Rome. At the request of the 
editor, George Escher has given some additional remarks. 
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bird hopped over the snow - perhaps it was a wren. It was enjoying the fine 
weather; it chirped merrily and blinked at the sun. It skipped towards the water 
and fluttered about a bit. Then it flew away, so I left too." 

Many less familiar birds can be seen in his 1922 woodcut St. Francis. Other 
birds, along with fishes and mammals, are featured in his woodcuts of the Fifth 
and Sixth Days Of Creation [2, pp. 208-209]. In the latter, a white cat is char
acteristically rubbing its side against Eve's leg, while a white mouse looks on 
without fear. 

In 1924, when he was courting Jetta (who was later his wife) he gave 
a humorous and intimate account of two lizards mating: "An enormously fat and 
beautiful gentleman-lizard, speckled green, black and white, lay basking in the 
sun when a small slim grey lady-lizard came slipping coquettishly from under 
the dry leaves ... " [2, p. 26] 

The 1935 wood engravings Grasshopper, Dream (see page 66), and Scarabs 
reveal the careful precision with which he drew insects [2, p. 263]. This is also 
seen in the nine red ants climbing on his Mabius Strip II, engraved in 1963 (see 
page 75). 

In the beautiful 1955 lithograph Three Worlds [2, p. 311], the painstaking care 
with which Escher drew the big fish is evident in the studies reproduced by Bruno 
Ernst [1, p. 77] who quotes Escher's characteristic remark: "I was walking over 
a little bridge in the woods at Baarn, and there it was, right before my eyes. I 
simply had to make a print of it! The title [Three Worlds] emerged directly from 
the scene itself. I returned home and started straight away on the drawing." 

In his 1957 essay on The Regular Division of the Plane [2, p. 162] he wrote, 
"My experience has taught me that the silhouettes of birds and fish are the most 
gratifying shapes of all for use in the game of dividing the plane. The silhouette 
of a flying bird has just the necessary angularity, while the bulges and indenta
tions in the outline are neither too pronounced nor too subtle. In addition, it has 
a characteristic shape, from above and below, from the front and the side. A fish 
is almost equally suitable; its silhouette can be used when viewed from any di
rection but the front." These remarks are well illustrated by the 1938 woodcuts 
Sky and Water I and II in which we see the paradoxical evolution of dark birds 
from light fishes [2, p. 275]. 

In a 1957 letter to his son Arthur, Escher wrote: 

The other day I put out a horizontal wire with all kinds of tidbits for the 
birds, as I do every year at the beginning of winter - a string of peanuts, 
two balls offat and some bacon rindfrom the butcher It isfascinating to 
see how the tits . .. have to learn every year anew how to peck open the 
peanut shells and take out the nuts, while hanging upside-down on the 
string. .. . Apparently they are unable to do two thin8s at once, unlike 
humming birds; while flapping their wings, they cannot peck, and while 
pecking, they cannot flap their wings. As a result they dangle upside-down 
with their claws holding onto the string as soon as they start pecking, and 
then they realize it is quite possible to eat upside-down. At the moment it 
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is like a circus: the string, bacon rind and ball of fat are all occupied by 
tits . ... 

3 

During his long voyage in 1960 on the freighter Paolo Toscanelli from Genoa 
to Vancouver via the Panama Canal, he wrote [2, p. 110]: 

Of all the creatures in the sea, the dolphins [2, p. 205] are the easiest for 
a ship's passenger to observe. As soon as they notice a ship, they hasten 
towards it, dozens of them, preferably swimming just in front of the bows 
... close together. Again and again they jump into the air to take a breath, 
lifting their whole bodies out of the water in a beautiful arc, and then dive 
back into the sea nose first, or do a belly-flop on the suiface of the water; 
they turn around, showing their white bellies, and you can almost hear 
them laughing with pleasure . ... At night in a phosphorescent sea they 
look like firework rockets, trailing long snake-like criss-crossing ribbons 
of light behind them. 

Flying fish . .. become more numerous as the sea gets warmer . ... 
These small creatures of only seven to sixteen inches must have gathered 
an enormous speed underwater by the time they jump out. Apparently 
they can glide up to two hundred yards through the air . ... Their long 
and beautifully iridescent blue pectoral fins remain still and spread out, 
stretched as taut as the wings of a glider. 

Addendum 

George Escher 

In a general way father was not fond of animals in the affectionate, ear-rubbing, 
cuddling or rump-slapping way. He disliked the harsh bark of dogs, their intru
sive, slobbering affection, the soulful look of their eyes. The only way he could 
enjoy a dog's company was from a distance, for example having an unknown 
one joining him companionably on a walk, trotting inquisitively along the ditch, 
concerned with its own affairs, not intruding in father's privacy. 

At home we had a cat once, never other pets. That cat liked to curl up on fa
ther's lap and father liked the smoothness of its coat, its detached, wann, clean 
tidiness. That cat was black and white, but father would have much preferred if 
it had been perfectly pitch black, an ideal about which he talked every now and 
then, but never made an effort to acquire. 

Father derived great enjoyment from birds. He could listen with delight 
to their song, and found something intensely fascinating in their movements, 
behaviour and the magic of their flight. Some of their chann must have been 
their tidiness, the play of patterns in their appearance and actions, and their 
unapproachability. 

Tidiness, a sense of wonder, a feeling for patterns, keeping his distance, were 
all part of father's own nature. These must have detennined to great extent what 
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type of animal he liked best to look at and to identify with. As far as the appear
ance of birds, fish or lizards in his periodic patterns is concerned, father always 
maintained that he could do little about that. The rules of tessellation and his 
desire to make recognizable shapes led almost automatically to that result. 

One last remark on Coxeter's observations. Concerning "the painstaking care 
with which Escher drew the big fish ... ," it should be noted that carp was copied 
from a large Chinese fish embroidered in gold, which hung on the wall in his 
studio. 

References 

[I] Bruno Ernst, The Magic Mirror of M.e. Escher, Random House, New York, 1976. 
[2] F.H. Bool, J.R. Kist, J.L. Locher, and F. Wierda, M.e. Escher: His Life and Complete 

Graphic Work, Harry N. Abrams, New York, 1982. 



Selection is Distortion 

Bruno Ernst (Hans de Rijk) 

The first time I visited Escher in his studio in Baarn he was finishing the drawing 
for Print Gallery (see page 80). This was in 1956. I remarked that I did not like 
the drawing because of the ugly cross that filled the upper left side of the drawing. 
When I got home, I wrote him suggesting that he might be able to camouflage 
the cross by letting a clematis climb on it. Just imagine how cheeky that was! 
Escher was almost sixty, had more than earned his stripes as a graphic artist, and 
already enjoyed considerable recognition as the creator of very unusual prints. 
I was thirty and a teacher of mathematics. He wrote me a letter explaining why 
it was impossible for a clematis to climb on a window frame, and then went on 
to say that his prints were not meant to create something beautiful, but to evoke 
a sense of wonder in the viewers. 

His reaction was eloquent because it shows how seriously he took the criti
cism of a young man who hardly knew his work. In a long letter to his son Arthur 
about my visit, he had not even one word of condemnation of my behavior. He 
wrote, "He was much interested in my jokes on perspective, and especially in 

Escher in his studio in Baarn, 1969. Photo by Bruno Ernst 
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Fig.I. M.e. Escher, Ascending and De
scending, 1960. Lithograph 

my inversion print Convex and Concave. .. as well in my regular divisions of 
the plane." (See [2, pp. 86-87] for a long exerpt from this letter.) Later when I 
had learned more about Escher's work I realized how stupid my first reaction to 
his Print Gallery had been; now I am convinced that this print is by far one of 
Escher's greatest achievements. 

For a long time my greatest admiration went to Escher's prints with a strange 
and sometimes impossible architecture and I wrote articles about them in sev
eral periodicals. His regular divisions of the plane encouraged me to study this 
matter in crystallographic publications and I was impressed when I saw how 
he had worked out this material very systematically in his own way in several 
workbooks before and during World War II. So strange architectures and regular 
divisions of the plane were for a long time, for me, the most attractive subjects 
of Escher's work. 

Is it not strange that these two themes most attract people's interest in Escher, 
so that most of Escher's prints made before 1938 are rather unknown? And also 
that interest in his later works is limited to fifteen to twenty prints, mainly rep
resented by regular divisions of surfaces and by impossible figures? This has 
created the image of an Escher who drew divisions of surfaces with lizards, birds, 
and fishes which miraculously change into other figures, and of an Escher who 
invented impossible, nonexistent buildings and depicted all sorts of optical illu
sions. This image is not only one-sided, but also incorrect. It is a distortion which 
does not do Escher's oeuvre justice; it ignores what Escher wanted to convey 
through his prints. 

Although Escher is identified with impossible figures, he made only three 
prints which feature impossible figures - Waterfall, Belvedere and Ascending 
and Descending - all within the short period from 1958 to 1961 (Fig. I; also, 
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Fig. 2. Two Boxes. Are the black 
sides equal? 

see pages 65, 135). Belvedere was based on the impossible cuboid, which he 
invented himself. The impossible figure on which Wateifall was based he bor
rowed from Penrose and the structure in Ascending and Descending was also 
based on an idea of Penrose. We should add that in this latter print, the way in 
which Escher worked it out resulted in a curious architecture indeed, yet the un
derlying construction is not impossible. Impossible figures were first discovered 
in 1934 by the Swedish artist and art historian Oscar Reutersviird. But the pub
lic was not ready to appreciate such images and moreover Reutersviird gave his 
inventions in abstract form, not in prints that suggested a real world. 

It is also a misconception that Escher depicted optical illusions. Of course, 
Escher knew many optical illusions; he was interested in them and enjoyed them 
as well. Yet he never chose them as a starting point for a print. I will give one ex
ample here. In Fig. 2 you see two boxes. Our visual perception tells us that the 
left one is more elongated than the right. But if you take a piece of paper and cut 
it so that it exactly covers the black side of the right box you will discover that 
the same piece of paper also exactly covers the black side of the left box. I asked 
a friend (Fred van Houten, who has made many impossible figures) to dress up 
the two boxes so they would appear more realistic. The result of his computer 
work is reproduced in Fig. 3. Escher undoubtedly would have added this 

Fig. 3. Two matchboxes. Fred 
van Houten 
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picture to his beloved collection of prints displayed on the door of his cupboard, 
but he would never have been tempted to make something like this himself. 
He was occupied with very different things. Dressing up optical illusions was 
entirely outside of his scope. 

Intention and Perception 

There will be always a discrepancy between the intention of an artist and the im
pression and ideas that enter the mind of a spectator confronted with a work of 
art. In the case of Escher, this discrepancy (or difference) can be large. I will illus
trate this with the print Puddle (Fig. 4). Most people find this an attractive print. 
As for composition and mood, it is an attractive print. But the muddy ground, 
with its small pool of water and tracks made by cars, bicycles, and shoes, is noth
ing more than the representation of an idea, as are the sky, the trees and the sun, 

ESCHER woodcut 

perception SPEC 
TATOR Fig. 4. M.e. Escher, 

Puddle, 1952. Wood
cut. Surrounding text by 
Bruno Ernst 
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reflected in the pool. What Escher meant to express was the possibility of our 
perception and the ability to depict different worlds on the same piece of paper. 
One could even say, although Escher never hinted at this, that the time dimen
sion also makes its presence felt in the print: the tracks in the mud are relics of 
events which took place in the past. In short, Escher intended to illustrate the 
remarkable fact that drawing makes it possible to show two different worlds 
at the same time in the same place. But most of the spectators have another 
perception and idea: even a puddle on a path along the fringe of a wood is 
beautiful. 

Selection by the Public 

The work of Escher is immensely popular. But as I pointed out earlier, this 
holds only for a limited group of his prints. Three of his little-appreciated prints 
are Doric columns (1945), Three Spheres (1945), and Dragon (1951). All three 
express the same fact of two-dimensional representation: while depicting three
dimensional forms from our surroundings or our fantasy, the beholder is actually 
deceived, because there is no third dimension - everything is flat. In Doric 
columns, Escher first drew two columns twice as long as what you see in the print 
(Fig. 5). Then he made incisions to trim three-quarters of the columns, folded 
these parts and made a new drawing of the whole. For most people the result is 
an enigma. But the message is clear: drawing is an illusion. Or, if one wishes to 
put it more strongly: depicting is deceit. 

In Three Spheres the upper sphere is not a sphere at all, but is a flat drawing 
with circles and ellipses (Fig. 6). Yet our visual system converts the image into 
a three-dimensional sphere. The middle figure is converted by the viewer into an 
egg, but Escher has actually drawn the same figure as above it, but now folded. 

Fig. 5. M.e. Escher, Doric Columns, 1945. Wood
cut 
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Fig. 6. M.e. Escher, Three Spheres, 
1945. Woodcut 

Bruno Ernst (Hans de Rijk) 

Fig. 7. Drawing of the three spheres in 
another position. Bruno Ernst 

Finally, at the bottom of the print, the same figure is laid flat to make clear the 
same message: I draw flat figures but you see three-dimensional objects. (See 
Fig. 7.) And this is so common that it does not surprise us. But it did surprise 
Escher and with these drawings he wished to transmit his wonder to the spectator. 
In Dragon, those who do not focus on the incision in the belly of the dragon (and 
its consequences) miss the point that the dragon is simply a figure in black and 
white on a flat surface (see page 372). 

Selection by the public is, of course, only natural. No one can be forced to 
like a print or to find it interesting. It is important, though, to point out that such 
a selection - especially in the case of Escher - gives a false impression of his 
oeuvre. What he wanted to express thereby suffers from distortion. Those who 
really want to get to know Escher and his work wiIl have to consider his whole 
oeuvre and his oeuvre as a whole. 

Escher's Intentions 

Then what was the intention of Escher and the essence of his work? Before 1937 
there was no particular path that Escher foIlowed. It was a period in which he 
absorbed many impressions and fixed them in sketches, woodcuts, and 
lithographs. In the approximately 110 prints he made from 1937 onwards, we 
see a report of a voyage of discovery. Each print can be seen as a page from 
the 'logbook' he kept up to date during this voyage. What did Escher want to 
discover? 

The first to see Escher's work in the right perspective was his French kin
dred spirit and life-long penfriend, Albert Flocon, professor at the Ecole des 
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Beaux Arts in Paris. He had a wide range of interests, but his main work was 
on perspective. He was the father of curvilinear perspective, with which he could 
draw scenes with a 1800 view [4]. In 1965 he wrote a long article about Escher's 
work in the art magazine Jardin des Arts and he classified Escher among the 
"thinking artists," also naming Piero della Francesca, Da Vinci, Diirer, lamnitzer, 
Bosse-Desargues, and Pere Nicon. For these artists, the art of seeing and the rep
resentation of what is seen are linked with fundamental research in this field [5]. 
Figure 8 shows a page from a publication by lamnitzer which was in Escher's 
possession [6]. It is a woodcut of polyhedra drawn by lamnitzer in correct per
spective - a product of science and art. It is also clearly the work of a "thinking 
artist" as Albert Flocon had in mind when he typified Escher as such. 

Escher was a scientist in his research and an artist in depicting his find
ings. For Escher, everything revolved around research into the nature of his job: 
depicting. In doing so he stumbled upon questions like: which possibilities does 
a flat surface offer if we want to fill it entirely with congruent figures? How 
he struggled with this problem and the victories he achieved are described in 
detail in Visions of Symmetry, written by Doris Schattschneider [8]. We repro
duce in Fig. 9 one of his most attractive and ingenious examples. It is one of 
the few regular divisions he also used for a print - the color wood engraving 
Horseman (1946) in which a topologically interesting band is rendered. Escher 
also used his regular divisions in his attempts to visualize the concept of infin
ity. Circle Limit 1Il (1959) is perhaps his most perfect expression of infinity (see 
color plate 4). 

Escher was intrigued not only by the limited possibilities of depicting a three
dimensional world on a two-dimensional surface, but also by the many extra 
possibilities of expression which are not available to a sculptor who works three
dimensionally. Exploration of those many possibliities was the source of his most 

Fig. 8. Polygons in perspective by Jamnitzer, 1568 
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Fig. 9. M.e. Escher, symmetry 
drawing no. 67, 1946 

famous prints: the strange architecture found in Balcony (1945), Other World 
(1947), Up and Down (1947), House of Stairs (1951), Relativity (1953), Convex 
and Concave, (1955) Print Gallery (1956), and the three prints discussed ear
lier, Belvedere (1958), Ascending and Descending (1961), and Waterfall (1961 ). 
Here we find Escher's interface with optical illusions, not as a collection of 
remarkable peculiarities of visual perception as seen in textbooks, but as the pre
dominant optical illusion: flat pictures are converted by our visual system into 
three-dimensional objects even though these objects do not exist or cannot exist 
in our real world. We do not notice nor experience it as something extraordinary 
that fiat pictures are seen as three-dimensional objects, but Escher reminds us 
with his prints how extraordinary this phenomenon is, and the incredible results 
to which this can lead. 

Only the Most Perfect Expression 

It is remarkable, but entirely in agreement with the nature of Escher's prints as 
the reflection of his research, that he never repeats himself. He was not much 
interested in making beautiful pictures, but in depicting newly-found ideas. 
Therefore he frequently called his prints illustrations of thoughts. Such an idea 
would sometimes keep him busy for many months and he made a large number 
of preliminary studies to work out the final presentation in a print. These stud
ies are often so interesting that they could easily be used as the basis for a good 
print. For example, Fig. 10 shows one of his last preliminary studies of Up and 
Down (see page 29); I completed this sketch myself. Of course this sketch is not 
an Escher print. He did not use this attempt to express his idea. He wanted a print 
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Fig. to. Preliminary study for Escher's print 
Up and Down, completed by Bruno Ernst 

that showed the most perfect expression of his idea and he did not find it worth
while to make a print of what might be a nice subject in itself. After completing 
a print (which he always found disappointing), he went on with new ideas that 
often arose during the peace and quiet of carving a woodblock for printing or 
copying his drawing onto litho stone. 

Mapping Escher's Oeuvre 

In 1968 I tried for the first time to map Escher's oeuvre in a chart. One wall of 
my study was covered with reproductions and photos of his prints in chronolog
ical order. Making up an inventory gave me insight as to how Escher's interest 
advanced in time. When I discussed this with Escher for the first time, he laughed 
about it. But after some time he agreed with my analysis, which you can find in 
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in chapter 5 of The Magic Mirror of M. C. Escher [3]. There I discuss the system
atic development of Escher's work and the intentions of his prints. In this article, 
I can give only a glimpse of what is contained in that discussion. 

A New-Found Category of Prints 

I would like to take this opportunity to mention a theme from Escher's work 
which does not appear in my survey of his oeuvre. I had always overlooked it 
and never discussed it with Escher. He once confided to me "I absolutely can
not draw. Even for the more abstract things like knots and Mobius bands, I first 
make paper models which I then copy as precisely as possible. It is much easier 
for sculptors: everyone can mold. I have no problem with molding, but I do with 
drawing. I find it terribly difficult; I cannot do it well. Drawing is indeed much 
harder, much more intangible, but you can suggest much more with it." 

Of course his lament "I cannot draw" is an exaggeration. What Escher meant 
was that he lacked the gift of many artists who can effortlessly draw various 
scenes embellished with humans and animals, without a model. There is a series 
of prints for which he expressly picked the hardest subjects that make real chal
lenges for an artist. He liked to solve difficult depicting problems in a satisfying 
way. The fact that I missed this obsession of Escher is strange, for Escher had 
given me a clear hint when he discussed his print Spirals with me. It was difficult 
for me to decide the place of this print in his oeuvre. Escher told me that he made 
this print after he had seen a torus made up of spiraling bands in a book about per
spective by Daniel Barbaro [1] (Fig. 11). It was intriguing that you could see the 
inside of the torus, but it annoyed Escher that it was not very well drawn. And so 
he set himself to do it not only better, but he also made the goal more difficult: 
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Fig.n. Torus with spiral bands. 
Design by Barbaro, c. 1568 
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Fig. 12. M.e. Escher, Spirals, 1953. 
Woodcut 

he would not depict a simple torus with spiraling bands, but a body that would 
become thinner and thinner and would keep spiraling back into itself. He made 
many preparatory studies [7, pp. 166-167] that show how he was a master in 
making unusual perspectival constructions. And the result was a beautiful color 
wood engraving (Fig. 12). But it was not popular, for Escher sold only three or 
four prints, and as far as I know he printed only ten. 

Escher's fascination with difficult construction problems by which he could 
illuminate the invisible parts of three-dimensional objects can also be seen in Two 
Intersecting Planes (1952), Concentric Rinds (1953), Three Intersecting Planes 
(1954), Sphere Spirals (1958), Four Regular Solids (1961), and Knots (1965). 
These prints are not his most appreciated, In fact, one is considered to be so 
untypical "Escher" that the only reproduction you can find is in the full cata
log of his work [2] . I think that only a few people have given any attention to 

Fig. 13. M.e. Escher, Three 
Intersecting Planes, 1954. 
Woodcut 
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Fig. 14. Drawing of one of the three planes in 
Escher's Three Intersecting Planes 

this print: Three Intersecting Planes (Fig. 13 and color plate 5). However, I will 
show you that this print is intriguing and a really "typical" Escher print. There are 
three planes - white, green, and black - which are perpendicular to each other. 
In Fig. 14 I drew only the white one. The intersection point of the three planes 
is at the center of the print. Easy to draw, but not if you want to show the hidden 
parts of the planes. So Escher tried to open up each plane so that you can see 
the other planes through the holes. Each plane is like a chessboard with only the 
white squares, where the black ones have been cut out. The plane converges to 
infinity at the vanishing point V 1. The three vertices of the triangle (that depict 
the vertices of a tetrahedron) are vanishing points of the three planes. 

Perhaps you are not impressed by the result of Escher's effort in this 
print; nevertheless, such unappreciated prints, perhaps even more than the most 
appealing ones, show Escher's imaginative ways to help us see the ideas he 
imagines. 
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Ravello: An Escherian Place 

Michele Emmer 

to Valeria 

Ravello and the Amalfi coast. Drawing by Francesco Fortunato, 1999 

Years ago when Doris Schattschneider was preparing her book Visions of Sym
metry [9] she sent me a letter asking me if I could help to locate some Arabic 
mosaics she thought might be in Ravello; she had found loose sketches of them 
in Escher's materials. I contacted a friend of mine, Francesco Fortunato, an 
architect who lives in Ravello and is a great fan of Escher, who immediately 
recognized the sketches by Escher. You can find the original mosaics adorning 
the pulpit of the Duomo in Ravello. Doris thought that it was rare to find Arabic 

Mosaics on a column of the pulpit of the Duomo of Ravello. 
Photograph by Doris Schattschneider 
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M.e. Escher, Carruba tree [In Ravel/oj, 
1932. Woodcut 

mosaics or motifs in Ravello. In fact it is not; the Moors occupied the Amalfi 
coast for centuries. They are part of the history of Ravello, a place so loved by 
Escher; he was in Ravello many times. In particular, at the Hotel Toro it is pos
sible to see an Escherian motif on the wall, made to commemorate his staying 
there. 

Escher and Ravello 

Escher visited Ravello for the first time in 1923; he left Pompei on March 14 
and took the train to Vietri; from Vietri he took a horse-drawn coach to Ravello. 
It took three hours to travel the beautiful route along the Amalfi coast. Escher 
stayed at the Hotel Toro. Here, on March 31 the Umiker family arrived with 

An Escherian motif on the sign of the Hotel Toro. Photograph by Kevin Lee 
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daughter Jetta, who would later become his wife. Escher was very attracted by 
the plants and the landscape of the Amalfi coast; after more than two months, 
he left Ravello in June. In the summer of 1931 the Escher family was again in 
Ravello. At this time, Escher made many sketches that would become prints of 
scenes in and around Ravello (see pages 93-95 and color plate 1). 

You cannot visit Ravello and not be deeply affected by it. Marjorie Senechal, 
a conference participant, wrote: 

Where did he get those staircases, those lizards? Participants in the 
Escher Centennial Congress in June 1998 had a chance to find out. 
After three days of lectures, expositions, and discussions in Rome -
home to M.e. Escher and hisfamilyfrom 1925 to 1935 -the Congress 
moved south to Ravello, a small mountain town that Escher had 
loved. In Ravello, Escher's early prints of Italian landscapes come 
to life. There one also discovers themes that reappeared later in the 
consciously geometrical works for which he eventually became world 
famous: green lizards scurry along stone walls, arches in cloisters 
recede to infinity, and columns, balconies, and staircases are linked 
in fantastic architecture. 

Apalled by the rise of Fascism, Escher left Italy for Switzerland 
and Belgium, and then returned, for good, to his native Nether
lands. But for the rest of his life, those lizards and that architec
ture insinuated themselves into his woodcuts and lithographs, as in 
a dream. [10] 

I first had the idea to organize a conference and exhibition to celebrate Escher 
in Ravello when I visited Amalfi in 1989 to see an exhibition dedicated to the 
Grand Tour that so many artists in the last two centuries had made to Italy. There 
was a small section of the exhibit dedicated to Escher, entitled The mysterious 
world of Maurits C. Escher [8]. In the catalog it was written that Escher came 
for the first time to Ravello and Amalfi in 1931. The catalog reproduced Escher's 
prints of the church and the little town of Atrani on the sea, five kilometers from 
Ravello. 

Escher used many of his drawings and lithographs of the landscape in the 
south of Italy as a database for his most famous works. When I first encountered 
Escher's work at the end of the 1960's, as my father is a filmmaker, my idea was 
to make a movie using Escher's images. I did not know at that time that Escher 
himself used the cinematographic technique to describe his works [4], [6]. In 
particular, I was attracted by his Metamorphose which is a long horizontal 
image, a sequence that can be described in animation, as a perpetuum mobile, 
a never-ending movement (page 147). In this print, film could add movement to 
the original image, so that you could really see the animation and transformation, 
the visual cascade from one image to the next. 

The final image of Metamorphose is the church of Atrani (color plate 1). 
Metamorphose is a sort of testament for Escher: there is the Italian landscape, his 
beloved Amalfi coast; there are fishes and birds, which he considered so easy to 
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design and so easy to recognize; there is the use of symmetry, tessellations taken 
from his notebooks; and there is transformation, the cinematographic technique 
that was used already by Giotto, more than six centuries before him. (In 1938, my 
father, Luciano Emmer, made a documentary film which, through the dissolve 
technique, made Giotto's figures in his frescos tell their own story [3].) 

Rave II 0 

It seems that the small town of Ravello was begun during the sixth century by 
a band of Romans who were trying to escape the invasion of the Huns, the Goths, 
and the Visigoths. It is considered that the earliest traces of the recorded history 
of Ravello are from the ninth century. The first name of the town was Rebello and 
her inhabitants were called rebelli (rebels) because they fought with the powerful 
nearby town of Amalfi. Later the name became Ravello (beautiful house: bello). 
The town was subdued by Amalfi in the eleventh century. During its greatest time 
of prosperity in the thirteenth century, Ravello had almost 40,000 inhabitants. 

The town was celebrated by Boccaccio in the Decameron, in a story dedi-
cated to Landolfo Rufolo. 

Credesi che la marina da Reggio a Gaeta sia quasi la piu dilettevole 
parte d'!talia; nella quale, assai presso a Salerno, e una costa sopra 
il mare riguardante, la qua Ie gli abitanti chiamano la costa d'Amalji, 
piena di picco Ie citta, di giardini e fontane, e d'uomini ricchi e pro
caccianti in atto di mercatantia sl come alcuni altri. Tra Ie quali citta 
dette, n't una chiamata Ravello, nella quale, come che oggi v'abbia 
di ricchi uomini, ve n ' ebbe gia uno it quale fu ricchissimo, chiamato 
Landolfo Rufolo. [1] 

Few parts of Italy, if any, are reckoned to be more delightful than 
the seacoast between Reggio and Gaeta. In this region, not far from 
Salerno, there is a strip of land overlooking the sea, known to the 
inhabitants as the Amalfi coast, which is dotted with small towns, 
gardens and fountains, and swarming with as wealthy and enterpris
ing a set of merchants as you will find anywhere. In one of these little 
towns, called Raveno, there once lived a certain Landolfo Rufolo, and 
although Raveno still has its quota of rich men, this Rufolo was a very 
rich man indeed. [2] 

The Decameron was written by Giovanni Boccaccio between 1348 and 1353; 
Boccaccio had a number of friends in Raveno including the grammarian Angelo 
di Ravello. The hero of Boccaccio's story is based on one Lorenzo Rufolo, who 
after losing the favour of the Angevin king turned to piracy before being captured 
and imprisoned in a castle in Calabria, where he died in 1291. The ornate pulput 
in Ravello's cathedral is dedicated to the Rufolo family. 

Amalfi and Ravello had important commercial contacts with the other nations 
on the mediterranean sea, in particular with the Byzantines and the Moors. Thus 
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M.e. Escher, Ravello and 
the Coast of Amalji, 1931. 
Lithograph 

Ravello and the Amalfi coast. Photograph by Doris Schattschneider 
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A plaque commemorating 
Escher's residence in Rav
ello. Photograph by Doris 
Schattschneider 

the Arabs had an important influence on the culture and the art of the Amalfi 
coast. The Pistolesi 1845 guidebook noted with great admiration that Atrani 
could easily have been mistaken for a part of Tunis or Algiers. In 1853 King 
Ferdinando II completed the route from Salerno to Amalfi, the route traveled by 
Gregorovius in the XIX century on his Grand Tour [7]. He visited Ravello and 
was particularly attracted by the influence of the Moors on its art and architec
ture. He described the town of Ravello as a typical Moorish town, with towers 
and houses very close to each other - and the mosaics and the arabesques! Many 
Arabs, as well as Arab soldiers, were living there. 

Gregorovius was especially attracted by Villa Rufolo. 1 The Rufolo fam
ily was one the most important families in the town. This palace could be 
called a little Alhambra (and everyone knows very well what a strong impact the 
Alhambra of Granada had on Escher). The composer Richard Wagner also was 
fascinated by Villa Rufolo. "This is the magic garden of Klingsor!" exclaimed 
Wagner on May 26, 1880. It was in this place that he wrote the fourth scene of 
Act II of Parsifal. This is one of the main reasons why Ravello holds a famous 
festival of symphonic music each year (the 1998 festival began with Giuseppe 
Sinopoli2 and ended with Zubin Mehta). Wagner's Parsifal was on stage in 1997; 
Valkyrie in 1998. 

The best way to understand why so many people have been attracted to 
Ravello is to walk around and discover the secrets of this small town. Several 
pictures of Ravello are on the CD Rom. 

I would like to end with a poem, an Arabic poem, which is possible to find en
graved on a stone in Villa Cimbrone, one of the most beautiful villas in Ravello: 
It is from Omar Khayyam's Rubayyat, LXXIV, written in the eleventh century. 

Ah, moon of my delight, that knows no wane 
The moon of Heaven is rising once again, 

How oft hereafter rising shall she look 
Through this same garden after us in vain! 

I This is the place in Ravello where the 1998 Escher Centennial congress and the Escher 
exhibition took place. 

2 Maestro Sinopoli died in Berlin, April 20, 200 I. 
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Mystery, Classicism, Elegance: 
an Endless Chase After Magic 

Douglas R. Hofstadter 

An essay in honor of Bruno Ernst, Hans de Rijk, and Brother Erich -
Escher's three deepest appreciators 

A Non-artist's Non-artist? 

I am turning the pages of the large volume M.e. Escher: His Life and Complete 
Graphic Work, which I bought many, many years ago. I quickly flip past Meta
morphosis, Sky and Water, Drawing Hands, Relativity, Waterfall, Belvedere, 
Print Gallery, and many others - the familiar works that first grabbed me with 
a sudden, irresistible, visual pull (most of them awarded a full page or at least 
a half-page in that book), works that truly intoxicated me half a lifetime ago -
and my eye is instead caught by much smaller images, images of Mediterranean 
seascapes or Italian hilltowns, images of a tree or a snow-covered bam, images 
that seem far simpler and far less eye-grabbing, far less interesting than those for 
which M.C. Escher has become world-famous. 

And yet, in so doing, I feel I am in deeper touch with M.C. Escher than I 
ever was before, and am appreciating, more than ever before, his artistry. And 
I use the word very carefully and very deliberately, for M.e. Escher has, perhaps 
inevitably, come under attack from segments of the contemporary art world as 
"not an artist." Indeed, in the bookshops of art museums these days, one com
monly finds, along with hundreds of books devoted to virtually unknown but 
terribly trendy contemporary artists, a total blank when it comes to Escher's 
works. 

Writing in the San Francisco Chronicle in 1979, the art critic Thomas 
Albright observed (though not espousing the sentiments himself): 

Always regarded more coolly by the art world than by the popu
lace, Escher's quirky visual paradoxes are frequently shrugged 
offby sophisticated contemporary connoisseurs as so much aca
demically executed, illustrative trickery, a more hip version of 
Norman Rockwell. [1] 

Even more pointedly, a recent review in The New York Times of an Escher 
retrospective in the National Gallery in Washington, D.C. snidely described the 
printmaker to whose exhibit the gullible, unsavvy Washington public was flock
ing as "a non-artist's non-artist" [13]. Why would harsh judgments along these 
lines emanate with high frequency from the pens of the self-appointed Creators 
and Conservators of Art in the Western World? 
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Behind the Bandwagon of Cool Dismissal 

I can't presume to fathom all the reasons that underlie this collective behavior, 
but I can still speculate, and so without fanfare, here are some of my guesses as 
to why a large segment of today's art world pooh-poohs M.e. Escher: 

• Some artists and would-be artists are consciously or unconsciously jealous 
of Escher's popularity and effectively say to themselves (a little like Aesop's 
fox who couldn't reach the tempting grapes), "Anyone who is that popular 
couldn't possibly be worthwhile"; 

• Some artists and would-be artists see in Escher's works "nothing but mathe
matics" and this "regrettable" link would - by definition! - instantly preclude 
its having anything to do with Art; 

• Since Escher's prints use few colors, and are very precisely executed, they are 
pigeonholed as being not rich, spontaneous, and sensual but, rather, as austere, 
constrained, and cerebral (and of course "cerebrality" is the kiss of death in 
today's art world); 

• Various Escher prints were pirated and illegally reproduced on psychedelic 
posters and rock-album covers in the 1970's and 1980's, a fact that for some 
people stigmatized his art as a whole, leaving an overall impression that 
Escher is the artist of preference of the "sex, drugs, and rock-n-roll" crowd; 

• Escher standardly called himself a "graphic artist" or a "printmaker"; given, 
then, that he had confessed of his own free will to his crimes and thus revealed 
his sinful nature, how could anyone persist in calling him "artist"? 

The five negative stances that I have just sketched stem, in the main, from 
voguish waves that have swept through our culture in the past few decades but 
that are far from universal; indeed, I have observed numerous times that sophis
ticated adults from other cultures (e.g., from Eastern Europe or Asia) respond 
with the same unabashed enthusiasm to Escher prints as I did, when I first saw 
them. 

An Epiphany in the Office of Otto Frisch 

The first time I laid eyes on an Escher print is as vivid in my memory as the 
moment I first heard that President Kennedy had been shot. It was January of 
1966, I was twenty years old, and my father and I had just driven up from Lon
don (where my parents were spending a year) to the idyllic university town of 
Cambridge, where he had been invited by his colleague Otto Frisch to give 
a physics colloquium. Frisch, a gentle elderly Austrian Jew who, as a refugee 
first in Copenhagen and then in England during World War II, had played a major 
role in unraveling the secrets of nuclear fission, met us on the ground floor of 
his building and escorted us upstairs to his office. I walked in and in a flash was 
bowled over by a stunning drawing in a large dark-brown wooden frame (Fig. 1). 
I saw white birds flying one way, black birds flying the other way, the two flocks 
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Fig.t. M.e. Escher, Day and Night, 1938. Woodcut 

meshing perfectly together to fill up all space. As my gaze drifted downwards, 
I saw the bird-shapes distorting and turning into a diamond-like grid of black 
and white fields. To the left of the fields, I saw a peaceful village by a river, 
basking in bright sunlight, while to their right, I saw a mirror-image village by 
a mirror-image river, calmed by soft starlight. 

I found myself plunged into the mythical world portrayed, and was charmed 
by the idea of walking back and forth on the little roads linking these two 
villages, thus easily sliding, in a mere five minutes, between noon and midnight. 
As I pondered the birds blithely flying above, I wondered, "How could two 
flocks of birds fly right through each other, without even the tiniest space? For 
that matter, how could they even breathe, with no air between them? And how 
could three-dimensional birds, roughly half a meter in length, turn into two
dimensional fields, roughly 100 meters on a side?" None of this symmetric 
picture made any sense, but at some other level, it made perfect sense. 

I asked Frisch, "What is this?" He replied, "It is a woodcut by a Dutch artist, 
and I call it 'Field Theory', though its real name is 'Day and Night.' Do you 
like it?" I replied, "It is amazing!" Frisch then said, "I recently visited the artist, 
whose name is Escher, in his studio in Holland, and I have his address. If you 
would like, I'll give it to you, and you can write to him." I eagerly took the sheet 
he gave me, and in the meantime pondered the nickname that Frisch had given 
the print. 

"Field Theory" was clearly a piece of physics wordplay, since that term is 
another name for relativistic quantum mechanics, and I knew that one of the key 
principles at the heart of field theory is the so-called "CPT theorem," which says 
that the laws of relativistic quantum mechanics are invariant when three "flips" 
are all made in concert: space is reflected in a mirror, time is reversed, and all 
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particles are interchanged with their antiparticles. This beautiful and profound 
principle of physics seemed deeply in resonance with Frisch's Escher print, with 
its left-right reversal (the mirroring of space), its interpenetrating black and 
white birds (particles and antiparticles), and its interchange of day and night 
(which could be taken metaphorically as tampering with time, perhaps symbolic 
of a flip in the direction of time as one crossed the picture). Moreover, the weird 
transitional shapes that floated somewhere between pure birdness and pure field
ness had a quantum-mechanical flavor of entities that are neither particle nor 
wave, and yet are somehow both. 

MCE: Outcast Poet 

Although I am not a mystic, I am nonetheless subject, as are most humans, I 
would surmise, to occasional flashes of mystical feelings, to a certain irrational 
sense of cosmic magic and mystery - and somehow this astonishingly original 
print and Frisch's little piece of wordplay, linking it with the ultimate laws 
of the universe, touched me very deeply. It is also interesting, and not at all 
a coincidence, I would say, that when my father and I visited the Frisches at their 
home later that afternoon, what Frisch chose to play for us on the piano was the 
Italian Concerto by J. S. Bach, who was by far Escher's favorite composer, and 
whose name, over a dozen years later, I would link, in the title of my first book, 
with those of Escher and of Austrian logician Kurt GOdel r8]. 

There is, I feel, some intangible quality shared by Escher's oft-explored 
themes of symmetry, reversal, paradox, interpenetrating worlds, flow and meta
morphosis, and ultimately, the overall strangeness of the world, by Bach's 
ever-fertile contrapuntal manipulations of several interwoven voices, sublimely 
exploiting inversion, interlocking patterns, and multi-level complexities, all in 
the honor of an unseen and mysterious Creator, and by the vast and subtle 
intellectual structures of mathematics and physics that unmask the most hid
den secrets behind the scenes of Nature. When a human creation of any 
sort - visual, musical, or intellectual - is capable of making millions of humans 
powerfully resonate to the strange and awesome harmonies lurking in the world 
around them, it seems to me that that creation epitomizes art, in the best sense 
of the term. 

There is something sad, to me, in the fact that so many in the fad-prone 
art world - though by no means all! - cannot come to grips with the fact that 
a "mere" graphic artist could have had such an impact on so many people; I find 
it perverse that, far from lauding this individual, they instead feel compelled 
to disdainfully tum their backs on his visual creations, to badmouth his style 
and his achievements, and to expel him symbolically from their community. 
When the art world chooses to reject one of its most creative members merely 
because, in exploring idiosyncratic ideas, he managed to engage the imagina
tions of millions, it seems to me a world that has lost its bearings. 
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But the art world will not, of course, admit that pettiness might playa role 
in its haughty attitude. No, a loud protest will be raised that Escher was noth
ing but a mediocre, run-of-the-mill artisan, perhaps skilled as a draftsman, but 
with almost no sensitivity to line, color, composition, characterization, themes, 
or anything else that matters in art. He was a trickster who played surface-level 
games based on fooling the eye, but he had nothing creative or profound to say. 

It is at this level that I would like to engage the art world - on its own terms -
and in this essay I shall do so, but in order to set the stage, I have to begin 
where I myself began, which is with my own very meager correspondence with 
M.e. Escher, first in early 1966 and then in the spring of 1967. 

Getting to Know Escher's Output and Style 

Within a week or two of my visit to Frisch's office, I had written a short 
letter to Escher at his home in Holland asking about the possibility of obtaining 
a print of Day and Night, to which I promptly received a terse but amicable 
reply saying that it was available and its cost was $70. Well, being but a simple 
student and having no serious income to speak of, I found this was a bit steep, 
and so I decided against the purchase. However, Escher did tell me in his note 
that a book of his works was scheduled to appear within a few months, and so 
I decided to wait for that. Something like a year passed, and finally, with a certain 
amount of difficulty, I managed to obtain one copy of this book from a small 
press in Germany. It was filled with magic! 

I need not dwell here on my reaction to all the prints reproduced in it, but 
suffice it to say that on some level, perusing the book felt like reading a science
fiction adventure filled with paradox and illusion. Many of the prints grabbed me 
intensely, but perhaps my favorite, aside from Day and Night, was Up and Down 
(Fig. 2). I could not help but inject myself straight into the picture, imagining 
myself as the boy sitting on the stairs. 

Each time I looked at Up and Down, in my mind's eye I would see the boy 
stand up, walk down a few stairs, then tum right and go down the little flight lead
ing to the basement of the tower, open the door, and then start to climb inside the 
tower. He would go up one floor, then another, then a third, and then - in some 
indescribable manner - would find himself upside-down, below ground level, in 
the basement of the tower he'd just climbed (or one indistinguishable from it). 
(If you doubt my claim about orientation, compare the windows on the two sides 
of the tower.) He would then flip himself right-side-up, exit the basement door, 
and emerge at the bottom of the small flight of stairs, proceed up them, only to 
find himself back again at the level of the sandy courtyard he had just left. 

Would he see himself - or his clone - sitting on the stairs? No, I reasoned, 
because presumably, the clone-boy would have simultaneously made the same 
trek (or rather, "the same" trek), and hence would not be around to muddy the 
fragile waters of personal identity. In fact, the truth of the matter is that the 
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Fig. 2. M.e. Escher, Up and Down, 1947. 
Lithograph 
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two clones would have passed each other, though going in opposite directions, 
halfway up (or down) the tower. I like to think that perhaps the spiral staircase 
inside the tower is walkable on both sides (much as are two of the straight stair
ways shown in Relativity, page 265), allowing two people to use it at the same 
time without having any awareness of each other. Of course gravity would have 
to work in a very subtle way inside the confines of the tower (but then, think of 
how much subtler gravity's workings must be in Relativity!). 

Another type of deliciousfrisson came each time I imagined the boy standing 
on the ground-level patio tiles just to the right of cellar steps, and peering over 
either of the U-shaped stone arches, one low and one high. (He might have to 
hoist himself up to peer over the higher one.) Just what would he see? Would 
he have to hold on for dear life, lest gravity suddenly rip him from off this tiled 
ceiling and send him reeling downwards to crash head first on the very same tiles, 
yet three floors below him? 

I must say, I loved the mythical setting of this print, especially its warm 
Mediterranean ambiance: the sandy courtyard, the palm trees in their little 
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circular plots, the archways lining the courtyard, the staircases, the balconies ... 
I myself grew up in an environment that shared much with this style: the campus 
of Stanford University, with its sandstone buildings, hundreds of arches, square
tiled passages, tiled roofs, palm trees, and so on, and so perhaps I had a natural 
affinity for such scenes, but in any case, I was enchanted purely on the architec
tural level. It was only some years later that I came to realize that Escher had 
borrowed many elements of these decidedly non-Dutch scenes from villages in 
such places as Malta, Corsica, Sicily, Sardinia, mainland Italy, and Spain. 

Disappointment and Captivation 

I want to make very clear that I was by no means charmed equally by all the 
prints in this first book. Truth to tell, I was rather turned off by the ugly gnome
like creatures in Encounter, the sinister skull at the center of Eye, the bizarre 
rind-like strips in Bond of Union, the frighteningly huge praying mantis in 
Dream, and so forth. Moreover, I was distinctly frustrated by the relative sim
plicity of the shapes and the repetitiveness of some of the tessellations, such as 
Whirlpools, Circle Limit I, Flatworms, and others. 

And then there were some images that, though they intrigued and charmed me 
with a subtle and novel poetic flavor, still disappointed me for their lack of overt 
paradoxicality. I'm thinking, for instance, of Rippled Surface and Puddle. The 
former, however, kept attracting my eye with its elegant stylization of how rip
ples distort reflections, clearly revealing its creator's fascination for the geometry 
that pervades physical phenomena. 

As for Puddle (page 8), I warmed up slowly to its underdone poetry, defined 
by the mingling of many distinct worlds - the moon, the clear sky, the trees, the 
mud, the smooth water, and of course the invisible humans, the details of whose 
recent comings and goings on foot and on wheels were clearly legible to the in
telligent eye. So much to take in! The round, round moon, split in two by a spit of 
mud jutting out into the shallow water ... The budding leaves, near and far, on 
the tree branches ... The parallel zigzags of a truck's tire marks, extending into 
the puddle ... The crisscrossing bicycle tracks ... The walkers' tracks, leading 
in opposite directions ... And forming the upper-left and lower-right edges of 
the puddle, two footprints defined by the outline of the water itself ... This im
age was permeated by an almost Buddhist sense of calm and serenity, and soon 
seemed in its own way just as wonderful as the mind-bending strangeness of 
Drawing Hands, Verbum, Metamorphosis, and others. 
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Spreading Like Wildfire 

Once I had absorbed the contents of this first Escher book, I could see I was deal
ing with a visual poet whose mind could be carried far along a number of very 
different directions, and that my first impression had just scratched the surface. 

Naturally, I eagerly showed my copy of this exotic book to friends, and to my 
surprise, several of them asked me if I could get copies of it for them. So I went 
back to the bookstore that had gotten my copy, and ordered five more. As soon 
as they arrived, they were snapped up, and then more friends asked for copies. 
I ordered another ten, and before long, all of those were gone as well. I could see 
that this little-known Dutch artist had a profound appeal to people of many sorts 
- especially those who liked intellectual stimulation flavored by strangeness and 
mystery. 

Own Print 

Having thus realized that these works had an uncanny power to churn up inquis
itive minds, I decided that maybe it would be nice, after all, to have a full-size 
Escher print on my wall, just as Otto Frisch had had - and so roughly a year after 
my first letter, I wrote to Escher once again, this time inquiring about the prices 
of about ten of the prints in the book he had told me about. Once again, his reply 
was prompt and to the point. Day and Night was still- thank God! - in print, but 
over the course of just one year, its price had gone up from $70 to $125. Whew! 
I gritted my teeth and wrote out a check for that amount (plus a shipping charge 
of $5), and within a couple of weeks, it arrived in a stiff cardboard mailing tube, 
in perfect shape once unrolled. 

As for the other works I had asked about, some were out of print and some 
were still available, but I chose to forego purchasing any more, since my budget 
was very limited. Of all the works that I could have obtained then, the one I most 
regret is Puddle, which at the time would have cost me another $100. Of course, 
given today's sky-high prices, that sounds like a joke. Too bad - but at least I did 
come to own one genuine Escher print with his name penciled in at the bottom, 
and also the words "Eigen druk" - "Own print." And indeed, to this very day -
and to this very night - I still own that very print. 

"Godel, Picasso, Bach: a Preposterously Gauche Bagatelle" 

My own personal involvement with Escher took a special turn in the mid-1970's, 
when I was writing a book focusing on a kind of quasi-paradoxical abstract 
vortex that I called a "strange loop" - a notion that I had first encountered in 
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mathematical logic, but whose implications seemed to me to be vast, and in 
particular to reach out as far as the nature of human consciousness, at whose core 
I felt I identified such a structure. As I was writing my book - initially given the 
working title "G6del's Theorem and the Human Brain" - I noticed that when
ever I would write of these "strange loops," one or another visual image would 
creep into my brain, yet at such a subliminal level that for weeks I was virtu
ally unaware of it. Finally one day, while riding my bicycle, I woke up to the 
fact that Escher pictures were haunting my mind as I was struggling for words 
to convey the nature of these bizarre structures, and I realized that it would be 
distinctly unfair to my readers if I failed to provide them with the same concrete 
imagery as I myself was using in order to visualize these abstractions. And so 
I decided that my book would have to include a fairly large sampling of Escher 
pictures. 

Since I had already livened up the book by writing verbal dialogues that play
fully imitated contrapuntal pieces by Bach, I decided that the strong presence 
of these two wonderfully deep artistic spirits merited being recognized in the ti
tle, and so I switched my book's title to Godei, Escher, Bach - and then, feeling 
this was a bit austere and cryptic (as well as too foreign-seeming), I appended 
the subtitle an Eternal Golden Braid, which, with its swapping of the initials 
"G" and "E," did indeed take the first step in creating a potentially infinite braid 
composed of the three letters "G," "E," and "B." 

Most of the Escher prints that I discussed in GEB were of the "spectacular" 
type - those that threw paradox straight in your face and forced you to grapple 
with it - but there was one chapter in which I spoke about a few of Escher's more 
subdued prints, such as Dewdrop, Three Worlds, Rippled Suiface, and Puddle, in 
fact likening their spirit to that of Zen Buddhism. 

For a number of years after finishing GEB, I felt that I had essentially "shot 
my wad" as far as Escher was concerned - I had had my say, and had nothing 
more to say to anyone about the art of M.e. Escher. But slowly, I kept hearing 
from various people about their disdain for Escher's art. I will always remember 
a curator at a museum in Washington, D.e., who told me of her great admiration 
for my book Godel, Escher, Bach, but insisted nonetheless that I had made an 
egregious error in choosing Escher as my featured artist; had I known more about 
art, I surely would have replaced him by Picasso, whose spirit, she explained, 
was far more in line with those of G6del and of Bach. How could I have ever 
seen fit to place a mediocrity like Escher, a mere cipher, on the same plane as 
that of the titans GOdel and Bach? 

I could barely believe my ears. Contrary to her supposition, I was in fact very 
familiar with Picasso, and though there were some works that appealed to me 
(and many more that did not at all), I found the spirit of his art to have little if 
any relationship to the ideas in which my book was grounded. Moreover, I had 
to chuckle internally at her other supposition, which was clearly that I had begun 
my book by asking myself the question, "Let's see, now ... I want one mathe
matician, one artist, and one musician - so which individual from each category 
shall I pick?" What a distortion of GEB! 



Mystery, Classicism, Elegance: an Endless Chase After Magic 33 

Far Out, Maurits Baby! 

Even my late wife Carol, who was without any doubt one of my staunchest 
supporters, wavered a bit in her feelings about Escher, although she was by 
no means a total scorner of his art. (In fact, she was happy to have our dining 
room decorated with several Escher prints in elegant frames.) When I pressed her 
about her mixed feelings about Escher, she explained that she had originally seen 
his art exclusively on psychedelic posters in day-glow colors and so, although 
she now knew better, she just couldn't divorce it from the world of hippies who 
would gape wide-eyed at it, drop their jaws, and religiously mutter, "Like wow, 
man! It's a mind-blowin' tum-on!" 

Indeed, in 1969, Escher bitterly complained, in a letter to his son George and 
daughter-in-law Corrie in Canada: 

The hippies of San Francisco continue to print my work ille
gally. I received some of the grisly results through a friendly cus
tomer over there. Among other things, such as virulently colored 
posters, I was sent a forty-eight-page programme or catalogue of 
the so-called "Mid peninsula Free University," Menlo Park, Cali
fornia. It included three reproductions of my prints alternating with 
photographs of seductive naked girls. [2, p. 131] 

These words are both amusing and poignant to me, since the San Francisco mid
peninsula was precisely where I had grown up and still spent every summer in 
those days, and I had a couple of friends who were deeply involved in the so
called "MFU" (an institution whose philosophy ran violently against my grain). 
In fact, I keenly remember how I had run across that specific "course catalogue" 
and been disgusted with the way in which Escher - someone who at the time 
I practically regarded as my own "personal property" - was garishly mixed in 
with tasteless pornography and trendy psychobabble. 

I readily admit that, had my first associations with an artist come from 
perusing such a trashy, trendy catalogue, I very likely would have been turned off 
just as Carol had been, but I tried to convince Carol, who had specialized in art 
history at Indiana University, that Escher was not just some sleazy fly-by-night 
artist who was out to make a quick buck off of trendy young folk eager to gawk 
at superficial, sensationalistic imagery, but rather, he was someone driven by an 
insatiable curiosity and a deep sense of esthetics, and whose work had sadly been 
pirated and exploited in the crudest of contexts. Looking back, I suspect that it 
was probably in my attempts to convey to Carol my sense ofM.C. Escher as poet 
that I first started to perceive Escher's art on a new level, and to articulate why 
he was so different from a number of latter-day imitators who in the meantime 
had come along. 

We will come to all that in a moment, but before we leave the topic of 
how Escher's visions lit many people's fires, I cannot resist including a small 
anecdote that I read in an article by Kenneth Wilkie in the Holland Herald 
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concerning the unlikely interaction between British rock star Mick Jagger and 
the Dutch artist early in 1969 [14]. The former, hoping to splash an Escher print 
on a forthcoming record cover, wrote the latter a note that began as follows: 

Dear Maurits, 
For quite a time now I have had in my possession your book 

[Graphic Works of . .. J and it never ceases to amaze me each time 
I study it! In fact I think your work is quite incredible and it would 
make me very happy for a lot more people to see and know and 
understand exactly what you are doing. In March or April this 
year, we have scheduled our next LP record release, and I am most 
eager to reproduce one of your works on the cover-sleeve. Would 
you please consider either designing a "picture" for it, or have you 
any unpublished works which you might think suitable . .. 

As has already been attested to in previous pages of this essay, Escher was no 
slouch as a correspondent, and just a couple of weeks later he replied as follows 
to Jagger's assistant, Mr. Peter Swales: 

Dear Sir, 
Some days ago I received a letter from Mr. Jagger asking me to 

design a picture or to place at his disposal unpublished work to 
reproduce on the cover-sleeve for an LP record. 

My answer to both questions must be no, as I want to devote 
all my time and attention to the many commitments made; I cannot 
possibly accept any further assignments or spend any time on 
publicity. 

By the way, please tell Mr. Jagger I am not Maurits to him, but 

Very sincerely, 
M. C. Escher. 

Sublime Minimalism 

One of the defining characteristics of good poetry is terseness, and another is 
elegant ambiguity, or otherwise put, polished polysemy - the cramming of 
a number of meanings into one well-wrought phrase. I would say that the 
conduding sentence of M.e. Escher's reply to rock star Jagger fits those crite
ria perfectly - it is terse and it packs in two meanings beautifully! But there are, 
needless to say, other media than that of language in which Escher created poetry 
possessing both terseness and polished polysemy. 

Consider the lovely miniature woodcut Fish, executed in 1963 (Fig. 3). There 
are but two complete fish in it, one white and one black, while around them 
are small fragments of ten additional fish (five white and five black, of course), 
making twelve in toto - three columns with four fish apiece. But the fading-off 
into undulating watery forms is carried out in the most exquisite and the most 
symmetric of fashions; even the pair of little wave-fragments seen at the very 
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Fig. 3. M.e. Escher, Fish, 1963. Woodcut 
Fig. 4. M.e. Escher, Plane-filling Motif 
with Fish and Bird, 1951. Linoleum cut 

top are echoed precisely at the very bottom. If ever a work of art merited the ti
tle "poem," this is it! It is a paragon of compression and concision, and its visual 
polysemy - the black-fish/white-fish oscillation - is as elegant as could be. To 
my mind, this miniature represents what creative genius at its absolute peak is 
capable of, and as such, it is a study from which many artists, young and old, 
could learn a great deal. 

Another miniature that exudes the same sort of subtle charm is Plane-filling 
Motif with Fish and Bird, a linoleum cut done in 1951 (Fig. 4). At first, one might 
tend to see in this nothing more than a competent though rather uninspired draw
ing offour identical fish. Only if one's attention jumps from the four white shapes 
to the central black shape that they collectively define does one discover what is 
really going on here: a lone bird flying in the opposite direction leaps out at the 
eye. At the eye, indeed! Yes, I suspect that had Escher not drawn that tiny tell
tale circle at the eye, the central bird would be so subtle as to elude nearly all 
viewers. Sheer poetry, once again. 

Two other similar studies are worth pointing out and briefly commenting on, 
as well. Horses and Birds is a wood engraving done in the fall of 1949, while 
the Asselbergs' New Year's greeting card, a woodcut, dates from roughly a year 
earlier. In the first of this pair, one sees four horses - and yet the fourth one is 
so cloudlike as to be nearly ethereal; likewise, one sees four birds, but the fourth 
one has nearly been absorbed into the grass. And in the second of the pair, the sea 
scene, we clearly recognize five black boats, with a sixth black shape (directly 
above the lowest fish) constituting the "ghost" of a boat; and in perfect comple
mentarity, we clearly recognize five white fish, with a sixth white shape (directly 
below the highest boat) constituting the "ghost" of a fish. 

There are several touches in the latter study that enhance its charm, such as 
the increasing realism of the boats as one moves upwards, and the symmetrically 
increasing realism of the fish as one moves downwards. Thus, for instance, one 
might say that the "symmetric analogue" to the sharp teeth of the very lowest 
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fish is the person seated in the back of the very highest boat. These details, like 
the seagulls in the sky and the jellyfish in the sea, did not have to be added, if 
all the artist were interested in were a trompe-I' reil effect; but Escher loved the 
extra detail, the fine touch that in some sense might have seemed irrelevant but 
that undeniably added flavor. 

A Time-reversed Artist's Life 

I now wish to slide gradually backwards in time, and in so doing to demonstrate 
what I think is a remarkable reversal of the usual progression in an artist's life, 
in which youth's first passionate outpourings are often brilliant and catchy, but 
in which the fact of aging tends to lead to an ever-increasing level of subtlety 
and an ever-greater idiosyncrasy of language, which, perforce, usually "speak
s" to a smaller and smaller audience. Somehow, in the case of M.e. Escher, the 
progression seems to have followed precisely the opposite course - namely, 
whereas the output from his earlier years is imbued with a subtlety that seems 
to elude most people, it is the products of his later years that seem brilliant and 
catchy, and that have seized a vast public's imagination. 

Intimate Interlacings of Independent Universes 

I have already waxed lyrical about the several interwoven worlds in the 1952 
woodcut Puddle, and in GiMel, Escher, Bach, I echoed Escher's own words 
about the mingled worlds in the 1955 lithograph Three Worlds, so I will not 
do that here. I would instead focus on a seldom-discussed print, the wood 
engraving Double Planetoid, which dates from 1949 (Fig. 5). What we have 
here is a wonderful science-fiction image of two totally independent yet mutually 
interpenetrating worlds, one inhabited exclusively by human beings, the other 
populated exclusively by reptiles of the lizard/dinosaur variety. Each world 
is, on its own, a perfect tetrahedron - the most elementary of the five regular 
Platonic solids, having just four vertices, and for its faces having four equilateral 
triangles. 

For the human-populated tetrahedron, the vertices are flag-capped castle 
towers, and each face contains an essentially circular bridge chaining its three 
towers together, so that people can freely walk from one "kingdom" to another. 
Indeed, the careful onlooker will soon spot several individuals in transit from one 
castle to another, as well as other denizens who sit or stand high on the balconies, 
and chat or contemplate the scenery. 

At the same time, there is another tetrahedral world whose vertices consist of 
four rugged mountain-peaks, which one might imagine reaching by strenuous 
rock-climbing, scrabbling up the steep slopes and grabbing at cactus branches -
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Fig.S. M.e. Escher, Double Planetoid, 1949. Wood engraving 

but of course this world is exceedingly hostile to humans, and there are none in 
it to thus tempt fate. Who would want to risk being trisected by a tyrannosaurus 
or trampled by a triceratops? A careful look at this wild world will reveal several 
different kinds of dinosaurs, and - in slight violation of my reptiles-only theory 
a few lines back - a mountain goat perched high on a promontory! 

Escher leaves totally to the imagination of the viewer the nature of the 
relationship of these worlds to each other. Their physical interaction is mediated 
by a set of arches and galleries, which allow the dino-world to pass right through 
the architecture of the human world - and complementarily, by a set of caves and 
grottoes, which similarly allow the human world to pass right through the dino
world. Not in a single point do the two worlds ever actually touch each other! 
What an ingenious geometric creation! 

But what we do not know is the answer to the questions: Do the denizens 
qf one world see those of the other? Are the two worlds mutually ignorant, or 
are they aware of each other? I do, I admit, have a hunch on this. It seems to 
me that on one of the high walkways I can just barely make out a person with 
outstretched arm, pointing something out to a companion, and it would appear 
that it is most likely a scary, scaly lizard much larger than either of the people, 
scaling the alpine heights of one of the four mountains - and so, if I had to bet on 
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it, I would guess that the people are aware of their co-denizens, but they never try 
to cross over, and perhaps the dinosaurs, too, are dimly aware of strange creatures 
lurking near them, just as aquarium fish might be dimly aware of people through 
the glass of their tanks. 

Meanwhile, this double world dangles serenely in the blackest of space, 
with its inhabitants presumably enjoying a very earth-like existence, replete with 
normal gravity, air, wind and rain, the passing seasons, and of course an 
abundance of food, fights and rivalries, languages, dialects, passports, armies, 
wars and diplomacy, flirtations and marriages, temptations, intrigues, infidelity, 
illness and mortality, and even - for how could it be otherwise? - the rudiments of 
science as well as art a-plenty. And thus, mightn't one conceivably come across 
an Escher print - perhaps Double Planetoid itself - hanging on the stone walls 
of one or more of the grand little castles? 

This print provides us with an extremely blatant case of intermingling worlds, 
but Escher's early art is filled with subtler examples of this same kind of vision. 
Consider the 1939 woodcut Delftfrom the Tower of the Oude Kerk (Fig. 6). What 
we see here is a panorama of Delft rooftops, interrupted by the pleasingly carved 
stone railing of the tower, with its flat upper surface and its graceful curved 
arches. Which world is dominant here? Which is the subject of the study? On 
the one hand, the lovely medieval town would seem to be the main focus, with 
the railing being an unwanted but unpreventable intruder (as if the incorrigibly 
honest artist had no choice but to include the railing in his rendering of reality, 
simply because it was there!); and yet on the other hand, the lovingly detailed 
portrayal of the railing itself, with all its cracks and flaws, draws one's attention 

Fig.6. M.e. Escher, De(ft from 
Oude Kerk Tower, 1939. 
Woodcut 

Fig. 7. M.e. Escher, Venice. 1936. Woodcut 
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quite away from the town, and one's gaze can well dwell on the nearby stone 
instead. 

The truth of the matter is, however, that there is a perfect balance between 
the two worlds, and that the actual subject of the study, as in Double Planetoid, 
is coexistence - in this case, the coexistence of near and far, of light and dark, of 
solidity and airiness, of one's own world (for we can imagine reaching our hand 
out and touching the railing) and the world of others (for we can imagine the 
people walking the streets of Delft, carrying out their daily duties of shopping, 
stopping, talking, and walking), but they and we belong to separate worlds, and 
never the twain shall meet. 

A similar foreground-world-versus-background-world effect gives great 
interest to the 1936 woodcut Venice (Fig. 7), wherein we see, across the serene 
lagoon, a lovely church steeple rising high above the water, but our view is 
partially obscured by the wondrous Venetian curvilinear arches, recognizable 
instantly from their Byzantine-influenced minaret-like negative spaces, and just 
above them, their four-Ieaf-clover-shaped holes. Once again, which world is 
being "foregrounded"? And once again, the answer is that the true point of the 
image resides in its duality, its ambiguity, its oscillatory nature, never resolved. 

Similar near-and-far double-world oscillations are found in the 1937 wood
cut Porthole and the 1933 wood engraving Cloister of Monreale, Sicily (see 
page 79). The latter in particular features an exquisite interplay of extreme light 
and extreme dark, with the sun's rays streaming diagonally across the courtyard, 
and with delicate swirling lacery adorning the quadruple stone column in the 
very foreground. 

One final example ofthis "subgenre" that is so characteristic ofM.C. Escher's 
style is provided by his 1933 woodcut Pineta di Calvi, Corsica (Fig. 8), which 
depicts a village perched on a rocky outcropping, seen from across a lake or 
river, but our clear view of the village is constantly being challenged by the dark
est of dark pine trees - trunks, branches, foliage, and cones. We the viewers 

Fig. 8. M.e. Escher, Pineta 
of Calvi, Corsica, 1933. 
Woodcut 
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belong to one world - dark, cool, lush, and sinuous - while the far-off vil
lage constitutes a world apart - bright, scorched, dry, and rectilinear. Intimate 
commingling of these opposites is the point of the study. 

M.e. Escher's "Magical Realism" 

Pineta di Calvi is one of those prints from a period in Escher's life that I consider 
absolutely magical. I got my first whiff of this facet of Escher when 1 gazed in 
fascination at the abruptly plunging hillsides of his 1930 lithograph Castrovalva 
reproduced in the sampler of his work that I obtained in 1966, but since that print 
had no true companions in the book, it felt more like an exception than a trend, 
and so I built up only the most rudimentary mental image of M.e. Escher qua 
landscape artist. 

It was not until several years later - in fact, in May, 1972, when I got hold 
of a more comprehensive catalogue of Escher's graphic work, De werelden van 
M.e. Escher, edited by 1.L. Locher - that I saw dozens more of these astonish
ing southern landscapes, and started to realize what a distorted i mage of Escher's 

Fig. 9. M.e. Escher, Ro(}fl' of'Siena, 1922. 
Woodcut 

Fig. to. M.e. Escher, Bonifacio, Corsica , 
1928. Woodcut 
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artistic personality had been given to me, and of course to many others, by 
exhibits and books that focused so sharply on his paradoxical, illusion-centered 
works, while ignoring almost totally his deeply lyrical side. 

Let me give a personal example. In the same year that I first saw Day and 
Night - in fact, just three months later - my parents and sister and I took a three
week trip through Italy, a few days of which we spent in the spectacular ancient 
hilltown of Siena, in Tuscany. I fell in love with that town, feeling it was the most 
romantic place I had ever seen - indeed, I ached in the most acute manner to savor 
it with a romantic partner. Well, it was only some six years later that I discovered 
how much my artistic and yearning reaction to Siena was shared by Escher, who 
made several poetic studies of its narrow, hilly streets and its ancient, haphazard 
architecture, such as his 1922 woodcut, Roofs of Siena (Fig. 9). These studies 
caught precisely the mood that I had been infected with, yet that I myself could 
never have possibly verbalized, let alone captured in an image. 

The amazing charm of Italian villages that grow up nearly organically fused 
with the rocks and mountains on which they sit was an endless source of 
inspiration for Escher, and he made many studies of these miracles of collective 
invention, showing how they merge so intimately with the nature all about 
them. Two examples of this obsession of Escher's are his 1928 woodcut 
Bonifacio, Corsica (Fig. 10), showing a village perilously poised high above the 
sea on the very edge of a cliff that bends inward below it, and his 1929 scratch 
drawing Town in Southern Italy, showing a hillside village set at one end of 
a long valley that recedes far into the distance, where one sees a snowy mountain 
chain looming (Fig. 11). 

Fig. 11. M.e. Escher, Town in South
ern Italy, 1929. Scratch drawing 
(lithographic ink) 
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Fig. 12. M.e. Escher, Morano, Calabria, 1930. Woodcut 

These are the kinds of scenes that have since time immemorial inspired poetic 
imaginations in the most powerful manner, and yct I have never seen anyone 
capture quite as clearly their magical feel. Perhaps the most stunning portrait 
of an Italian hilltown that I have ever gazed upon is Escher's 1930 woodcut 
Morano, Calabria (Fig. 12), which he made from a photograph he'd taken a few 
months earlier [2, p. 46]. If one compares the photo with the final print, one sees 
all sorts of devices he has used in order to turn reality into a poem. Metaphoric
ally speaking, Escher quotes very literally, but at the same time he feels free to 
put in ellipses and to insert his own italics, and in this subtle manner, he turns 
elegant prose into exalted poetry. 

In addition to appreciating the rugged beauty of crag-nestled villages, Escher 
had a particularly strong affinity for trees and forests, and their softer beauty, too, 
he was able to turn into quite amazing poetry. Take, for instance, his 1932 wood
cut Carubba Tree, executed in the exquisite Italian hilltown of Ravello, perched 
high above the Amalfi coastline, southwest of Naples (see page 18). The play 
of light and dark here recalls the wonderful stylizations of waves and mountains 
done by Japanese printmakers such as Hokusai, but the particular gestures and 
devices are Escher's and Escher's alone. 

As we continue our roughly time-reversed projection of Escher's life, we 
arrive at his surrealistic 1921 woodcut W<JOd near Menton, which has 
a marvelous, wild, fiery magic to it, mixing pure geometry with the strangest and 
snakiest of curves (Fig. 13). This, too, is among thc Escher prints that I would 
most have liked to own. It reminds me a little of the experimentations of Escher's 
compatriot, the painter Piet Mondrian, as he slid slowly but inexorably down 
a slope leading from pure, old-fashioned representationalism, through a personal 
type of impressionism, finally to wind up at an unforeseen and unpredictable 
destination - namely, the highly geometrical abstract style for which he gained 
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Fig. 13. M.e. Escher, Wood near Menton, [1921]. Woodcut 

his greatest fame. Midway along this slide, Mondrian produced beautiful surreal 
visions of trees and forests with marvelous curvilinearities to them, but such 
visions he eventually left behind; among them were dozens of attempts to capture 
the "essence of treeness," which I find strangely parallel to this study by Escher. 

There is a type of literature that first sprang up in South America and that has 
since spread to other parts of the world, known as "magical realism," exemplified 
by the works of Colombian novelist Gabriel Garda Marquez. The hallmark of 
this brand of fiction is the scattering, among a perfectly normal series of events, 
of occasional paranormal occurrences, which are recounted quite blithely and 
straightforwardly, as if they were just as real and just as ordinary as the events 
that frame them. For some reason, I have never liked reading novels in this style, 
and yet, in an admittedly inconsistent fashion, I seem to fall lock, stock, and 
barrel for the visual way that M.e. Escher found of blending the purely real with 
the fantastic or the magical. I can't account for this rather irrational discrepancy 
of my literary and artistic tastes, but there it is anyway. 

To conclude this brief discussion of M.e. Escher's visual version of magical 
realism, and in so doing to unwind the clock even further, I would cite the untitled 
1919 woodcut that in my books is simply assigned the stark label Tree (Fig. 14). 
With long and swirly tendril-like branches weaving in and out among one 
another, this tree stands alone in a vast, barren field, with an eerily glowing moon 
looming behind it; in the foreground, a baffled human cowers in apparent fear 
and awe at the miraculous sight. The tree seems to be radiating some kind of 
magical "vibrations," to use a voguish but apt word. There is a mythical and 
timeless quality to this strange, unexplained scene. What could Escher have had 
in mind? Although there is nothing overtly paradoxical or illusionistic here, the 
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Fig. 14. M.e. Escher, Tree, 1919. Woodcut 

artist is playing at the verges of rationality, and in this image, one can almost 
foresee (thanks, needless to say, to knowing the answer!) the directions in which 
its creator is predestined to travel over the course of his artistic lifetime. 

Of an Artistic Corpus and of its Parts 

We could travel back still further in time and see how M.e. Escher already, in 
some of his even more youthful prints, was flirting with mystery and magic, but it 
is time to draw the line. I confess that it has not been easy to select which prints to 
discuss, and that I would have liked to give many more examples, but oftentimes 
concision, though challenging and painful, is the wisest choice. 

And so ... What Escher works do I most enjoy looking at today, after having 
been an MCE aficionado for - horrors! - well over thirty years? The truth of the 
matter is that these days, I find most pleasure in gazing at his earlier works -
his fabulous (in the sense of "fable-like") Italian landscapes, and his studies of 
interpenetrating worlds - although to be sure, those old latter-day stand-bys Day 
and Night, Up and Down, Reptiles, Liberation, and Relativity will never cease to 
enchant me. 

But would I have ever come to appreciate the beauties of those early works, 
those works that exhibit no "in-your-face" impossibilities or absurdities, were it 
not precisely for the latter works, the ones that everyone has come to feel are syn
onymous with the name "M.e. Escher"? That is a probing question. However, an 
even more probing question is whether I would ever have encountered them at 
all, had he not become world-famous for his later works. And once we open these 
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questions up, we are led to dealing with some of the most fascinating issues in 
the philosophy of art and the meaning of esthetics. 

To help us grapple with these issues, I will propose two hypothetical 
variants of M.e. Escher. For convenience's sake, I'll call them "M.A." and 
"M.B." Like M.C. Escher (but instead of him!), M.A. Escher was born in 1898 
in Holland, and lived exactly the same life as did the former - same, that is, 
until the fateful year 1936, when, tragically, M.A. was struck on his bicycle by 
a passing train, and died at age 38. Thus all that M.e. Escher had created up 
till that age, but nothing beyond it, would be the artistic legacy, the full artistic 
corpus, of M.A. Escher. Sadly, Day and Night, Metamorphosis, Belvedere, and 
all of those beloved works would simply never have seen the light of day (or 
night!), all because of the railroad-crossing signal that failed to go off. 

Now as for M.B. Escher, he too shared the life story of M.e. all the way up 
till 1936 (and once again, with all the same artistic output), but then, unlike the 
ill-starred M.A., M.B. kept right on going strong until the ripe old age of 73 
(just as did M.e.) - but here's the key difference between Band C: not even 
once during his whole long life did artist M.B. Escher feel any temptation to 
explore overt paradox, tessellation, impossible worlds, dimensional conflict, 
or any of those themes that today we would tend to identify by the label 
"Escherian." Instead, M.B. Escher trod the straight and narrow pathway over 
the next few decades, refining his technique ever further by churning out great 
numbers of prints of rugged Italian landscapes and charming Italian villages, 
poetic studies of Spanish and Maltese and Dutch countrysides in the four 
seasons, Zen-flavored miniatures featuring commingling worlds, and perhaps the 
occasional study in which elements of order and of chaos are tightly juxtaposed. 

The question now arises: What would have been the artistic fates of 
M.A. Escher and M.B. Escher? Would anyone today know of either of them, 
or care about them? And in particular, would J, had I somehow come into 
contact with the works of either of these hypothetical artists, love them as I love 
M.e. Escher's, and would I have felt it was worth my while to spend a good 
chunk of my time singing their praises in a longish essay? 

I must admit, it strikes me as pretty doubtful that the works of either artist 
would ever have reached my attention, or would even have attracted that much 
attention outside of those who were a priori inclined to be interested in the 
artist's works - namely, his close friends and relatives, people from the towns 
that he lived in and drew, and lastly, that small clique of people who always enjoy 
purchasing inexpensive prints in minor galleries here and there. Very probably, 
no internationally distributed art book would feature even so much as a single 
print of M.A. or M.B. Escher. 

But why would this be? Aren't M.e. Escher's early prints - the ones that in 
this essay I have been so oohing and ahhing over - found in widely distributed 
books? Have they not become justly famous? And so, given their merit, would 
they not have found their way to publication come hell or high water? Of course, 
the answer is "no." Would we wish to read biographies of the child who would 
have become Einstein had he not died of typhus at age nine? Of course not; we 
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are interested in reading about Einstein's early childhood precisely because and 
only because of what he in fact would become and did become. Would we wish 
to read a biography of Albert Einstein, the careful horticulturist who faithfully 
tended the Basle Botanical Gardens for fifty years after deciding that physics was 
fun but flowers were more fun? Of course not; we are interested in the life of 
Albert Einstein only if he is the Albert Einstein who didn't drop physics, and 
then went on to discover two varieties of relativity, to postulate the photon, and 
so on and so forth. 

The biographies of the nine-year-old prodigy and the dutiful Swiss botanist 
are, of course, caricatures of the M.A. and M.B. scenarios, since both M.A. and 
M.B. did, by hypothesis, grow up to adulthood and produce considerable bodies 
of respectable art. However, reaching adulthood and enjoying modest success is 
one thing, while having a huge skyrocketing career is quite another. There are 
many artists in the former category, few in the latter. One can hardly dispute the 
tautology that what M.e. Escher is famous for is the set of works that people 
know him by, and it seems most likely that Dame Fame would have passed him 
right by had he either expired on the railroad tracks in 1936, or merely gone on 
to do "more of the same" for another three or four decades. 

And so I think that the question of fame is fairly unambiguous and uncontro
versial: M.A. and M.B. would most likely have been very minor figures in the 
world of art, if not virtually unknown, by this, the year 1999. But saying that 
and stopping there sidesteps the perhaps more interesting question of whether 
their works would still have exerted on me, Douglas Hofstadter - had I by hook 
or by crook come to know them well - that same effect, that same sense of 
magic and mystery as I now perceive in them. What would I think - indeed, what 
would I see? - when one fine day I chanced to run across the works of M.A. or 
M.B. Escher on the walls of some small Dutch museum, or flipped by accident 
to them in the pages of an obscure but finely produced art book? 

This is a rather tricky counterfactual scenario, but here's my take on it. 
I suspect that although I would still like the prints quite well and would feel that 
they resonated with my own personal love for such things as Italian hilltowns 
and intermingling worlds, I would probably fail to see the extra levels of magic 
that I in fact see lurking in them "between the lines," extra levels of meaning that 
clearly come from my seeing these prints not simply as "some artworks by some 
Dutch artist," but far more particularly as works that emanatedfrom the selfsame 
eye and the selfsame hand of M.e. Escher, paradox artist par excellence. 

In fact, this is in itself a seeming paradox: that my reactions to the wonderful 
early prints of M.e. Escher are not due solely to the forms and ideas that he put 
into them when producing them, but are also deeply due to the artist that he later 
became and that I came to love. It is because I fell in love with Day and Night 
and Up and Down (etc.) that I can now look at prints like Pineta di Calvi and 
Morano, Calabria and see much more magic in them than is, so to speak, "on the 
surface." I think to myself (mostly unconsciously, to be sure), "These landscapes 
are by the artist who made Day and Night and Up and Down and so forth, and 
I know well that that artist had a profound sense for hidden magic, and I can see 
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glimmerings of that same sort of hidden magic lurking in these two prints, even 
though it's not in-your-face magic. And therefore these prints, by virtue of being 
imbued with a subtler version of the same magic as their later-born superfamous 
cousins, are even deeper and therefore even better than those are!" 

Although I have phrased this in an exaggerated, naIve-seeming way, I 
actually think that such an opinion would be well-founded and utterly 
reasonable. For the truth of the matter is, we never perceive anything in a purely 
context-free manner. If you don't play chess, you surely don't see a chessboard in 
midgame the way a grandmaster does. If you know no Indian music, you cannot 
form a sophisticated judgment of pieces of Indian music that you hear out of the 
blue. If you cannot read English, your perception of this page of text is surely 
very different from that of the woman sitting next to you in the subway train, 
who (unlike you) is actually reading and understanding this very sentence, and 
perhaps snickering at the thought that to someone else, it might look like no 
more than black marks on a white background. And likewise, if you know no 
late Escher, your perception of Pineta di Calvi and Morano, Calabria and such 
works is inevitably going to be very different from that of someone who knows 
late Escher well (and who realizes that the different bodies of work are by one 
and the same person). 

For me or for anyone else, perception of the magic that lurks in (or behind) 
M.e. Escher's early prints would be greatly facilitated and catalyzed by prior 
experiencing of the magic in his later prints. Indeed, perhaps that is the only route 
to seeing their magic. 

Musings About the Inevitability of an Artistic Lifecourse 

This linkage that I am proposing between "early Escherian magic" and "late 
Escherian magic" does force one to ask: Are they really the same magic? Would 
the latter necessarily have emerged from the former? Was Escher's artistic path
way inevitable and in effect predestined (barring railroad-crossing disasters and 
such things)? When we look at early Eschers and late Eschers and claim to see 
"the same spirit," is it like looking at photos of a teen-age boy and the old man he 
grew into, and recognizing the same impishness (or the same melancholy spirit) 
at both ages? Or could intervening events - chance events - have made some cru
cial difference? Could there really have been an "M.B. Escher," who never found 
the pathway to paradox - or, if he found it, then never found it tempting? 

I wonder, for instance, about Escher's fateful- or was it fateful? - 1936 trip 
to the Alhambra in Granada, Spain. It's easy and tempting to surmise that had 
M.e. Escher not made that visit, he would never have become obsessed with the 
"regular division of the plane" and never have done the tessellations that became 
perhaps his most celebrated trademark. But the truth of the matter is somewhat 
more complex. In the first place, already at age 22 or 23, in the years 1920-21 
when he studied at the School for Architecture and Decorative Arts in Haarlem, 
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MCE had experimented cautiously with periodic patterns in the plane, as well 
as with patterns of right-side-up and upside-down faces that together filled up 
the plane in a figure-and-ground manner. Indeed, Escher himself wrote, "Long 
before I discovered in the Alhambra that the Moors had an affinity for the regular 
division of the plane, I had already recognized it in myself." ([2], pp.162-163, 
and [5, p. 103]) So there was already in young Escher a latent propensity for 
studying interwoven planar patterns. 

Moreover, his 1936 visit to the Alhambra was not his first visit there, for he 
had visited it in the fall of 1922 as well. Both times he was impressed by the 
beauty and intricacy ofthe tiling patterns on the walls (and ceilings and floors!), 
but only after the second visit did he catch on fire with these ideas. And yet, 
most tellingly, Escher's own account of why his artistic passion changed course 
at roughly this stage in his life does not refer to his rediscovery of the bewitching 
tilings of the Alhambra, but rather, to the fact that in 1936 he and his wife and 
sons finally left Italy for Switzerland, then moved to Belgium, and eventually 
settled in Holland - environments he found rather bland, and about which 
he wrote, "I found the outward appearance of landscape and architecture less 
striking than those which are particularly to be seen in the southern part of Italy. 
Thus I felt compelled to withdraw from the more or less direct and true-to-life 
illustrating of my surroundings. No doubt this circumstance was in a high degree 
responsible for bringing my inner visions into being." [6, p. 7] 

Escher himself also commented on why he had not pursued his early inter
est in tilings and tessellations: "In about 1924 I first printed a fabric with a wood 
block of a single animal motif that is repeated according to a particular sys
tem, always bearing in mind the principle that there may not be any 'empty 
spaces' . . . . I exhibited this piece of printed fabric together with my other work, 
but it was not successful." [italics added]. (See [2, p.55] and [5, p.84].) Thus 
we see that somehow inside M.e. Escher, even from his earliest artistic explo
rations, there was a latent tendency to explore the ideas of the mature Escher, but 
a critical factor - and this is perhaps to be decried - was the nature of the public's 
reception: warm or cold? 

In the end, then, it is not easy to tease apart nature from nurture, in the 
origins of Escher's search for visual magic. However, I personally am of the 
opinion that one does in fact see the seeds of the man in the child, or, as the saying 
goes, "The child is father to the man." And thus, although I myself concocted the 
hypothetical M.B. Escher who coincided with M.e. Escher till age 38 but then 
never explored the further pathways that M.e. Escher did, I intuitively recoil at 
this scenario, feeling it is in truth incoherent. The real Escher was profoundly 
predisposed to react to visual mystery and strangeness, and it was, in my opinion, 
inevitable that he would discover many paradoxical visions. For this reason, my 
fictitious M.B. Escher, although on the surface perhaps a plausible individual, 
seems to me to be, on deeper and longer reflection, a severe contradiction in 
terms. 

To be sure, once M.C. Escher had become sufficiently well-known, then 
people came to him and presented him with ideas that he would otherwise never 
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have heard of, and in this sense his life's artistic pathway did not come entirely 
from within, and was not fully discernable in or predictable from his youthful 
efforts. Thus, for instance, in 1959 Escher received an article from the British 
scientists L.S. and Roger Penrose in which they wrote of "impossible objects" 
and showed drawings of impossible triangles and staircases and such, and from 
these sparks Escher swiftly created several prints based on them. 

Similarly, in 1958, the geometer H.S.M. Coxeter sent Escher an article 
on symmetry reproducing some of Escher's tessellations, but also containing 
a section on hyperbolic tessellations. Escher described Coxeter's text as "hocus 
pocus," but the figures filled him with excitement. Indeed, he wrote to his son 
Arthur [2, p. 91], "I get the feeling I am moving farther and farther away from 
work that would be a 'success' with the 'public', but what can I do when this 
sort of problem fascinates me so much that I cannot leave it alone?" It seems, 
then, that even fear of failure with the public could be overcome when there was 
a sufficient amount of inner fire inside his brain - and much the luckier are we 
all for that! 

The Verdict of the Miserable Generations to Come 

I never met M.e. Escher personally; the closest I could say I came to doing so 
was when I met his son George at the Escher Congress in Rome in June, 1998, 
celebrating the 100th birthday of M.e. Escher. George gave a wonderful talk 
in which he displayed the fruits of his own passionate search for patterns. The 
patterns consisted, in this case, of eight cardboard cubes taped together in such 
a manner that, once all the tape was in place, the resultant constructions could be 
flexed along their taped edges so as to flip back and forth between two different 
configurations, each forming a perfect 2 x 2 x 2 cube. There were thousands of 
possible taping-patterns, and George had systematically explored each and every 
one of them and had come up with about a dozen or so wildly different solutions, 
each of which had some wonderful way of turning itself inside out and yet wind
ing up in the end as the same overall shape. The details of this quest, however, 
are not at all my point; all that I wish to point out is that George had devoted 
months and months to studying these bizarre objects, and out of his intense 
devotion to this obscure but elegant puzzle had come some marvelous and totally 
counterintuitive discoveries, which he demonstrated to us all. 

At the end, clearly anticipating the question that we all had formulated in our 
minds, George remarked, "You may wonder what in the world this puzzle and its 
solutions have to do with Father. On the surface, nothing at all. But what we have 
in common is this very down-to-earth manner of grappling with a purely mathe
matical puzzle, turning it into a practical exercise, and exploring every nook and 
cranny of it in our completely nontheoretical, totally experimental way, trying 
one thing after another after another. In such a way, we acquire a deep intimacy 
with the domain, and can make many fascinating discoveries. Whether they have 
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any importance is of doubt, but we cannot help ourselves. I, just as my father was, 
am driven by a perhaps silly but absolutely insatiable curiosity. And that is how 
all this has to do with the artist whom we are here celebrating today." 

M.e. Escher, as a young man of 24 suffering the sweet torment of watching 
too many inaccessible pretty girls prancing all about, no matter where he turned 
in the wildly romantic city of Siena (as I myself would suffer as well, 44 years 
later, at nearly the same age and in precisely the same place!), sought refuge from 
the constant tantalization of Eros in the only way he knew - by plunging him
self into his art - and this is what he said, in a letter from Siena to his very close 
lifelong friend Jan van der Does de Willebois [2, p. 24]: 

Many wonderful prints are springing from my mostly industrious hands -
but the question as to whether they contain any beauty, that I shall 

leave to be answered by the miserable generations to come. 

* * * * * * 
* * * * * * 

* * * * 
* * * * 

* * * 
* * 
* * 
** 
* 
* 
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M.C. Escher and C.v.S. Roosevelt 

J. Taylor Hollist and Doris Schattschneider 

Long before M.e. Escher's art became popular, Cornelius v.S. Roosevelt be
gan collecting it. His collection of prints, obtained directly from Escher in the 
1950s and 60s, grew to include articles and books about Escher, correspondence 
with and about Escher, and Escher ephemera, from authorized (and pirated) 
reproductions of Escher's prints to gaudy pop items. 

Cornelius van Schaak Roosevelt (1915-1991), a grandson of American 
president Theodore Roosevelt and longtime resident of Washington, DC, was 
educated at Groton and Harvard, transferring to Massachusetts Institute of Tech
nology where he studied mining engineering. Between 1938 and 1949 he worked 
for mining companies in Mexico and in Shanghai, with Naval service during 
WWII in the Special Devices Division of the Bureau of Aeronautics. For most 
of his professional career, he worked for the United States Central Intelligence 
Agency (1952-1973) [3]. His principal achievement in the agency was his chair
ing an interagency committee on technical surveillance countermeasures, which 
recommended ways of countering electronic eavesdropping. 

Known to his friends as 'Corny', he was an avid collector of many items. His 
collection of Japanese carved ivory netsuke, for example, rivaled the best, and 
his bibliography of netsuke literature [11], was for years a standard reference for 
collectors. He was always up to adventurous challenges: archaeological digs in 
the Middle East; checking out an ancient engine in a Central American jungle for 
the Smithsonian, scuba diving (even into his later years), gliding, and ballooning 
in many comers of the globe. He delighted in repairing clocks, and in building, 
designing and playing with electrical gadgets in his workshop. A story written in 

Cornelius van S. Roosevelt in 1978. Photo courtesy of 
Marguerite Rawdon-Smith 
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1982 about his workshop in his Georgetown apartment gives a glimpse of how 
meticulous and organized Roosevelt was. (These traits exemplified his handling 
of all his collections that would be passed on to appropriate homes at the end of 
his life - a rare treat for those in museum acquisitions.) 

The spare bedroom in Cornelius Roosevelt's Georgetown condominium 
has no bed, bureau, or slippers . ... "This is my shop," says Roosevelt, as 
he leads a guest through his elegantly furnished apartment into the room 
that is his impeccably organized home workshop . ... What Roosevelt has 
created in the 12-by-16-foot room is a multipurpose workshop for small 
projects in woodworking, metalworking and repair work . ... And since 
his avocation is voraciously space-consuming, he met the challenge by 
creating storage places for every last nut and bolt . ... 

Everything has its designated place. There are special drawers, 
explains Roosevelt, "for all things to make holes with and all things to 
drill with." There are cabinets with drawers for the very smallest screws 
and washers and special compartments for tubes of glue. ... "I can fix 
almost anything," says Roosevelt, modestly. "It's lots offun. My favorite 
work is either building things or repairing them. .. " 

... he has been "interested in how things worked" since his child
hood in Oyster Bay, Long Island near his grandfather's Sagamore Hill 
estate. He remembers learning a great deal about working with his hands 
from the one-time submarine mechanic, who worked as a chauffeur for his 
maternal grandmother, and also from the superintendent of their Oyster 
Bay workshop, who had been General Roosevelt's orderly in Italy in 
World War I . ... 

In 1952 Roosevelt moved into a Washington apartment but contin
ued his larger carpentry work in Oyster Bay on weekends. . .. "When I 
first moved to Washington to a one-bedroom apartment, half of my desk 
served as my shop. When I got a two-bedroom, the guest bedroom doubled 
as a shop with a convertible sofa for guests. And in 1974, I had a one
bedroom and a two-bedroom apartment combined. Now I have enough 
space to use one of the three bedrooms as my shop." Since his current 
apartment has two kitchens, he is able to use one of them as storage space 
for larger tools. Roosevelt. .. eats virtually all of his meals in restau
rants . .. He has turned off one of his refrigerators, and the other has not 
a morsel of food; instead it is stocked with "batteries for my dive lights, 
film, paper for my copier, sodas and seven kinds of beer. " [9] 

The Roosevelt Collection 

Beginning in the early 1950s, Roosevelt began collecting Escher's art. His goal 
became to own as wide a range of Escher's work that he could gather; this would 
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become the centerpiece of the Escher collection in The National Gallery of Art 
in Washington, DC. The National Gallery now owns the largest collection of 
Escher's art outside of Holland; over 200 original Escher prints were donated 
by Roosevelt. A few excerpts from the Washington Print Club Newsletter in 
1974 [I], on the occasion of his donation of his collection to the National Gallery, 
reveal the story behind the collection. 

Though he didn't know it, his [Roosevelt's} fate was sealed in 1954 when 
he drifted into the gallery of Whyte's Book Store where Escher's first 
Washington show was on display at a time when the artist was practi
cally unknown in America. There he was sufficiently intrigued by what he 
saw to buy three items for $12 to $15 apiece . ... [Soon} the American 
and Dutchman corresponded regularly. The former wanted to learn more 
about the prints and to make new acquisitions. The latter needed help 
and advice with the increasing number of requests from Americans who 
wished to illustrate books, articles, pamphlets and what-not with repro
ductions of his graphics. Before long Roosevelt became a sort of volunteer 
Escher agent in his spare time, and handled all but the print-selling end of 
the artist's dealings with the English speaking world . ... He found him
self in touch with more and more people who wanted to reproduce the 
graphics. Since he already owned many of the major ones, he had them 
photographed and supplied negatives to those who were deemed worthy 
with the stipulation that each work had to be identified by its correct title, 
by the name of the artist and by the collection from which it came. 
The only fee demanded by the artist and his agent was the price of the 
negative. 

As far as I can tell, Roosevelt answered most of his correspondence 
personally, referring people to articles, books and other sources, and 
he made himself available to many enthusiasts who wanted to see and 
discuss his collection. He also undertook further missions for the artist . 
. . . It was in Roosevelt's apartment that the graphics which appear in the 
flick [Adventures in Perceptionl were filmed. Somewhat later he commis
sioned a Japanese craftsman to carve several of the artist's designs on 
ivory balls . 

. .. Roosevelt preserved the 300 letters from the Dutchman. In them 
Escher talks of business matters, discusses his daily life and life in 
general, goes into many aspects of his prints and his artistic concerns, 
expresses his low opinion of most contemporary artists, berates those who 
try to read meanings into his work which he had not intended, comments 
on world affairs and so on . ... [These letters are} supplemented by the 
voluminous correspondence Roosevelt carried on with other Escherites 
... In addition Roosevelt saved all the printed material on Escher that he 
could lay his hands on by putting together 12 elegant scrapbooks which 
contain a heterogeneous assortment of carefully mounted material that 
documents the printmaker's growing fame. 
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And just for good measure there are also posters from Escher exhibits, 
authorized and unauthorized reproductions, some of excellent quality and 
some hideous, and diverse odds and ends . .. 

By now it should be clear that we're dealing with an indefatiga
ble collector whose happy obsession had taken on an expansive (and 
expensive!) life of its own . ... In short, things were getting out of hand. 
After Escher died, Roosevelt realized that the time had come to find 
an institutional home for his gatherings. Several museums were eager 
to get the prints but unwilling to accept the rest of the material ... 
When Roosevelt learned that the [National Gallery] was developing an 
important center for art scholarship, and the National Gallery discovered 
that he wished to turn over everything to just such a place, the result was 
inevitable. 
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The first author (Taylor Hollist) never met Roosevelt in person, but did talk 
to him on the telephone several times and corresponded with him. When Hollist 
asked Roosevelt for his picture standing next to some Escher prints, Roosevelt 
sent a copy of a 1974 edition of Holland Herald, a news magazine ofthe Nether
lands, which contained Roosevelt's picture in an article titled "The Roosevelt 
Eschers." A special feature of the magazine was that it contained 27 of the artist's 
works along with 22 pages devoted to the work, life, and times of Escher (with 
family photographs). 

The second author (Doris Schattschneider) first met Roosevelt in the early 
1970s, while his voluminous collection was still housed in his Georgetown 
apartment. Everything that is noted in the above article about the meticulous 
documentation and organization of his collection is true - a researcher's dream. 
Not only were all of the loose materials carefully mounted in tooled leather 
scrapbooks, but a complete card index of all materials was itself housed in 
leather binders. Over a period of almost twenty years, there was frequent corres
pondence between Schattschneider and Roosevelt (with the added trepidation on 
her part knowing full well that every word she wrote would be preserved in one 
of those scrapbooks). And indeed, Roosevelt did answer all his correspondence 
personally and promptly, often hand-written on ancient postcards. On many 
occasions, Schattschneider did research with his collection in his apartment 
(although the donation to the NGA was announced in 1974, the transfer of 
materials occurred over a period of several years). Roosevelt was extremely 
generous with his time and materials and encouraging of her work. He also added 
to his collection of "diverse odds and ends" two hand-made original prototype 
models of her M.C Escher Kaleidocycles [13]. She helped Roosevelt add to his 
collection of Escher correspondence by others by contacting them and inviting 
them to donate theirs. H.S.M. Coxeter was one of those who happily obliged. 

Roosevelt was so intent on having a complete collection of publications 
about Escher that he employed a clipping service; the result is an amazingly 
diverse array of articles from all over the world. He also paid professionals to 
translate some of Escher's writings from Dutch to English, including Escher's 
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limited-edition 1957 book Regelmatige Vlakverdeling (Regular Division of the 
Plane). Thanks to Roosevelt, this important essay by Escher was available to 
researchers (including Schattschneider) ten years before it was published in [2]. 
After Escher's death in 1972, Roosevelt purchased 24 early prints done between 
1917 and 1929, which Escher had given to Bastiaan Kist, a classmate in art 
school. Correspondence between Roosevelt and Bastiaan's brother, Jan R. Kist, 
led to the acquisition of these early prints. Also through Jan R. Kist, the original 
models on which Escher based his woodcut Knots were given to the National 
Gallery of Art. From a historical point of view, the written materials are the most 
valuable part of the Roosevelt Collection in the National Gallery. Most of the 
examples cited in this paper are from this collection. The Gallery continues to 
add relevant materials as they become available; this book will no doubt become 
part of the collection. 

Roosevelt and Escher 

In the collection of correspondence there is mention of two occasions when 
Roosevelt and Escher met in person: in 1960 when Escher lectured at the Mas
sachusetts Institute of Technology in Boston, and in 1968 when Roosevelt went 
to Holland for an Escher retrospective exhibition in The Hague. Escher's invita
tion to Roosevelt in a letter dated May 8, 1968 is typically straightforward: "Can 
we settle your coming at Baarn on Sunday 9, in the late afternoon, to share our 
(simple) dinner? We eat at about 7 o'clock. If you come at 5 or 5.30, we have 
time to look after some work which is not exhibited, before as well after dinner. 
Please write me if you agree. If Saturday suits you better, that is quite all right 
for us." 

A letter of March 7, 1964, illustrates an example of the advisory role that 
Roosevelt played. He writes to Escher, "You will shortly receive a letter from 
the Pratt Graphic Art Center in New York asking for your permission to repro
duce eight or ten of your pieces for publication. I strongly recommend that you 
give permission in this case. The Pratt Graphic Art Center is a non-profit edu
cational institution which is very well thought of in graphic art circles in this 
country." And in a letter of April 21, 1969: "Have you ever considered allow
ing a textile manufacturer to use some of your space-filling patterns as textile 
designs? Several of your patterns reproduced in Professor MacGillavry's book 
make excellent textiles." A letter from Escher to Roosevelt dated 6 May 1966, 
demonstrates Escher's trust in his American friend, "I stopped selling prints 
to individual customers and give them Schuster and Michelson's addresses but 
you are the exception of course." Schuster and Michelson were art gallery own
ers. The Michelson Gallery of Fine Arts in Washington, DC still sells Escher 
originals. 

Escher often wrote to Roosevelt of his ideas for prints - they shared 
a common bond of curiosity as to how things got put together. In a letter to 



M.C. Escher and c.v.S. Roosevelt 57 

Roosevelt (Nov. 30, 1961), Escher sketched a tribar, an impossible object that 
had given him the idea for his lithograph Wateifall (page 65). Escher explained, 
"Waterfall, which is brand new, is based on an idea of the two Penroses. It's 
another of their exciting 'impossible objects: which I copy here underneath for 
you. Published in the 'British Journal of Psychology' February 1958. Title of the 
article: 'Impossible objects: a special type of visual illusion' by L.S. Penrose and 
R. Penrose. They mention my name also in this article." 

Roger Penrose was one of many mathematicians and scientists who would 
call on Escher. In March 1962, Escher wrote to Roosevelt, "Young Dr. Roger 
Penrose, son of the London professor paid me a very nice visit with his wife. We 
had so many things to discuss and so much to tell each other that they lost their 
plane back to England. I am often struck by the simplicity and childish playful
ness of most of these learned scientists and that is why I like them and feel more 
at my ease with them than my own colleagues." 

The correspondence continued into Escher's last years. In a postcard sent to 
Roosevelt in 1970 (when Escher was very ill), he writes about his new life in 
a special home for retired artists. The return address is Rosa Spier Huis in Laren, 
Holland. The card reads, "Dear Mr. Roosevelt, Many thanks for your kind letter 
of Nov. 12. I should have answered since long, but you have no idea how life is 
busy here. As soon as I have time, I am at work with re-printing old blocks, never 
enough to satisfy the demand for prints in the U.S., especially in California last 
year. But also Michelson bought some 25 copies. I hope that this card reaches 
you really via Airmail, but I am not quite sure. I am quite very glad and satisfied 
with my life here: much better than in Baarn! Yours sincerely M.C. Escher". 

When Escher wrote about "re-printing old blocks," he meant reproducing 
by hand his work with a woodblock printing process. When a print is made 
from a woodblock carved exposing the side-grain, it is called a "woodcut," and 
when the print is made from a woodblock carved exposing the end-grain (for 
finer detailed work) it is called a "wood engraving." To make a print, Escher 
would spread ink over his carved woodblock with a roller, then place a sheet of 
paper over the woodblock and laboriously rub the paper with a bone spoon, 
gently pulling back the paper from time to time to see how the picture was 
progreSSIng. 

Some of Escher's letters explain how he would employ symmetry to produce 
a print and how he would use the same block to produce different colors of fig
ures in the print. His description to Roosevelt in a letter dated February 2, 1962, 
complete with marginal drawing (Fig. 1) reveals how he printed Smaller and 
Smaller (Fig. 2). (Escher used red and black letters in his note; we use a prime I 

to denote red.) 

A complete copy of 'Smaller and Smaller', like the one you have, is 
composed o{ 
(a) One central part, printed in black and red from two blocks (A and A') 

of which the "black" one is an end-grain Boxwood block of the best 
available quality, needed because of the extremely minute details. 
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Fig. 1. Escher's sketch of his 
method of printing Smaller 
and Smaller. From the Cor
nelius Roosevelt Collection 
at the National Gallery of Art 
Library 

1. Taylor Hollist and Doris Schattschneider 

Fig. 2. M.e. Escher, Smaller and Smaller, 1962. Wood
cut 

(b) Four identical border parts (B and B'), surrounding the center. 
They are cut in simple side-grain Pearwood blocks. 

Note in Fig. 1 that block A is used once to print the black lizards in the center 
and block A' once to print the red lizards in the center. Block B is used four times 
to print the black lizards around the outside, and block B' four times to print the 
red ones. This scheme gives the outer ring rotational symmetry. Other letters, 
from Escher to mathematician H.S.M. Coxeter, describe the printing scheme of 
the woodcuts Square Limit (page 232) and Circle Limit 1Il (color plate 4). 

Escher's work gained popularity in the United States primarily through 
national press coverage beginning with articles in Time magazine in April 
1951 [10] and Life magazine in May 1951 [14]. Ten years later, The Saturday 
Evening Post [7] had an article, and the cover of Scientific American [5] signaled 
mention of his work in Martin Gardner's column. In 1966, Escher was featured 
in This Week, a magazine with a circulation of 14 million that was distributed 
with many Sunday newspapers throughout the United States, and Martin Gard
ner's April "Mathematical Games" column in Scient~fic American was devoted 
to Escher's work [6]. These articles launched an avalanche of mail to the artist, 
inquiring about his prints. Escher's letter on May 6, 1966 to Roosevelt laments, 
"After Mr. Gardner's article, my customers, especially in America, give me no 
peace." 

The Escher drawing that made the April 1961 cover of Scient~fic American 
bears more comment. Escher's original 1938 drawing [12, p. 130] consists of 
interlocking blue birds and white birds flying in opposite directions - these same 
birds are the centerpiece of his print Day and Night (page 26). Evidently the 
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editor at Scientific American didn't find the original to be colorful enough, and 
engaged Mary Russel to freely color the dark birds with several different col
ors. (The 'colorized' Escher cover can be seen in [12, p.289].) Escher would 
never have colored the birds in such a manner. Like a map maker, he preferred 
the rule of using the fewest number of colors so two adjacent figures did not share 
the same color [12, p. 55]. Nevertheless, he wrote a gracious letter (dated April 
7, 1961) to the editor, Dennis Flanagan, which pointed out a real error. "The 
different coloured birds on the cover are a very nice and acceptable fantasy. I 
think that only one mistake was made: in the cover-description on page 4 it is 
said that the spaces between the coloured birds are filled with white birds of the 
identical shape. That isn't true, for two reasons. First: as they fly in the opposite 
direction, a superficial spectator could conclude that they are mirror-reflections 
of the coloured birds. In that case they would be "similar" but not "identical." 
Secondly they are not even similar; they are "different"!: e.g. the coloured bird
tails go "up", the white ones "down." Please excuse this hair-splitting; I'm 
mighty proud of these two reproductions of my work . .. Would you please 
transmit my compliments to Mr. Gardner ... " 

The 1961 column in Scientific American by Martin Gardner was about a new 
geometry text by H.S.M. Coxeter, which (unusual at that time) contained two of 
Escher's symmetry drawings. Before its publication, Gardner contacted Escher 
regarding reproduction of Escher's drawing of horsemen (page 12) for his 
column, and an Escher work for the cover of the magazine. Here's a glimpse of 
two of Escher's letters. 

Escher to Gardner (Jan. 17, 1961), "Let me first tell you that I know your 
name quite well, not as columnist of 'Scientific American', but as the writer of 
'The Annotated Alice'. Prof. Coxeter draw my attention on this book when I 
was his guest last November and I bought immediately a copy myself, which 
enjoys me immensely. I am since long an Alice fan, but since I read your 
annotations, many incomprehensible details became clear! Certainly I should be 
glad if my round colour-woodcut (which Coxeter calls 'The Miraculous Draught 
of Fishes' and which I entitle 'Circle Limit III') could be reproduced on the 
magazine's cover. I think this print would satisfy very well in this special case. 
Wouldn't it be possible to buy, or to let the magazine buy one of my original 
copies? Unfortunately it!§. one of my most expensive woodcuts: a copy costs 
$70 (extremely difficult and time devouring to reprint). I am ready to send you 
a copy and I'm sure, that the best result would come from photographing and 
reproducing directly the original." 

Escher to Gardner (Jan. 30, 1961), "Thank you very much indeed for your 
letter of January 23 ... Now let's hope that my 'Circle limit III' (which I am 
sending you today as registered printed matter, by airmail, packed in a solid 
cardboard-container) will be no disappointment to Mrs. Gardner and to yourself! 
You might be curious about the way in which it was designed and printed, so I 
enclose herewith a copy of my letter to Prof. Coxeter, together with his answer of 
May 1960. His theoretical explanations are, no doubt, more comprehensible to 
you than to me. I am and shall ever be a perfect layman in the mathematical field. 
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It is true that I never could have made this picture if I hadn't seen a schematic 
figure in one of Coxeter's publications, but as soon as he starts to argue abstractly, 
with formulas, I'm completely lost. I think he won't believe it but it's a fact." 

Gardner's later column in April 1966 [6] reproduced many of Escher's prints, 
and here Roosevelt played an important role. 

Escher to Gardner (Jan. 30, 1966), "It's a most fortunate circumstance that 
Mr. Cornelius Roosevelt owns a large collection of my prints and that he is ready 
to lend you the pieces which you need, and that you are willing to take the trou
ble of a trip to Washington for making a choice; please take all the photographs 
you need. Mr. Roosevelt since many years has been very kind and helpful 
towards me. I have met him once in 1960 at MIT, Cambridge Mass., in occasion 
of a little exhibition of my work and a lecture for prof. Arthur von Hippel's 
students. He came expressly over from Washington to show the audience his 
copy of my 'Metamorphose' -strip." 

Roosevelt to Escher (February 6, 1966), "Some time ago I had a phone call 
from Mr. Martin Gardner of the Scientific American magazine, and he told me 
that he wanted to do an article on some of the technical aspects of your work. 
Although I had corresponded with Mr. Gardner for several years, I had never 
met him. In this last instance when he asked if he could use some of my collec
tion of your work in the article, I told him I would be delighted to cooperate but 
only after you had given him your permission to write the article. A short time 
ago, Mr. Gardner called and said that you had agreed to his idea. Yesterday he 
came down to Washington and we spent a most enjoyable day going over all of 
the 80-odd of your works that I have here. He was most punctilious and showed 
me your letter before we began! He was accompanied by a photographer which 
made the whole operation very simple and eliminated the necessity of taking 
framed prints out of the frame and mailing them up to the magazine. The works 
he selected for photography were: Knots, Order and Chaos, Encounter, Heaven 
and Hell, Belvedere, Tetrah. Planet., Waterfall, Double Planetoid, Strip of 
Mobius, Day and Night, Verbum, Mosaic II, Ascent and Descent, Three Spheres, 
Mobius Strip, Force of Gravity, Relativity, Reptiles, Predestination, Cube & Rib
bons, Hand & Globe, Magic Mirror, Three Spheres II. It is, of course, impossible 
to tell at present whether he will use three, ten or twenty of these. His editor will 
have the final say, but I thought you would be interested in the selection he made. 
I was rather surprised when he wasn't interested in several which I thought would 
have fitted in with his article, such as 1956 Smaller and Smaller, 1947 High and 
Low, 1955 Convex and Concave, and particularly 1956 Print Gallery. He said 
that he was interested only in those about which he had something to say." 

Escher to Gardner (April 20, 1966): "I think your article is excellent indeed. It 
describes my prints very clearly, with details not only interesting for mathemati
cal oriented print-lovers, but also for myself. Though I am particularly glad that 
you reproduced my last print 'Knots', it is a pity that it is stretched out vertically, 
so that the two little knots are unreasonably far from the big one. I understand the 
reason, but better should have been to given 'Three Spheres' a bit less space and 
to reproduce 'Knots' in its original proportions." 
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These articles loosed a tide of interest in Escher's work that continued to 
grow long after Escher's death. Although the Escher Foundation had been 
formed to handle matters of permissions and licensing, Roosevelt continued to 
be pelted with requests. Finally Roosevelt removed himself entirely from playing 
any role of "agent" but did respond to some requests for photos, once permission 
had been obtained from the Foundation. In a letter to Gardner (Dec. 5, 1980), 
Roosevelt reported: "During the last few years the questions surrounding Escher 
copyrights have become so involved that I have completely withdrawn from 
the picture. Escher's son, George, wrote me several years ago and asked that I 
continue to make photographs available to publishers." 

A Lasting Legacy 

What began as a personal interest and grew into an obsession by Cornelius 
Roosevelt has left the public a lasting legacy that is accessible to all who wish 
to use the services of the National Gallery of Art. During Escher's lifetime, 
Roosevelt contributed generous and timely service to the artist (who never 
wanted to be a businessman), gathered an invaluable archival collection 
of Escher prints and memorabilia, and preserved numerous published and 
unpublished written records about Escher. There probably is no other single 
location where there exist so many original letters to, from, and about Escher. 
This collection offers explanations of Escher's methods of printing and reveals 
the sources of some of his ideas. It shows the human side of Escher and those 
who interacted with him. For Escher admirers, researchers, collectors, students, 
and current artistic illusionists, it is fortunate that an American engineer work
ing for the CIA took an interest in this Dutch graphic artist by collecting his art, 
correspondence, and items that most museums would not collect, and then 
donated it all to the National Gallery of Art. 
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Escher's Sense of Wonder 

Anne Hughes 

To me the moon is a symbol of apathy, the lack of wonderment which is the lot of 
most people. Who feels a sense of wonder any more when they see her hanging in 
the heavens? For most people, she is just a fiat disk now and then with a bite out of 
her, nothing more than a substitute for a street lamp. [2] 

Escher's lament above is mirrored by the exultation of the Zen poet P'ang-Yun: 
"How wonderously supernatural, and how miraculous! I draw water and I carry 
firewood." [9] Escher's art and the words of Zen masters bring us into direct 
contact with the constantly changing process of life which perpetually manifests 
itself. Zen is sometimes described as moving with life without trying to interpret 
it, to have an immediate awareness of things as they are. 

Alain Bosquet, the French writer and literary critic once wrote, "The poem 
offers the reader a secular prayer, through which he can imagine new rapports 
between man and the universe, man and the void, man and himself." [5] Like 

Fig. I. M.e. Escher. Order and Chaos, 1950. Lithograph 
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poetry, art can offer the viewer a prism through which to imagine these rapports. 
In this article, we will examine three of Escher's prints from this Zen point of 
view. 

Man and the Universe in Order and Chaos 

In Escher's print Order and Chaos (Fig. I) our attention goes at once to the stun
ning geometric solid in the center. Only later on do we notice that it is surrounded 
by so-called useless, discarded objects - a remnant of string, a piece of crumpled 
paper, a broken glass, a metal tip from a shoe, an empty sardine can. If we saw 
any of these items lying on the street, most of us would probably not give them 
a second glance. Yet Escher has placed them around his beautifully symmetri
cal centerpiece. What are they doing there? Let us take a closer look, beginning 
with the eggshell at the top. 

Because it is broken, a typical response is that the eggshell is useless and 
therefore ugly. But if we look again, without any prior judgment and just look 
at the object as it is, we begin to notice that the edge of the shell has an unusual 
pattern going around it and the outside has a certain radiance. The curve of the 
edge is one that is unique to that eggshell; no other broken shell will ever have 
that particular shape. Indeed, it proudly asserts its own worth, independent of 
the egg it once carried and guarded. And it is not the least bit intimidated by the 
towering solid in the center. 

The crumpled paper is on the right - how many times have we thrown away 
sheets of paper in a similar way? If we examine this sheet, it reveals an intricate 
pattern of shapes and forms. To some, it suggests a sharp mountain surrounded 
by pounding waves; to others, it is an elegant piece of garment consisting of folds 
and creases, to be greatly admired were it made of stone or marble and displayed 
in a museum. 

Directly below is the bottom of a broken glass. The edge has a graceful move
ment that can be admired from many different angles. One of them is reflected in 
the center solid. Finally, we notice the bottle cap at the top - battered and crushed, 
a victim of the many trucks and cars that have driven over it. Yet it retains an 
unsinkable degree of integrity that refuses to be defeated or to be in awe of the 
majestic centerpiece. 

So it is that each object reveals its own fascinating story, if instead of staring 
briefly, we really see. A story about the Buddhist priest, Pao-chi, who lived in the 
T'ang dynasty may provide further insight. One day Pao-chi was standing near 
a butcher's stall. A customer came to the butcher's stall and said, "Sell me some 
good meat." The butcher replied, "We don't have any bad meat here." [8] This 
exchange brought Pao-chi to a sudden realization of the value of all things. 

Shundo Aoyama, chief priest of the temple Muryo-ji, interprets the tale in the 
following way. "When we go into the butcher's shop, we see the various cuts of 
meat laid out for sale, and the steaks are more expensive than the pot roast or 
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ribs because we find these cuts to be better tasting. The reason for the latter can 
be traced to the taste buds on the tip of the tongue. However, if we leave aside 
our taste buds for a moment and think about the cuts of meat as they formerly 
were, that is, as parts of bodies of cattle or sheep, there are no gradations of 
worth. Each cut, no matter from where on the animal's body it comes, once had 
its own unique function. If we free ourselves from the habit of looking at every
thing from a human-centered standpoint, a completely different prospect comes 
into view." [8] Perhaps that is also how we can view the juxtaposition of ordinary 
garbage and the pristine crystal in Escher's Order and Chaos. 

Man and the Void in Waterfall 

In Escher's print Wateifall (Fig. 2) water falls from a tower on the left and then 
turns a miller's wheel directly below. With a hasty glance, the water seems to 
flow downward and away from us. However, if we follow the water as it traces 
out its path, we end up in the exact spot from where the water began - an 
impossible situation. Then what seems real in this picture? Is it the woman who 
is hanging up clothes just washed or the man leaning against the wall, gazing up 
at the sky? We cannot help but wonder how can both the man and woman be so 

Fig.2. M.e. Escher. Water
fall, 1961. Lithograph 
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indifferent to the impossible waterfall right in front of their eyes. When they first 
perceived it, they must have felt somewhat uneasy or even anxious about what 
they observed and therefore, not at all sure how to respond. The quick way out 
of this disconcerting uncertainty is to give it a name. "This is a waterfall." 

As so often happens, when we give a name or definition to an object, that 
categorizes it; our attention to it greatly diminishes or even disappears 
completely. As a result, we lose the opportunity to experience what is going on 
right in front of us. In this case, we throwaway the invitation to let ourselves be 
in the waterfall, disappearing in the water, letting the waterfall be in us. And in 
the words of John Cage, an American composer, we have lost the chance "simply 
to wake up to the very life we're living, which is so excellent once one gets one's 
mind and one's desires out of the way and lets it act of its own accord." [4] 

Man and Himself in Dream 

In Escher's print Dream (Fig. 3) we see a sarcophagus, its heavy lid mounted by 
the resting figure of a stone bishop; on top of the bishop is a live mantis. Is the 
bishop dreaming that he is the praying mantis or is the preying mantis dreaming 
that it is the bishop? Escher's fantasy may appear strange to many, but if we tum 
back in time to antiquity, we will meet an even more famous dreamer, Chuang 
Tzu, the philosopher (396-286? R.C. E.). 

Fig. 3. M.e. Escher. Dream (Mantis 
Reiigiosa). 1935. Wood engraving 
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In his own words, here is his dream. "Once upon a time, I, Chuang Tzu, 
dreamt that I was a butterfly, flitting around and enjoying myself. I had no idea 
I was Chuang Tzu. Then suddenly I woke up and was Chuang Tzu again. But I 
could not tell, had I been Chuang Tzu dreaming I was a butterfly or a butterfly 
dreaming I was now Chuang Tzu?" [10] 

Does the butterfly wonder about its own existence as Chuang Tzu does? 
For Chuang Tzu's questions about his own existence give him the power to go 
beyond his ordinary life and "make himself as vast and free as the sky." [7] 

Mumon Ekai Zenji (1183-1260) describes in verse what can subsequently 
happen to all of us: 

In spring, hundreds of flowers; 
In autumn, a clear full moon; 
In summer, a cool breeze; 
In winter, snowflakes: 
With no hang-ups in your mind, 
Every season is a good season. [7] 

The geneticist and mathematician J.B.S. Haldane has written, "The world 
will not perish for want of wonders, but for want of wonder." [1] In our over
loaded informational world, Zen helps us recover our sense of wonder by 
being aware of this moment, now. Escher's works remind us that everything -
a dewdrop on a leaf, a puddle left by the rain in the tracks of a tire, a pitch-dark 
pond seen in the reflection of the moon, or birds appearing from nowhere and 
then just as quickly disappearing - should fill us with wonder. Escher's sense 
of wonder at these "ordinary" miracles is conveyed in his work - and we need 
only become receptive to the world around us to experience something of what 
he must have felt. 

As Escher has perceptively written, "Undoubtedly a good deal of childish 
wonder is necessary. And this I do possess in fair quantity; wonderment is the 
salt of the earth." [2] 
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In Search of M.e. Escher's Metaphysical 
Unconscious 

Claude Lamontagne 

M.e. Escher, Eye, 1946. 
Mezzotint 

Into that from which things take their rise they pass 
away once more, as is ordained, for they make repara
tion and satisfaction to one another for their injustice 
according to the ordering of time. 
- Anaximander 

Over the last few years I have grown more and more deeply convinced that 
currently held views on nature, whether they emanate from philosophy or from 
science, are essentially variations on the themes addressed in the above quoted 
excerpt from what is now known as "Anaximander's Fragment," one of the 
earliest traces of Western philosophical thought. As Bertrand Russell points out, 
commenting on his translation of Anaximander's Fragment, "injustice" seems to 
have meant, to Anaximander's contemporaries, something quite different from 
what it means today: It meant something like departure from the necessary 
order of things [5, p. 27] . But this necessary order of things includes the equally 
necessary passage o.ftime, whereby "justice" is granted, whereby what-must-be 
progressively becomes what-is. So "things" pass, in cycles of death ("they 
pass away . . . ") and rebirth (" . .. once more"), forms succeeding to forms, 
mere stepping stones along pathways leading, beyond the "injustice" of current 
limits, ever closer to this absolute truth, this absolute "justice" which 
Anaximander named the "aTIElQov": the "limit-less." 
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The ways of perception as portrayed by current science fit this picture 
perfectly. This seems most clearly so in the case of the evolutionary and the 
functional temporalities of the perceptual dynamics proposed by present-day 
neuroscience and cognitive sciences, which are seen as presiding over multi
stage reality-constructing computational processes. Within these processes, 
objects pass, lasting but the moment required for computation to turn them into 
higher-order "truer" ones, which themselves last but the moment required for 
computation to turn them into yet higher-order, yet "truer" ones, and so on and so 
forth until a "computational ceiling" is reached! Thus, in a typical mammalian 
visual system, "points" of light of various intensities and colors first lead to 
"rectilinear stretches" of contrasting light intensities and colors. These in turn 
lead to "curvilinear stretches" of contrasting light intensities and colors, and 
then to "surfaces" of various shapes, and positions, and orientations, and then to 
"volumes" of various shapes, and positions, and orientations ... and motions ... 
and textures, and so on and so forth. 

In this never-ending quest for truth, with every step forward, new meanings 
emerge, reaching beyond the limiting scope of the previous step. But until "the 
limitless" is reached, if every single step forward presides over the birth of 
actual meaning, it also, through the very limits inherent to the proposed new 
order, presides over the death of potential meaning, revealing the face of 
Injustice. Thus, wisdom lies in perpetually putting current order to the trial, 
maintaining as acute an awareness as possible of both its benefits, as actual order, 
and its shortcomings, as potential chaos, reaffirming this seemingly inescapable 
duality of the knowing mind so beautifully made explicit in Karl Popper's Two 
Theses [4, p. 7]: 

First thesis: We know a great deal. And we know not only many 
details of doubtful intellectual interest but also thin[?s which are 
of considerable practical significance and, what is even more 
important, which provide us with deep theoretical insight, and 
with a surprising understandin[? of the world. 
Second thesis: Our ignorance is sobering and boundless. 
Indeed it is precisely the sta[?gerin[? pro[?ress of the natu
ral sciences (to which my first thesis alludes) which con
stantly opens our eyes anew to our ignorance, even in 
the field of the natural sciences themselves. This gives 
a new twist to the Socratic idea (?f ignorance. With each 
step forward, with each problem we solve, we not only 
discover new and unsolved problems, but we also discover that 
where we believed that we were standing on .firm and safe 
ground, all things are, in truth, insecure and in a state offiux. 

It is my thesis that M.e. Escher's graphic work testifies to an unconscious and 
almost exclusive fascination for this fundamental paradox. 

Although this thesis will be developed in reference to M.e. Escher's 
graphic work, and although there need not be congruence between meanings 



In Search of M.e. Escher's Metaphysical Unconscious 71 

unconsciously woven into works of art and meanings verbally acknowledged 
by their creators, a short comment concerning Escher's opinions on his works 
seems warranted here. This comment concerns Escher's frequent insistence, in 
his writings, on an apparent belief on his part that "you see only what you see," 
that there is no meaning to his prints beyond the "surface" visual experience 
which they provoke. That this view was not consistently endorsed throughout 
all the traces which he has left behind is beautifully argued by Vermeulen in his 
subjective portrait of M.e. Escher (''I'm Walking Around All by Myself 
Here") [6]. Moreover, this portrait presents an artist whose psychological 
dynamics parallel to a stunning degree our knowledge/ignorance or order/chaos 
paradox-thesis. "Chaos is the beginning, simplicity is the end," quotes 
Vermeulen from M.e. Escher's 1950 letter to Oey Tjeng Sit, commenting: 

This is how he was. His entire life was marked by resistance to 
disorder. He feared and loathed it, but his fear and loathing were 
at the same time part of a love-hate relationship. Witness the 
following notation he made in his pocket calendar on Decem
ber 4, 1958: "We adore chaos because we love to produce 
order." They are two components of one reality, a reality that 
Escher above all wanted to see as a miracle of harmony. "1 try 
in my prints to testify that we live in a beautiful and orderly 
world, and not in a formless chaos, as it sometimes seems," he 
says in 1965. However, in January, 1967, he writes . .. "The 
world in which we live is a hopeless case. I myself prefer to 
abide in abstractions that have nothing to do with reality." 
[6, p. 142] 

Vermeulen sums up Escher's creative dynamics as essentially marked by an 
inescapable cyclic succession of "fear of chaos, a ceaseless searching for order
ing principles, catching these in an image that can be fixed on paper, discontent 
with the result obtained, uncertainty, distrust of appreciation by others, again 
an escape from reality, chaos." [6, p. 147]. How much closer to our model of 
the dynamics of the knowing mind can we get? Especially when we set the 
"ceaseless-searching-for-ordering-principles" stage of Escher's cyclic creative 
dynamics against the background of his self acknowledged longing to reach 
Anaximander's "altElQov", to "approach infinity as purely and as closely as 
possible" [2, p. 124]. Let us now then turn to Escher's graphic work itself, and 
see how our thesis can be argued to apply. 

Hallways, Stairways, and Archways 

Hallways, Stairways, and Archways ... everywhere and always ... ,inexorably 
summoning the eye of the spectator from just beyond its current point of focus, 
from just beyond the cozy safety of some local perceptual order, luring it with the 
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promise of a superior perceptual order awaiting his gaze "just round the corner." 
But what invariably actually awaits the spectator's gaze is the exact opposite: 
What emerges is but the reaffirmation of what was being left behind, often with 
a spectacular contradictory twist to it, breaking the spectator's eye's leap for
ward in mid-air and leaving him both perceptually bewildered and conceptually 
irresistibly seduced by the metaphysical insight thus offered, ready to be sub
jected to the experience again. In any given Escher print, this can be experienced 
once, twice, or many times in a cyclical or recursive manner, along a single 
perceptual processing path or through some succession of a variety of them. 
Escher's ingenuity at "perceptual engineering" is staggering: Just about every 
conceivable "branching node" in the perceptual flow of computation leading 
from retinal localities to perceptual and conceptual globalities is put to contri
bution, in lineages of prints which themselves branch out and cross one another 
in ever-surprising ways, and I attempt to characterize here with a selection of 
several prints. 

First, some prints characteristic of the early Italian landscapes and archi
tecture lineage, as a natural matrix out of which emerge the central trio of 
lineages, namely the Hallways lineage, the Stairways lineage and the 
Archways lineage. I chose Street in Scanno, Castrovalva and Atrani. Street in 
Scanno (Fig. 1) clearly prefigures all three central lineages with stairways as 
central attraction, leveling to the point of evoking a tiled paving hallway in the 

Fig. 1. M.e. Escher, Street in Scanno, 
Abruzzi, 1930. Lithograph 



In Search of M.e. Escher's Metaphysical Unconscious 73 

Fig. 2. M.e. Escher, Castrovalva, 
1930. Lithograph 

Street itself and everywhere leading to dark "porchways," direct ancestors of the 
eventual archways. (For a striking photo contrasted with Escher's print, see [3, 
pp. 4~7].) Castrovalva (Fig. 2) reaffirms the central themes of stairways and 
hallways, but this time somewhat more metaphorically through their landscape 
respective equivalent: rocky mountain paths (center left of the print) and crop
land geometry (center right of the print). The prefigurative quality of this latter 
aspect of Castrovalva can hardly be better portrayed than by Day and Night 
(see page 26), one of my pure Hallway lineage selections. As for Atrani (see 
page 93), besides its obvious stairways and archway (lower left), its literal use 
in the Metamorphosis prints (amongst my pure Hallway lineage selections) led 
me to include it in the selection. These selections lead us into the heart of the 
Hallway lineage, typified by Metamorphosis II (see page 147). 

Hallways 

What characterizes this lineage of prints is Escher's fascination for The 
Regular Division of the Plane, which, through its exclusive concern for the 
"plane," is wholly concerned with exploring "Two-D-Land," or "Flat-Land," 
or "Floor-Land," or "Hallways-Land."\ As proposed above, this exploration 

I Plane: A flat or level surface, from the Latin "planus" (level), akin to "floor" 
(Middle English "flor," Old High German "fluor" (meadow), Latin "planus" (level), 
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essentially aims at cornering the mind's eye of the spectator in its attempts to 
overcome the "locality" of the current visual experience. 

The main "perceptual engineering" technique systematically used in this par
ticular lineage of prints taps into one of the most primitive and basic visual 
processes: that of contour formation and ensuing figure/ground differentiation. 
The typical contour-boundaries of the "objects" with which Escher fills his 
planes are designed in such a way as to deny the observer the possibility of 
achieving figure/ground closure. This is done by finding ways to design the 
objects so that what can, for a moment, be assumed to be the ground (or back
ground) against which they stand, can also be interpreted, as the mind's eye shifts 
to a wider field of view, as new instances of the very figures whose ground they 
were supposed to be, appropriating the contour-boundaries for re-creating simi
lar objects whose ground then becomes what once was the initial figures. These 
initial figures, in tum and following the same logic, resuscitate (at the expense 
of the newly-formed figures) as soon as the visual processing attempts extend
ing its "grounding" hypothesis beyond the immediate contour-boundaries of the 
new figures. This cycle can repeat itself for as long as the spectator enjoys the 
experience. 

This particular perceptual engineering technique, which we might call the 
figure/figure technique, is most effective when the "objects" clearly point 
to easily identifiable three-dimensional objects which make perfect two
dimensional interconnectedness unlikely to the point of practical impossibility. 
We are then faced, in this Hallways lineage of prints, with impossible two
dimensionalizations of possible three-dimensional objects. (The reverse of this, 
namely the impossible three-dimensionalizations of possible two-dimensional 
objects, is of course also exploited by Escher in the form of his famous impos
sible buildings (e.g. Belvedere or Waterfall), but these belong to the Stairways 
lineage of prints, which will be discussed later). Exploiting fully the three
dimensional potential of his planes, Escher branches off in two ways. One way 
involves three-dimensionalizing the plane itself into a curved surface: He uses 
this technique often enough, I thought, to justify talking about a sub-lineage of 
prints which I called the Strips lineage. Here, three-dimensionality is allowed for 
the plane as a whole, granting the mind's eye a reprieve in its search for three
dimensional closure. This, however, lasts but the time required for perceptual 
processing to attempt extending it to the "contents" of the plane itself, which of 
course miserably fails as soon as is realized that despite the three-dimensional 
potential of what they portray, the planar "objects" are at best given an irrelevant 
"thickness." 

To represent the Strips lineage of prints, I chose Swans, Rind, and Mobius 
Strip II (Red Ants). With Swans [1, cat no. 408], the branching off (from the 
mainstream exclusive concern for the regular division of the plane) into the Strips 

Greek "planastbai" (to wander». Hence "2-D-Land," "Flat-Land," "Floor-Land" ... 
and "Hallways-Land." Also, "plane" leads to "planar," ... which leads to "planaria" 
(or flatwonn): See, for instance, Flat-worms and Mobius Strip I. 
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Fig. 3. M.e. Escher, Rind, 1955. 
Wood Engraving 

Fig.4. M.e. Escher, Mobius Strip II, 
1963. Woodcut 

sub-lineage is most obvious: Bending the plane in depth allows the birds some 
freedom to actually wander in three-dimensional space but they are denied the 
ability to actually fly, their wings remaining irremediably glued to the unremit
ting two-dimensionality of the plane, however curved. Exposed to Rind (Fig. 3), 
the mind's eye spirals up in space in the hope of a promised volume ... which 
never materializes. However, in this case, as it unveils the surface features of 
a human bust, the winding strip does more than allow two-dimensional objects 
to wander in depth: it actually attempts to carve a full-fledged three-dimensional 
one, stretching its planar potentialities to the limit, but not beyond, periodically 
and irresistibly forcing the mind's eye to "peel off." 

But it is with Mobius strips that the Strips sub-lineage of prints reaches its 
conceptual peak, this time forcing the mind's head to "peel off" along with 
the mind's eye, as Escher undertakes to demonstrate that the ultimate two
dimensional impasse is that of the elemental assumption of the two-sidedness 
of the plane. Mobius strips shatter this assumption, and nowhere as crisply as 
in Mobius Strip II (Fig. 4). In this print, giant ants in full three-dimensions 
crawl along a closed-loop thick lattice strip with a Mobius twist to it. Locally, 
all clues suggest canonical three-dimensionality, of both ants and lattice, includ
ing the obvious two-sidedness of the lattice with insider ants and outsider ants 
alternating ... endlessly! But as the mind's eye crawls along with these alternat
ing insider/outsider pairs of insects, it collides head-on with the troubling fact 
that the static local insider/outsider alternation extends into a dynamic global 
insider/outsider alternation. In this more global realm, as they proceed along 
the endless lattice, insider ants become outsider ants and vice versa, forcing the 
mind's head to acknowledge the necessary single-sidedness of the plane! 
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Fig. 5. M.e. Escher, Snakes, 1969. 
Woodcut 

The second sub-lineage of prints branching off the Regular-Division-of-the
Plane main trunk of the Hallways lineage involves progressive variations in the 
size of the elements of the plane alongside some combination of the other usual 
variations in shape and orientation. This seems to have evoked, in Escher's mind, 
the concept of growth or development (as in Development II, and in the Path of 
Life series) and the concept of limit (as in the Circle Limit series, and in Square 
Limit). This might well be where Escher's "longing to approach infinity as purely 
and as closely as possible" is most explicit, albeit still inescapably set within 
the scope of the cognitive impasses blocking the way. I would argue that here, 
the cognitive impasse is twofold: First, the blatant limitlessness of the "shrink
ing" shatters the cognitive security associated with the limiting ability of size. 
Second, there is this powerful pointer to the third dimension which size carries 
along, granting Escher yet another means of engaging in this illicit flirting with 
depth which characterized the Strips Lineage. To represent this sub-lineage of 
prints, which I call the Vanishing Point lineage, I chose Escher's very last print, 
Snakes (Fig. 5), where the "flat" and the "spherical" are in constant opposition, 
intimately enmeshed in an inextricable mosaic of "knots" for the mind's eye to 
unraveL 

With Snakes, we reach the end of the Hallways lineage of prints. 

Stairways 

The second of our central trio of lineages, the Stairways lineage, is character
ized by Escher's fascination for volume as such, or full three-dimensional space. 
His graphical explorations of "Three-D-Land," or "Fat-Land," or "Rise-Land" 
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Fig. 6. M.e. Escher, Cycle, 1938. Lithograph 

clearly hinge, again, on the order/disorder inescapable complementarity. Two 
main "perceptual engineering" techniques, tapping mostly into what psycho
logical theories of perception call "monocular clues to depth perception," are 
quite massively relied upon by Escher in this context: (1) The ambiguous volume 
technique and (2) the impossible volume technique. 

The ambiguous volume technique creates graphical forms which force the 
mind's eye of the observer into cycles of alternating three-dimensional interpre
tations of the same single set of graphical elements, preventing it from achieving 
definitive global volume closure2. In contrast, the impossible volume technique 
creates graphical forms which, although locally intensely indicative of the 
presence of volume, deny the mind's eye of the observer access to any form 
of global volume closure. The strong sense of local three-dimensional order 
(and consequent expectation of global three-dimensional order) arises from 
exploiting a third technique which we will call the simplest/orm technique. This 
technique, partly based on the Gestalt laws of good figure, uses highly regular 
sets of the simplest possible forms, thereby insuring rapid and convincing local 
volume closure. Cycle (Fig. 6) is an ideal print for illustrating the transition from 

2 The ambiguous volume technique obviously is a close cousin of the figure/figure tech
nique of the Hallways lineage, which could have been called the ambiguous surface 
technique. 
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the Hallways lineage to the Stairways lineage. It features the cube as simplest 
form and as ambiguous volume on a background of hallway /stairway ambiguity 
(with the "cubic tiling" of the terrace at the top, and the flattening of the human 
figures and their stairway support at the bottom). 

The Stairways lineage proper consists essentially of prints such as Relativity 
and Waterfall (see pages 265 and 65), portraying mazes of stairways or architec
turallevels involving volumes which turn out to be not only visually ambiguous 
or impossible but sometimes also conceptually so. Indeed, as noted in our com
ments on Mobius strips, Escher's impasses can lie, beyond the mind's eye's 
reach, in the mind's head's deeper treatment of its visual constructs. Relativity 
is a particularly striking example of Escher's use of conceptual ambiguities and 
impossibilities: The space portrayed there is a perfectly legitimate global 
geometrical volume, and, although the task is far from trivial, visual global 
closure is possible. It is the way in which gravity appears, conceptually, to affect 
the various natural objects (human figures and trees) which prevents closure 
here. Gallery [1, cat. no. 346] offers yet another example of this type of impasse, 
with gravity exerting its multidirectional pull on somewhat less natural objects 
(hanging lamps and Persian iron man-birds). This print also features infinite 
regression in depth, echoing in Three-D-Land the Vanishing Point sub-lineage 
ofTwo-D-Land. A second sub-lineage branches off the Stairways lineage's main 
trunk with Escher's apparent fascination for intersecting planes and volumes, and 
regular polyhedrons, cast as stars or crystals, or simply as such, as in Waterfall, 
where they dominate, as perfect volumes, the absolute three-dimensional impos
sibility of the waterway. 

Archways 

Now the third and final main lineage of prints, the Archways lineage. This 
takes us beyond the concrete realms of Two-D-Land and Three-D-Land which 
characterize the first two lineages, into the more abstract and subtle realm of 
Through-D-Land. Here, the mind's eye is forced through space, in search of an 
ever-receding truth momentarily inhabiting each one of a succession of percep
tual constructs which last but the instant required to test the hypothesis that they 
might be "figure," and to refute it to the benefit of the usual alternate hypothesis, 
that they are in fact "ground." What characterizes Through-D-Land, however, 
is that these "grounds" are 'jore-grounds," pointing to possible "figures" in the 
space beyond, inevitably occluding and distorting aspects of them in the process. 
To contrast it with the "figure/figure" technique in tiling, we could speak here 
of a "ground/ground" technique. So whereas in the case of the "figure/figure" 
technique the ground-seeking mind's eye is only offered figures, in the case of 
the "ground/ground" technique, the figure-seeking mind's eye is only offered 
grounds. Cloister of Monreale (Fig. 7) is a beautiful example of the type of archi
tectural perspectives of which Escher seems to have been particularly fond. Here, 
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Fig. 7. M.e. Escher, Cloister of Mon
reale, Sicily, 1933. Wood engraving 

three sets of arches open onto one another as the mind's eye travels in a straight 
line in depth, from the center of the print and with a slight leftward elevation. 

Windows, doorways, porches, closes, and covered alleys can be found every
where in the Italian Landscapes and Architecture "main trunk" lineage of prints. 
As Escher's imagination starts playing a more explicit role in his work, purely ar
chitectural archways "open" onto more metaphorical ones, first with reflections 
of various types and then with "prints" as such. 

Still Life with Mirror (see page 219) provides a convincing transition from 
the main architectural Archways lineage to the Reflections sub-lineage. As soon 
as the mind's eye enters the reflection of the nested archways street, the mirror 
loses all "framing" ability and hence, since it is but a frame, literally ceases 
to exist, having achieved its purpose as mere pointer, a purpose recursively 
reinstated in the reflected street's successive archways leading . .. nowhere. 

Three Spheres II and Three Worlds are examples of pure Reflections 
sub-lineage prints where the mind's eye is repeatedly forced through its current 
locus of interpretation, inescapably drawn forward in its quest for "reality." In 
Three Worlds [I, cat. no. 405], a receding tapestry of dead leaves occluding tree 
and fish establishes an invisible plane of water pointing beyond and beneath, 
trapping the mind's eye in perpetual triangulating journeys through reflection 
and refraction. In Three Spheres II (Fig. 8), the ovoid form on the extreme left of 
the central spherical mirror multiplies pointers ... to infinity as it turns out to be 
the reflection on the central sphere of the reflection on the leftward sphere of the 
reflection of the central sphere itself. .. ! Spherical mirrors give a new twist to 
Through-D pointing: In breaking open the limiting frame of planar mirrors, they 
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Fig. 8. M.e. Escher, Three Spheres II, 1946. Lithograph 

reveal more, but they also conceal more, as the very shape of material objects 
now suffers distortion in the process. 

As final off-shoot from the Reflections sub-lineage, a single print stands out, 
in the form of a gallery featuring Escher's own prints, reflecting and distort
ing in yet another infinitely more powerful way, revealing and concealing in yet 
another infinitely subtler way: Art's way. Relegating space frames to the back
ground, Print Gallery (Fig. 9) introduces mindframes, where the mind's eye is 

Fig. 9. M.e. Escher, Print Gallery, 1956. Lithograph 
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forced through the artist's explicitly acknowledged reformulation of reality. In 
this print, not as print, Escher uses his very own prints, as prints, as primary 
material, recursively "metaphorizing" his very own "metaphorizing" medium as 
a graphic artist. Breaking loose from the traditional figure-ground paradigm, as 
in an ultimate attempt to convey the essential flavor of the ever-fleeting truth, 
Escher uses these prints-as-content-of-the-print to set the stage for a subject
object paradigm. In this new purely metaphysical paradigm the figure/figure 
and ground/ground techniques of the concrete figure-ground paradigm give way 
to a combined subject/subject/ /object/object technique, where the paradoxical 
twists traditionally imposed on space open up onto paradoxical twists imposed 
on mind. Let us have a detailed look at how Escher manages this feat. 

As Print Gallery's dynamics bring the mind's eye from the entrance Archway 
in the lower right-hand comer all the way around the enigmatic central "white 
hole" and back to the entrance Archway, they bring the mind's head to empa
thetically witness a succession of highly contrasting subject-object relationships. 
A first one, in the form of a visitor with his hands at his back and looking 
down at a print displayed on the angled tabletop, states the case in the usual 
terms: a distinct subject contemplating a distinct object. A second one, in the 
form of yet another visitor, this time looking up at a print displayed on the 
gallery's wall, completely restates the case, this time challenging the usual terms: 
The apparently distinct subject and the apparently distinct object progressively 
dissolve into one another, as the print-object, unfolding clockwise from the 
visitor's standpoint, curls back onto itself to strip the visitor-subject of its 
subjective role, turning it into a mere part of the print which initially was an 
"exterior" object of contemplation. This pushes the subject-object hypothesis 
forward, as characterizing what the newly discovered print portrays, and 
infinitely perpetuating subject/object merging cycles around the print, denying 
the observer the hope of ever achieving subject/object closure. 

It is with Print Gallery that Escher's unyielding obsession with the 
fundamental paradox of the mutual necessity of order and chaos, of the intimate 
interdependence of consistency and inconsistency, reaches its most powerful 
expression. Indeed, his finger also points beyond the limits of the realm of artistic 
reality to those of the realm of scientific reality, bringing to the fore one of 
its most insistently overlooked inconsistent premises, that of the legitimacy of 
assuming the independence of the respective terms of the subject/object rela
tionship, the so-called "objectivity" of science. In the light of Print Gallery's 
inescapable epistemological circularity, cognitive and neurological sciences' 
belief in the independence of the observing and of the observed, in the very 
study of how "observed" emerges from "observing," suddenly loses its obvious
ness. As the scientist's eye scrutinizes his own generalized "reflection," learnedly 
labeled "the human visual information processing system," he faces, in 
a distance that might or might not lie within the scope of his career plan, the very 
fate of Print Gallery's visitor. Here, this fate translates into the inescapability 
of the human-eye-as-object's claim to the-human-eye-as-subject, the necessity 
of accepting that, ultimately, all stimulus must be response . .. just as much as 
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all such response must also be stimulus . .. giving a new twist to the sacrosanct 
stimulus-response concept, and turning my very own discourse on its head on 
the way. 
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Parallel Worlds: Escher and Mathematics, 
Revisited* 

Marjorie Senechal 

The popularity - and ubiquity - of the graphic work of the Dutch artist 
M.e. Escher (1898-1972) continues unabated: books on his work remain in 
print, the public never seems to tire of Escher posters, mugs, T-shirts, calendars, 
and other paraphernalia, and exhibitions of his work are packed. Over 300,000 
visitors attended the six-month "M.C. Escher: A Centennial Tribute" at the 
National Gallery of Art in Washington in spring, 1998; exhibitions were held in 
that centennial year in Brazil, Mexico, The Czech Republic, Hong Kong, Great 
Britain, China, Greece, Italy, Argentina, Canada, Holland, and Peru. "People are 
attracted like magnets to these works. They come closer and closer and closer, 
and they stay there an incredible amount of time," says Jean-Franc;ois Leger of 
the National Gallery of Canada. "Studies have shown that the average length of 
time that a gallery visitor will stay in front of a work of art is 17 seconds. But 
they stay minutes in front of Escher's, and discuss, and comment, and say 'Do 
you see this, have you seen that?'" What is the magnet, what is the attraction? Is 
it profound, or is it superficial? 

It has become rather fashionable to affect weariness with these questions. 
Although Escher was "discovered" by research mathematicians (and other 
scientists) in the 1960's, their - our - enthusiasm for his work has waned 
as (or because?) the public's has waxed. "Of course, the article contains the 
inevitable reference to Escher, the philistine mathsman's favorite artist," sniffed 
an anonymous referee for the interdisciplinary journal Leonardo a few years 
ago [1]. Art critics have been disdainful all along, insisting that Escher will be, at 
most, a footnote in the history oftwentieth century art. But while this assessment 
may be correct, is it fair? Escher never claimed to be either a mathematician or 
an artist. "My uncle floated between art and mathematics - those are his words," 
says his nephew Nol Escher [2]. He was not at home in either world, yet he 
illuminates a profound relation between them. M.e. Escher's hundredth 
birthday provided an occasion for the mathematical community to revist his 
work and come to terms with it. 

The Escher Centennial Congress, held in Rome and Ravello, Italy, 
June 24-28, 1998, brought together a diverse group of mathematicians, scien
tists, artists, designers, school teachers, museum educators and others to consider 
the entire range of Escher's work, "from landscapes to mindscapes," from many 

* This article first appeared in The Mathematical Intellligencer, vol. 21, no. 1, 1999, 
in the column series "Mathematical Communities," edited by Marjorie Senechal. It is 
reprinted here, with minor corrections and updates, with the permission of the publisher, 
Springer-Verlag. 
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different perspectives [3]. During that congress I asked a small subset of the 
invited speakers to explore the reasons for Escher's enduring popUlarity with 
the general public in general, and in particular whether his appeal is in any 
sense "mathematical." The following comments splice together excerpts from 
two wide-ranging discussions. The participants were George Escher, a retired 
aeronautical engineer and oldest son of M.e. Escher; Istvan Hargittai, Professor 
of Chemistry, Hungarian Academy of Sciences, author of numerous books on 
symmetry; Douglas Hofstadter, Center for Research on Concepts and Cognition, 
Indiana University, author of Godel, Escher, Bach; Claude Lamontagne, Profes
sor of Psychology at the University of Ottawa; Jean-Franc,;ois Leger, Education 
Director of the National Gallery of Canada in Ottawa; Arthur Loeb, Professor 
of Design Science at Harvard University; Istvan Orosz, Budapest, artist (consid
ered by some to be Escher's "successor"); and Doris Schattschneider, Professor 
of Mathematics, Moravian College, author of Visions of Symmetry. 

Senechal: It is a truism that art critics dislike Escher's work but the public loves 
it. Many people have speculated on possible reasons for the first, but few seem 
to have seriously considered the second. Today, let's forget about the critics, and 
consider the public instead. And let's begin in a skeptical vein. I don't know of 
any other artist's work that has been so commercialized, not even Picasso's. 
To what extent is Escher's popularity due to the commercialization? Or is the 
commercial success due to Escher's appeal? 
Hofstadter: You can't just say well, we're going to make all those ties! People 
aren't necessarily going to buy them. 
Escher: Yes, but there was a very organized sales campaign of the Escher 
concept going on which was invented after father died or maybe even before, 
by people around him who said, "If we let it go, it will just fall apart." Because 
of the character of the people involved then and the people involved now, that's 
what you have: marketing specialists. 
Senechal: Does that explain why other artists, such as Vasarely and Magritte, 
whose work challenges the imagination in ways somewhat analogous to 
Escher's, don't have the same mass following? Or is it, at least in the case 

Marjorie Senechal Douglas Hofstadter George Escher 



Parallel Worlds: Escher and Mathematics, Revisited 85 

of Vasarely, because his geometrical illusions are just abstract figures, not 
embedded in fanciful worlds? 
Lamontagne: Maybe it is partly because they are not marketed the way Escher 
is, but also there is an immediacy in Escher. Magritte is not as easy to interpret. 
Escher chose simple things, waterfalls, monks walking. It looks understandable 
at first - but then you find surprises in it. 
Leger: I'm not sure that everybody likes Escher. When we were working on 
our public programming, we tried to identify who would be most interested in 
him. We concluded that it would be young adults, who were interested in mind 
games and things like that. It may be that people become interested in Escher 
at a certain age, and then their interest fades a bit. Maybe Escher appeals to this 
group because his work is immediate: what you see is what you get. 
Orosz: The most terrible experience for us artists is when a viewer at an exhi
bition stops for a half of a second in front of our work and then walks on to the 
next one. This is impossible in front of a print of Escher. And usually I feel, when 
I see his work in an exhibition or in a book, that after some minutes the picture 
is not important anymore, the important thing is the thinking, the mysterium. 
Over time, it will be even more important than the picture. This may be why the 
publishers use his works in calendars, because people have to live with them for 
a month at least, and they see it every day. 
Hofstadter: I don't remember where I first saw Metamorphosis, it was proba
bly in some book, but I remember the fascination of the changing forms. I was 
never as attracted to the tessellations as much as I was to the metamorphoses, the 
idea that here is something that is tessellating, but it's changing into something 
else. And then, on top of that, it changes from being a two-dimensional thing 
to a three-dimensional thing, and then back into a two-dimensional thing, and 
then into another three-dimensional thing, and then it winds up being a village 
that plunges into the sea with chess pieces, and words! There were so many 
ideas tangled together there in such an elegant and graceful and, again, startling 
and astonishing manner - that's what grabbed me. It was a two-dimensional, 
three-dimensional constant interplay and then bringing in these other worlds, 
like medieval villages, chess, the world of the intellect, the world of the past -
a medieval village connotes more than just the past, it again connotes a kind of 
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mystical quality, something that's gone but that radiates a kind of charm that 
I can't put my finger on very well. And that, to me, was also marvelous. 
Orosz: It's not the visual image that is the most important thing, it's some
thing in the mind. Still, it is very easy to speak about the work of Escher, much 
easier than to speak about abstract or other kinds of art. Somehow it is very 
close to communication - yet it is not visual communication, nor is it verbal 
communication. 
Lamontagne: With Escher, the revealing that happens in the graphics is al
ways accompanied by a concealing which uncovers itself through time as the 
visual system seeks interpretations. Escher was an incredible visual engineer; he 
experimented with just about all the ways in which you can intervene in the 
visual process to fool the system. I see three directions in his work. One I call 
"two-D", the tilings; another is "three-D," the impossible figures; and the third 
is what I call "through-D," like the Print Gallery, in which subject and object 
toggle with one another. The guy looking at the print is an object but when you 
go back he becomes the subject and then he turns into an object again. 
Loeb: We've heard that it's the young people who take to Escher's work. That 
may be true; as a natural scientist I tend to question these things, but I think 
it's probably true. At this particular conference we have several much older 
people but I think that they became interested in Escher when they were younger. 
It should be possible to find out. 
Schattschneider: I think you're right that probably the primary audience is high 
school and college. I think part of it has to do with the irreverence of some of 
Escher's art- they say it is "coo!," "awesome." But people who like to solve prob
lems, who like to try to figure things out, are immediately attracted regardless of 
age. I think that's why scientists and mathematicians are so attracted - it's not so 
much that there is mathematics in it. 
Lamontagne: Like most young undergraduate students in the 60's, I got a kick 
out of Escher, and I had my posters - it didn't turn into mania though. I really 
enjoyed it for a period, but then I moved on to something else, and I forgot about 
Escher. Then a few years ago the National Gallery of Canada in Ottawa decided 
to put up an exhibition and they were looking for someone for the committee 
who had some knowledge and expertise. Someone in the museum had been one 
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of my students of perception and remembered that I had an interest in knowl
edge and illusions and vision and that I was at the University of Ottawa, so soon 
I was back in the Escherian world. I was very happy to be in it: in fact, I found 
in Escher's work the whole problem space in which I had been playing over the 
previous 20 years! It has to do with knowledge, with the fragility of knowledge, 
with the unavoidable hypothetical nature of knowledge. I started looking at the 
prints from that perspective, trying to see if I could fit them into a unity. I don't 
have closure on it, but I'm pretty excited about the way it is shaping up. 
Hargittai: This kind of discussion inevitably prompts me to ask myself what 
I like in Escher most, and what I use Escher most for. I use him most for his peri
odic drawings, but I don't think I like them most. After a while they become very 
much the same, boring and simplistic. If I could just choose the one thing that 
I like most, it would be his wild flowers. I started wondering, why do I like his 
wild flowers so much? It is probably because of my science background: his wild 
flowers are very geometric, they are stripped of many things, and they seem to me 
to give a fantastic model of nature. Something is there, it is very important, but 
many other things are just ignored, as in any very good model. His periodic draw
ings are extremely useful for me, but in this case "what you see is what you get": 
after awhile you get very used to it. I always get an uneasy feeling when I see 
that math teachers are spending I don't know how many class hours on Escher 
[making tessellations]. I think it's a very good way to make children hate him 
and that kind of work. In fact, he is a unique artist for the connection between 
art and science. 
Lamontagne: Everybody has seen illusions in psychology books or even more 
widely available literature, but they are crude. Escher put them into a world that 
has some cogency, some consistency. He uses a variety of them, some of which 
don't strike us as being illusions, for instance the way in which he uses the 
various worlds that point to one another, to make people realize that knowledge 
cannot be trusted but at the same time, it can be trusted. It can be trusted 
locally, but there's always a globality that might show that it does not make 
sense. This locall global relationship is fundamental in cognitive science as well 
as in mathematics. 
Hofstadter: There is, as I'm sure everyone knows, a brand of literature that may 
have started in South America called magic, or magical, realism, in which there 
is a mixture of reality and paranormal events. I haven't read much of it; the only 
time I attempted to read some - Gabriel Garcia Marquez's One Hundred Years 
of Solitude - I found I just couldn't take it, I couldn't stand it. And yet, what is 
the difference between that kind of literature, which mixes reality with mysti
cal, unexplainable events that violate the laws of physics, and High and Low, 
Escher's print in which the scene is repeated twice, with the boy sitting on the 
staircase, with the palm trees in the courtyard, the tower that is both going up 
and down, the windows right side up on one side and upside down on the other 
side, gravity obviously flowing in two different directions in the same building. 
In some sense that's magical realism, yet I love that! I don't understand what it 
is in myself that finds Garcia Marquez uninteresting and silly, yet finds Escher 
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captivating and mesmerizing. There's a sense of mysticism in it: I think the word 
mysticism isn't wrong. I'm not a mystic, but there's an appeal to a sense of mar
velous mystery, which is also what caught me so much in Day and Night, the first 
Escher print I ever saw. The birds, not only intersecting and forming their own 
background, but also becoming fields and then day and night in the same place 
at the same time, all of that was overwhelming. It was so strange and complex 
and weird. 
Escher: Maybe this is because you can look at an Escher print again and again 
and again, and think about it. 
Senechal: Yes, I think the difference between magical realism in literature and 
the magical sense in Escher is that as you look at Escher more and more, you 
begin understand it. You don't see how he could possibly have thought of it, but 
you do see how it was actually executed. You begin to see, for example, why this 
seems to be convex when you look at it one wa}; but concave another, instead 
ofjust being baffled by it. You become intellectually engaged in trying to under
stand Escher, while with Garcia Marquez and the other magical realist writers 
that I have read, no understanding is possible because there's nothing there to 
understand. It's just magic. 
Schattschneider: I agree. I don't think that "what you see is what you get" with 
Escher. I gave John Conway a copy of my book [4], and he later told me that it 
took him six months to read. I said, "John, if I tell people it took you six months 
to read my book, no one will open it!" He replied that at first he began to devour 
it, but then he decided to put it on the piano and only allow himself to tum one 
page a day, because he really wanted to study it. When he slowed down, he saw 
things he had never seen before although he had looked at many of these prints 
and drawings several times. 
Leger: My understanding of the expression "what you see is what you get" is 
that it is immediate, in the sense that the message is all included in the work: 
you can come to it knowing nothing about art, and still you will get something 
out of it. You don't have to know what was prior to that, or after that, it doesn't 
cite somebody else, you can engage in it with no prior knowledge of it. 
Hofstadter: And yet, when one knows some of Escher's other works, one reads 
his landscapes in a way that one might not have read them without that context. 
One has the sense that this is somebody who appreciates magic. You feel it in 
that landscape, even though it's not directly there, and even though it was done 
maybe 20 years before something like Day and Night. You feel that same sense 
of the magical, a sense of engagement, depth, power, space, and space between 
lines. 
Leger: The more I look at Escher, the more I am interested in his landscapes. 
Even art critics will agree with that. I would wish that that more people would 
focus on the Italian landscapes. 
Escher: Father thought that among all the artists who depicted landscapes, he 
was nothing special. They were all dedicated people with good eyes, wanting to 
show what they saw; he was one of thousands. It's only because he switched out 
of that field that his work in it becomes visible; that's the strangest thing about the 
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whole phenomenon. Father never considered himself an artist: because he had 
a certain preconceived idea of what an artist was, he thought he wasn't one, and 
he couldn't draw anyway. But can you see, through his prints, that he was looking 
at the world so intensely, with such interest, that it comes through, it resonates, 
within you: "Oh, so that's what the world can look like!" 
Loeb: Maurits expressed surprise to me many times that people were seeing 
mystical things in his prints. He did not expect that at all. George, did you have 
any experience with this? 
Escher: Well, yes. It was rather funny, the reactions that father got to many of his 
prints. People saw their own imaginings in them, not what he had sort of meant 
to say. What he meant to say is what's there, and nothing more, according to him. 
These other people saw reincarnations and mystical things. 
Loeb: Maybe that is the "magic mirror" of M.e. Escher. Maybe that's what we 
all see: we see ourselves mirrored in his work. 
Lamontagne: The question of interpretation is a very subtle one. The attitude 
that we should not interpret, that we should be cautious, is very naive, because 
if you have to be cautious when you interpret then you have to be cautious when 
you think, because thinking is interpreting. To an extent, I'm a Popperian. That is, 
I agree with the philosopher Karl Popper that all forms of knowledge, including 
perceptual knowledge, are conjectural or hypothetical and the only way in which 
we can hope to progress in our understanding is to formulate our knowledge in 
a falsifiable way [5]. For example, a person coming into a different culture reads 
it in a way that is refutable through further experience. That is, I think, a better 
reading than a native reading of it which is not refutable. 
Senechal: Is there anything mathematical in the appeal of Escher, or is that 
completely beside the point? 
Lamontagne: Perhaps mathematics was to Escher as grammar was to 
Shakespeare. Mathematics is form. 
Hofstadter: At the time I was writing my book, which became known as G6del, 
Escher, Bach [6], it was not called that at all: the working title was something 
like "GOdel's Theorem and the Human Brain." As I was writing and writing, 
I realized that for many of the concepts that I had called "strange loops" or 
"tangled hierarchies," images that I knew from Escher were appearing in my 
head, over and over again. For awhile those images just helped me express 
myself more clearly; they helped me get even more sharply into words what 
I was trying to get across. But then eventually it occurred to me, my gosh, 
I should be showing my readers this stuff, I should not be simply having it in 
my head as a crutch or an aid, I should be sharing this. If it's useful to me as 
a writer to have an Escher picture in my head, it will be useful for my readers to 
have it in theirs. At that point Escher became an integral part of the book, and 
it was about the same time that Bach was entering, for very different reasons. 
For me, many of the concepts that I was trying to get across, particularly this 
notion of strange loop, were extremely well represented in Escher's pictures, and 
they were deeply connected, as I said, with Godel's theorem and certain things 
in mathematical logic. I doubt that Escher had those notions in mind explicitly, 
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but the abstraction that underlies Godel's proof and the abstraction that under
lies Print Gallery - the idea of a system folding around and engulfing itself, is 
the same concept as in a system that can represent its own predicates, a system 
that can talk about itself. 
Lamontagne: I've been raised in a context of Piagetian thought, in the Piaget 
world, which is still quite valid. Piaget talks about adolescence as the period 
when cognition opens up to the realm of possibilities. Before that - he calls it 
the concrete operational period - the mind is reactive and it can do very fancy 
things, but on the basis of actual things, concrete objects. But when you reach the 
formal operational stage - which starts around the age of 12 - as you reach 12, 
13, 14, the mind opens up. It realizes that there is not only actuality, but that 
actuality can lead to potentiality. And so the young minds open up to the fact 
that they are what they are, but within the context of a huge combinatorics that 
is at the same time physical, social, and psychological. Do you know the test that 
Piaget did with mathematics - with permutations and combinations, showing 
how kids at the pre-operational level, and concrete operational level, and formal 
operational level handle combinatorial tasks [7]? Before adolescence, a child 
can compute the number of arrangements of any given number of objects, but 
cannot even understand the question if you ask for the number of arrangements of 
n objects. Adolescents can think about n. In addition to explaining math under
standing, Piaget's ideas are beautiful metaphors for the mind in general. When 
you get to the formal operational stage, that is, adolescence, then you open up to 
the possible and you realize that you are one amongst an infinite set of possibili
ties. Now, at that age, there is at the same time the fear of losing what you are but 
the excitement of discovering what you might be, and what the world might be. 
I think that it is in this area that we can locate the great fascination for Escher. 

***** 

This is our stopping point, but it is not the end. This particular conversa
tion was one among an infinite set of possible conversations about the work 
of M.e. Escher and, more generally, about the deep relations between art and 
mathematics and the human mind. Like Escher's visual puzzles, it loops back on 
itself, leading us through new landscapes that somehow are familiar. The world 
of M.e. Escher and the world of mathematics are parallel worlds. 

Photo Credits: Marjorie Senechal photographed by Stan Sherer; George 
Escher and Arthur Loeb photographed by Victor Acevedo; Istvan Hargittai 
photographed by Magdolna Hargittai; other photos courtesy of the panelists. 
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M.e. Escher in Italy: The Trail Back 

Mark Veldhuysen 

The coast of Amalfi, La Costa Divina, or "The Divine Coast" as it is called in 
Italy, is truly breathtaking. Huge rocks and cliffs rise out of the sea and strange 
rock formations hide small bays and caves in which the available light breaks out 
in magnificent colors. The Amalfi Coast has for centuries attracted artists and 
writers. In his Decamerone, Boccaccio writes about this Amalfi coast, "Happy 
is the land that has found its literary advocate, for the eye reads in the land
scape too." And it was the famous Italian poet Renato Fucini who wrote, "For 
the Amalfi people who go to paradise, the Day of Judgement will be a day like 
any other day." 

So, as early as the 14th century, the beginning was set for the Amalfi Coast
line's fame. Painters, writers, and poets throughout the centuries visited this 
coast. Among the writers who were inspired here were Maxim Gorky, who 
wrote his novel Mother and Goethe, his Italian Journeys. Henrik Ibsen wrote his 
famous book The Doll's House on this coast, D.H. Lawrence his Lady 
Chatterley's Lover, and for Richard Wagner, it provided the scene for his second 
act of Parsifal: "The Magical Gardens." Various painters also visited these 
regions: William Turner, Pablo Picasso, John Ruskin, and Antonio and Franceso 
Mancini. No wonder that this coast inspired Maurits Cornelis Escher to spend 
many months in this region, drawing and sketching. 

On the 18th of January 1923, he wrote to his friend Jan van der Does: "Rarely, 
if ever, have I felt calmer, more pleased, more content than in recent times. Many 
wonderful prints are springing from my mostly industrious hands and the ques
tion whether they contain any beauty, I leave to be answered by the miserable 
generations to come." [l, p. 24]. 

These "miserable generations to come" have journeyed to this part of Italy 
to see with their own eyes some of the places they so admire in Escher's prints 
and to look at the sites that inspired him more than 70 years ago. It is indeed 
amazing that after all these years, the villages, streets, and landscapes that M.e. 
Escher drew, have hardly changed at all. Of course, not everything has stood still. 
Flats have been built, more houses have been added, roads have been paved, but 
mostly the landscape hasn't changed all that much. 

M.C. Escher's father wrote in his diary on the 19th of March 1923: 
"Late that evening we received a letter from Mauk [the family name for his son], 
from Ravello, where he had arrived from Naples. He had traveled by train to Vitre 
and from there went the last three hours along this beautiful coast in a carriage 
over a long, winding road, which is largely built over viaducts." 

Fortunately, now there are cars and people don't have to travel in a carriage 
or on the back of a donkey. Traveling this road, the first town that looks familiar 
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Top: M.e. Escher. A trani, Coast of Ama(fi, 1931. Lithograph. 
Bottom: Atrani, Amalfi Coast. Photo © Mark Veldhuysen 
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M.e. Escher. Covered Alley in Atrani 
(Coast of Ama(fi), 1931. Lithograph 

Mark Veldhuysen 

Covered Alley, Atrani. 
Photo © Mark Veldhuysen 

is Atrani. Familiar, because it is depicted both in Escher's Metamorphosis 
print and in his lithograph Atrani. 

To photograph Atrani from the same spot at which Escher must have sketched 
the drawings for his lithograph means climbing steep slopes and trotting through 
bushy hills-but then you get this spectacular view of Atrani. It is all still there 
- the dominant church, the same houses with a few add-ons - but more than 
60 years have passed and it looks like the world has stood still. Even the sea looks 
the same. 

On the 4th of August 1931, Escher's father wrote of a visit with his son: "In 
the afternoon I saw Mauk's work on the stone with lithographic chalk: it is a view 
from a high rock, of Atrani, near Ravello. Many houses and a church with the sea 
as background. A dark sea, with two wave systems that cross each other." 

There can be little doubt from the photo that this is the spot from where M.e. 
Escher made his drawing. 

Atrani itself, where the famous print Covered Alley was made, is a maze of 
small alleys and steps, seemingly without rationale. One house is consructed, 
so it looks, on top of another. The roof of one house is actually the floor of yet 
another. Alleys wind themselves underneath the various houses and seem to stop, 
only to continue after climbing some further steps. It is like walking in a gigantic 
maze - now in the sunlight and two minutes later without any light at all. Any 
urban planning committee would be amazed at how this town was built. 

But the covered alley does exist, as well as the dilapidated houses Escher 
turned into another lithograph. 'Dilapidated' means "in a bad state of repair" or 
"falling to pieces." 
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M.e. Escher. San Cosima, Ravel/a, 1932. 
Lithograph 

This can be said for a lot of the houses in Atrani, but the original dilapidated 
houses still stand after 60 years. Certainly, they need some repair and some paint, 
but they are still standing, although it is no longer possible to photograph them 
from the same angle. 

A little further along the winding road lies Ravello, a town in which Escher 
often stayed, living at the Albergo dell Torro. Here Escher made a woodcut in 
which he plays with light and dark: the interior of a church called Porta Maria 
dell'Ospidale. This church is no longer in use and is closed to the public. It is 
built into a rock and if one doesn't know it's there, it cannot be found. The walls 
are green with dampness, with water seeping along them, and it is very chilly 
inside. In his wood engraving, Escher cheated a little, because it isn't possible to 
physically get back far enough in the church to make a photograph exactly like 
the print. 

A little South of Ravello, there lies a small village called San Cosimo. It was 
here that Escher often met with Don Pantaleone, the pastor of the little church 
depicted in his lithograph San Cosima, Ravella. 

Of one of these visits, Escher wrote: 
"I often visited Don Pantaleone, the old priest of a small church that is perched 
against a cliff like an eagle's nest, three hundred meters above the water. In front 
of the church is a tiny little square that gives a spectacular view over the dark blue 
Mediterranean sea. Once, when I had climbed those long steps and arrived at the 
square, 1 saw Don Pantaleone getting a shave in the cool shade of the face of the 
cliff. He sat in an old armchair, just in front of the open door to his church. That 
was another of those sights one never forgets - the way that old man in his grubby 
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M.e. Escher. Tropea. Calabria, 1931. 
Lithograph 

Mark Veldhuysen 

Tropea, Calabria. 
Photo © Mark Veldhuysen 

cassock, with his head tilted backward, had his white stubbly beard shaved off. 
The silence of this warm spring afternoon was only broken by the scraping sound 
of the razor and the chirping of the crickets, and the air was heavy with the scent 
of orange blossoms." [1, p. 109]. 

The church no longer exists. A new one is built, made of concrete. The whole 
inside of the church is covered with an array of silver arms and legs and some 
plaques. Any ailments that involve arms or legs means visiting this church to pray 
and get better. As thanks, donations are made of small silver arms or legs. The 
walls are covered with them. 

Walking back to Ravello from San Cosimo and looking to the right, another 
familiar print, the Hamlet of Turello comes into view. The exact spot from where 
Escher must have sketched is still there - the wall, the derelict building - just 
as it was all those years ago. This gives a whole new meaning to 'following in 
someone's footsteps'! 

M.e. Escher also made various lithographs in the south of Italy, in Calabria, 
which is a vast, dry and barren country. Hardly any tourists go there since the 
landscape is not all that great, the roads are bad, the people poor and there are 
few hotels. Tropea is one of the towns in that region which Escher depicted in 
a lithograph. It is built on a rock and over the centuries a maze of little streets has 
sprung up. Unlike the people in the mountains, the people of Tropea are silent 
and unhelpful, but the steps going down to sea level are easy to find. Again, 
basically nothing has changed during the years. Even the old aqueduct is still 
there. 
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M.e. Escher. Scilla, Calabria, 
1931. Lithograph 
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Top: M.e. Escher. Mummified Priests in Gangi, Sicily, 1932. Lithograph. 
Bottom: Mummified Priests in Gangi, Sicily. Photo © Mark Veldhuysen 
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Further south lies Scilla. Here one sees the church, the garrison, and the 
sloping road leading towards the garrison. Now, comparing my photograph with 
the lithograph, it looks like another church has been built at the top, a church we 
miss in Escher's lithograph. 

Sicily was another part of Italy visited by Escher. One site he selected for 
a print was the small village called Castel Mola, with Mt. Etna in the background, 
still smoking. A nice image, which should be easy to find. However, it is just not 
possible to photograph the exact view as portrayed by Escher in his lithograph 
since there is no mountain to stand on behind Castel Mola in order to get the same 
view! Escher made his lithograph in the same fashion as 17th century Dutch 
engravers who made birds-eye views. In the northern part of Sicily lies the town 
of Cefalu with its large cathedral, easily identifiable, as it totally dominates the 
city. Here Escher made another print in which high and low are strongly present. 

M.e. Escher portrayed various churches in his lithographs, but hardly ever an 
interior. One interior scene, however, is quite fascinating. It is in a cathedral in 
Gangi, a mountain village in Sicily. One day when Escher visited Gangi, some 
street urchins asked him if he wanted to see some dead priests. A somewhat 
morbid idea of fun perhaps, but as the unusual always fascinated him, he quickly 
agreed. He followed the boys, who, with a large key, opened a crypt underneath 
the cathedral. There he indeed found some dead priests and made sketches for 
his lithograph. These mummified priests are still there. The crypt is now closed 
but the photograph gives a glimpse of what Escher saw in 1932. 

Some seem to jump out at you. They are all mummified and are wearing their 
original clothing. All is relative, as Escher depicted on his lithograph. At the 
bottom of the print, he added the message that in Latin reads Ite, Missa Est. 
Indeed, Mass is over. 

And it was about Italy that Escher wrote to his friend Bas Kist: 

I regret that you cannot accompany me on this trip. Every spring I make 
a journey to refresh my body and spirit and collect subjects for the work 
of the following months. I don't know of any greater joy than wandering 
over the hills and through valleys from village to village, to feel unspoiled 
nature around me and to enjoy the unexpected, in the greatest contrast to 
life at home. When wandering, it seems like a dream, although unpleasant 
things - badfood and a bed with lice -are one of the inevitable conditions 
of this enjoyment! Often I think about travelling like this in the future with 
my sons. That must be a great joy! [I, p. 34] 

References 

[1] FH. Bool, l.R. Kist, l.L. Locher, and F Wierda, eds., M.e. Escher: His Life and 
Complete Graphic Work, New York, Harry N. Abrams, 1982. 



Islamic Patterns: The Spark in Escher's Genius 

S.Jan Abas 

It is generally known that Escher was influenced by Islamic patterns. In fact 
Islamic patterns played a key role in his personal "metamorphoses" which trans
formed his art. In this article I will first highlight the impact of Islamic patterns 
on Escher's artistic development and correct some major misconceptions about 
the driving psychology behind these patterns. After that, I will show some exam
ples of my own art which sets out to develop and extend Islamic patterns. I will 
also explain what inspires me. 

Escher's Deepest Inspiration 

Although Escher explored a variety of distinct modes in two and three dimen
sions, his consuming passion continued to be the periodic division of the plane. 
Writing on the subject he enthused [4, p.35], "This is the richest source of 
inspiration that I have ever met." Escher displayed a predisposition to explore 
tessellations from the earliest time in his career. In 1922, while still learning 
graphic arts from S. Jessurun de Mesuquita at the School for Architecture and 
Decorative Art in Haarlem, he produced the early woodcut Eight Heads [2, cat. 
no. 90], demonstrating his innate fascination with rhythmic repetitions. It was 
this seedling which eventually blossomed into his unique art and it was the very 
same interest which remained a focus of attention throughout his life. 

Although it is true that Escher was inspired right from the start to create 
space-filling rhythmic designs on plane surfaces and worked on them from the 
early 1920s, he nevertheless failed to produce anything of significance until 
1937. As Bruno Ernst remarks [4, p.36], "Escher made tremendous efforts to 
express a rhythmic theme on a plane surface, but he failed to bring it off. All he 
could manage to produce were some rather ugly, mis-shapen little beasts." 

The metamorphosis of Escher the artist, which resulted in the transformation 
of his ugly ducklings into fascinating swans, occurred when Escher made his 
second visit to the Alhambra in 1936. There, together with his wife Jetta, the 
artist made a concentrated study of Islamic tilings. Thus it was in the Alhambra, 
through his analysis of Islamic patterns, that Escher found his "richest source 
of inspiration." (See [2], [4], [10].) Escher acknowledged and paid tribute to the 
artists of Alhambra when he wrote [4, p. 37], "The Moors were masters in the 
filling of surface with congruent figures and left no gaps over. In the Alhambra, 
in Spain, especially, they decorated the walls by placing congruent multicolored 
pieces of majolica together without interstices." 
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Fig.I. By introducing a few circles to an Islamic 
geometric tessellation, we can easily suggest animated 
creatures 

It is not at all difficult to see how abstract Islamic geometric designs triggered 
Escher's imagination into visualizing fish, birds, lizards and other creatures. 
In Fig. I, I have added to the purely geometric tiling from the Alhambra only 
a few circular shapes in appropriate places; this addition easily suggests living 
creatures. This is how figurative designs on carpets have evolved. With a little 
bit of imagination one can visualize a variety of living forms contained in the 
geometrical outlines of such tilings. 

This is how Escher's art was born. His early sketchbooks clearly show how 
he often began with a strictly geometric tessellation and aded a few curved lines 
to suggest a living shape. He then worked at it until he had the very recog
nizable living shapes he desired. In [10] the reader will find several examples 
of Escher's early numbered drawings where he documents the design from the 
Alhambra source from which it was derived. 

A Common Misunderstanding About Islamic Patterns 

Although Escher mastered the geometrical structures of Islamic patterns, he 
assumed that geometry was forced on Islamic art by religious proscription. 
Lamenting this, he wrote [4, p. 37]: 

What a pity it was that Islam forbade the making of "images." 
In their tessellations they restricted themselves to figures with 
abstracted geometrical shapes. So far as I know, no single Moorish 
artist ever made so bold (or maybe the idea never dawned on him) 
as to use concrete, recognizable figures such as birds, fish, reptiles, 
and human beings as elements o.ftheir tessellations. 

The first thing I would say is that, I for one am grateful that the walls of 
Alhambra are not covered with birds, fish, reptiles, human beings and other 
living creatures. I rejoice in the purity, simplicity and elegance of abstract 
geometrical shapes. In fact I find it rather puzzling and something of 
a contradiction that Escher said what has just been quoted, for he himself was 
lyrical about the non-figurative geometrical shapes, the regularity and the spatial 
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constraints displayed by crystals. Escher was himself absolutely thrilled by 
precisely the qualities which gripped the imagination of the Moorish artists. He 
himself saw something spiritual and beyond the human world in the very same 
attributes. He wrote [4, p. 93], "There is something breathtaking about the basic 
laws of crystals. They are in no sense a discovery of the human mind; they just 
'are' - they exist quite independently of us." 

Many people quote Escher's lament ("What a pity ... ") out of context, that 
is, they think that Escher believed that Islamic artisans and artists were forbidden 
to make any life-like images. But his lament is specifically about the regular 
repeating mosaics and patterns that are found so abundantly in Islamic 
decoration. In fact, Escher was aware of the fact that the Koran did not forbid 
making images, and that the prohibition of such images was contained in 
tradition and other holy writings. Here is what Escher wrote about this in his 
1957 book Regular Division of the Plane [2, p. 162]: 

I have often wondered why, in their decorative zeal, the designers 
of patterns such as these never, as far as I know, went beyond 
abstract motifs to recognizable representation. This does not 
detract from the beauty and ingenuity of their creations, in which 
more and less complicated systems can already be distinguished . 
. .. The figure in C [an Alhambra tessellation}, in particular, 
reminds me of 'something I know' - a hammer, a bird, or an 
aeroplane. 

As it is precisely this crossing (~f the divide between abstract 
and concrete representations, between 'mute' and 'speaking' 
figures, which leads to the heart of what fascinates me above all in 
the regular division (~fthe plane, it is important to discover whether 
there are actually reasons why figurative representations are not 
found anywhere. 

. .. Regarding the Muslims, I gained my information from 
someone who is more familiar with the subject than I. Thefollow
ing is an excerpt from his letter: 

'I have found an article by the great Islamic scholar Pro
fessor C. Snouck Hurgronje (in his Miscellaneous Writings II, 
pp. 453 ff), from which I gather that there is no prohibition in the 
Koran concerning the depiction of living creatures, but that it is 
based on the sacred text (hadith) which reads: "He who makes 
images will suffer the most severe punishment on the Last Day." 
This refers to the makers of images, while a text about the presence 
of images in houses reads that "the angels ()f mercy do not enter 
dwellings where there are images.'" 

The orthodox writings completely confirm these texts. They 
describe the creation of images of well-loved or respected people 
as an abomination, because they see it as the root (~j'idolatry. More
over, depicting anything that has been created is an imitation (~f 
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the work of Creation and can therefore only be a caricature. This 
kind of presumption is wrongful in the eyes of God, and on the Last 
Day the wretched image-makers will be required to blow life into 
their creations. This is the theory; in practice, however, it is differ
ent and even the various books of law make concessions, which in 
general terms boil down to the idea that if an image is made or put 
in such a place that it will be treated or touched without respect 
- for instance, pictures on carpets that are trodden undeifoot or 
cushions that are sat upon, or in corridors or places where it would 
be impossible for them to lead to idolatry - the use of images is not 
forbidden. This applies to the user, not to the maker; for the maker, 
the letter of the law applies . . . ' 

'In countries like Persia and India these commandments were 
set aside on a large scale; however, I do not know what the 
situation was in countries where the law was adhered to more 
strictly, in Arabia for example, and presumably also in Moorish 
Spain. In Persia and India not only were animals depicted quite 
freely, but also people, and even the Prophet, not to mention the 
rulers, military leaders, important officials, etc., although this was 
mainly in miniaturist art.' 

'Thus there was a prohibition, not in the Koran but in the 
religious tradition, for the maker and the user with regard to the 
representation of living creatures. It was thought to conflict with 
the ideas on the work of the Creator, which cannot be equalled by 
mortal man, any such attempt only leading to caricature.' 

103 

So although Escher was correct that the Moorish artists restricted their 
tessellations to mosaics of non-figureative shapes, there was not a total 
prohibition of life-like pictures. Indeed works by Moorish artists that show 
scenes of battles, lion hunt, boar hunt, council meeting and other events can be 
found in the very Alhambra where Escher learnt his craft (see, for example [6]). 
The ceiling in the Alhambra's Hall of Kings is covered with excellent life-like 

Fig. 2. A section of the 
ceiling in the Hall of the 
Kings in the Alhambra 
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portraits of the Kings of Alhambra; Fig. 2 shows a portion of that ceiling. The 
fact is that there is a vast body of figurative work by Muslin artists. Apart from 
the Persian miniatures, which, granted, are stylized and flat, there are a large 
number of realistic life-like pictures that have been executed with great virtuosity 
and naturalism. The reader will find many fine examples of these in [II]. 

No! The explanation that geometry was forced on Islamic art by religious 
dogma is itself just a dogma. It may suffice at a very superficial level, but as 
I will show, it misses out entirely the actual mechanisms which caused Islamic 
art to turn to geometry, Arabic calligraphy, star-shaped polygons, interlacing, 
and tessellations over large surface areas. 

The Driving Mechanisms Behind Islamic Art 

I would like to point out five different major influences which, in my view, forged 
Islamic geometric art. 

1. No image of God except Light. The central reason for the substantially non
figurative nature of Islamic art arises from the fact that Islam offered no image 
of God. Indeed, it arose on its very first dawn with a burning passion to destroy 
idolatry and replace all anthropomorphic images of God with a single abstrac
tion. For a Muslim, unlike a Christian or a Hindu, God did not, and would not 
at some future date, choose to become flesh. The only material image of God 
that a Muslim is prepared to employ is that of Nur, meaning light. Allahu Nurus 
Samawat Wul Ardh - God is the light of the heavens and earth - proclaims the 
Koran. 

2. God spoke in Arabic. Although, according to Muslim belief, God did not 
become flesh, 'He' nevertheless spoke in a human tongue. He chose to address 
his penultimate message to the human race in Arabic l . For this reason the Arabic 
language and its script carry a godly attribute for all Muslims. Unlike Christians, 
Muslims recite their holy book and say their prayers in Arabic, no matter in 
which country they live and no matter what their mother tongue. This language 
triggers in them feelings of holiness and closeness to God. 

Escher, understandably, failed to appreciate the significance of the fact that 
the Alhambra is covered not only with geometric shapes but also with Arabic 
calligraphy. Had Escher seen the Alhambra through Muslim eyes, he would have 
been struck by the frequent occurrence of the Nasrid motto Wala Ghalib Ala 
Allah, which means Allah is the only victor (see Fig. 3). He would have noted 
that Arabic calligraphy always occupies a higher placement in space than do the 
geometric tilings. 

3. Geometry is spiritual. Long before the birth of Islam, several of the clas
sical Greek philosophers had associated religious and mystical qualities with 
geometry. The abstract definitions and logical consistency of the subject had 

I Actually, according to Muslim belief, God did not communicate directly with prophet 
Mohammed, but through the Angel Gabriel. 
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Fig. 3. The Nasrid motto, Wala Ghalib 
Ala Allah, (Allah is the only victor) is 
inscribed everywhere in the Alhambra 

been seen as pointers to a perfect world underlying gross reality and hence 
pointed to the gods. "God ever geometrizes," Plato had proclaimed. 

Imbued as they were with the idea of an abstract God, Muslim intellectuals 
found such notions of Greek geometers immensely agreeable. They immediately 
concurred that geometry offers the unifying intermediary between the material 
and the spiritual world. This appeal led to the books of Euclid and Pythagoras 
being among the very first to be translated into Arabic. Starting with large-scale 
translations of these in the 8th century, the appreciation of geometry grew and 
became rapidly and widely established in the Islamic world [7]. Galileo, the 
founder of modem scientific method, wrote [8, p. 47]: 

Philosophy is written in this grand book, the universe, which stands 
continually open to our gaze. But the book cannot be understood 
unless one first learns to comprehend the language and read the 
letters in which it is composed. It is written in the language 
of mathematics, and its characters are triangles, circles, and 
other geometric figures without which it is humanly impossible to 
understand a word of it; without these one wanders about in a dark 
labyrinth. 

Muslim scholars proclaimed that [3, p. 7]: 
... the study of sensible geometry leads to skill in all the practical 

arts, while the study of intelligible geometry leads to skill in intel
lectual arts because this science is one of the gates through which 
we move to the knowledge of the essence of the soul, and that is the 
root of all knowledge. 

Muslim artists became hooked on triangles, circles and other geometric figures. 
4. Passion for and reliance on stars. Monuments left behind by people of the 

stone age bear witness to the fact that human interaction with the heavens has 
a long history. People of ancient civilizations such as the Babylonians, Egyp
tians, Indians, Mayans, and Chinese, were all dedicated observers of heavenly 
bodies and sought to be guided by them in religious as well as practical matters. 
Not surprisingly, star shapes have a universal attraction. One only has to look at 
the flags of nations to verify this. 

The people who embraced Islam were not only heir to this ancient tradition, 
but had even greater need to consult the stars. Many of them dwelt in deserts 
and their way of life involved nomadic wandering over large areas of land. The 
Arabs were also adventurous seafarers and sailed over considerable distances. 
Both kinds of travel demanded skillful observation of the heavens for navigation. 
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Furthermore, Islam enforced a unique requirement on the faithful. Whether 
on land or sea, a Muslim has to know, five times a day, the exact direction in 
which to pray. All this made the stars extraordinarily significant to the early 
Islamic cultures. The Koran abounds with verses which conjure up powerful 
images on the theme Allah it is who hath set for you the stars that ye may guide 
your course by them amid the darkness of the land and the sea (V:98). 

In Islamic culture, astronomy satisfied religious, practical, and intellectual 
needs. The first observatory which gathered together eminent astronomers from 
many lands and conducted systematic observations was built at Maraghah in 
Iran in the 13th century. Many stars were named by Muslim astronomers and 
continue to be known by their Arabic names. From the 9th century onwards, 
when Ptolemy's work was translated into Arabic, until the latter part of the 
15th century, astronomy remained the most passionate intellectual activity in the 
Islamic world [7]. Instruments such as the Astrolabe and words such as Almagest 
are reminders of the Islamic legacy in the subject. 

5. Experience of carpet weaving and tent dwelling. For the majority of people 
today, carpets represent the most Islamic of Islamic art forms. They are sought 
after by connoisseurs as works of art, by the rich for interior decorations, and by 
investors for financial gain. Many who have no appreciation of other Islamic art 
forms, such as calligraphy, nevertheless crave a Persian carpet. 

Carpets reflect the nomadic tent-dwelling origins of many of the populations 
who embraced Islam. The craft of carpet weaving has been practiced through
out the Middle East and the Caucasus region for a very long time. In particular, 
the nomadic tribes of Central Asia, Persia and Afghanistan have been producing 
carpets for thousands of years. Figure 4 shows the central portion of the Pazyryk 
rug, now kept in the Hermitage Museum in St. Petersburg, Russia; it has been 
dated as being around 2400 years old. It was found in a tomb unearthed by 
Russian archaeologists in 1947 in the Pazyryk Valley in the mountainous Altai 
Range in southern Siberia. 

Carpets and rugs have served many purposes for these people. They have 
been used as floor coverings, prayer mats, tent decorations, canopies, and as 
symbols of power, privilege and riches. They have been ceremoniously laid 
to pay respect to royal thrones and seat honored guests. They have played 
a prominent role in the celebration of weddings and feasts. Carpets undoubtedly 
represent the most ancient and the most meaningful art form in the nomadic 
tent-dwelling environment. 

And what does carpet weaving involve? As Fig. 4 abundantly shows, it 
involves interlacing to produce tessellating repeat patterns, i.e. the practice of 
the very same skills that were exercised in the Alhambra. It is also a fact that 
although carpets have been produced for a very long time and embody all forms 
of Islamic art - abstract geometric, floral, figurative and arabesque - the abstract 
geometrical patterns have the longest history. 

With the knowledge of these five influences on Islamic art, it now becomes 
possible to shed the 'dogma' about the origins of Islamic art and identify the 
actual key factors which led to its concentration on geometrical patterns. Until 



Islamic Patterns: The Spark in Escher's Genius lO7 

Fig.4. The central portion of 
the Pazyryk rug, dated as being 
around 2400 years old 

very recently, the major concern of art in every culture has been the depiction 
of the deity and Islamic art was similarly concerned. Since Islam offered light 
as the only material image of God and since the light of heavens is created by 
stars, one would expect Muslim artists to employ star shapes and radiating lines 
(to mimic the behavior of light) to portray God (see [1]). 

Since geometry was seen as the intermediary between the material and the 
spiritual world, one would expect Islamic art to concentrate on geometry to 
portray perfection. Since the Arabic language evokes a sense of holiness to 
Muslims, one shouldn't be surprised to find it being employed for inspirational 
purposes in Islamic art. In fact, Arabic calligraphy is regarded by Muslims as the 
most exalted art form. 

Since abstract interlaced infinite repeat patterns on carpets and rugs have 
been an integral part, from ancient times, of the life and culture of people who 
embraced Islam, we should expect to see them on other surfaces which came 
to replace carpets and rugs. Since the covering of surfaces with tessellations 
is a tradition that goes back to a nomadic tent-dwelling past, we should not 
be surprised to discover that the walls of Islamic buildings are covered with 
tessellations. 

To conclude, Islamic art did not take the route it did through the fear of God. 
It did so through the love of God. It did so to depict perfection and to point to 
an orderly world beyond gross and chaotic reality. In doing so it utilized and de
veloped those elements that were most meaningful for its purposes and those art 
forms and traditions which had played the most central role in the life and culture 
of its people. 

The Inspiration for My Art 

In 1964, when I was a graduate student of University College London, I set out 
with some other fellow students to drive to Southern Morocco and explore parts 
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of the Sahara desert. On the way we stopped in Granada and like other visitors to 
this city, I went to gaze at the Alhambra. I was utterly mesmerized. It was love 
at first sight. I had read that when the Moghal Emperor Babur first saw Kashmir, 
he cried out 
Agar Firdaus Ber Ruye Zamin Ast, HAMIN ASTO HAMIN ASTO HAMIN AST. 
(If Paradise exists on the surface of this earth, IT IS HERE IT IS HERE IT IS HERE.) 
I found myself repeating Babur's words. I had never seen such grace, such 
colors, such proportions, such patterns, such calligraphy, such shadows, such 
delicate plaster, such intricate tiles, such magical gardens, such sunlit patios, 
such shady courtyards, such flowing waters, such bubbling fountains. .. What 
creatures had made this palace, I wondered. I was greatly moved to know that 
I was born in the culture whose people had created this paradise. I could hear 
ancestral voices commanding me: "study these patterns . .. cherish them ... 
extend them. .. go away and build a new Alhambra." 

Although I was smitten by geometrical patterns in the Alhambra as long ago 
as 1964, it was not until 1986 that I could find the time to study them. I was 
employed as an applied mathematician and spent the first part of my career 
working in computational physics. But I never forgot the Alhambra. Gradually, 
from physics I drifted into computer science and computer graphics. I could now 
justify doing research into patterns of beauty. After a second visit to the Alham
bra in 1985, I began my study of Islamic patterns using computer graphics. My 
book [1] is a direct result of this long-held passion which shows no sign of sub
siding. The book is dedicated to my mother and to "those who conceived and 
built the Alhambra." 

Thus, I have this much in common with the great Escher: I also found my 
deepest inspiration in the Alhambra. My first visit inspired and enchanted me 
but it was the second visit, twenty-one years later, that triggered my trans
formation. Like Escher, my artistic education began in earnest with analysis 
and reproduction (using computer graphics in my case) of the patterns of the 
Alhambra. 

What is My Art About? 

It is important to say in a finite number of words what my art is about, but 
it is driven by two global passions. These are: (i) to discover beauty in the 
unity of science, art, philosophy and 'religion' and (ii) to rejoice in my cultural 
heritage and to develop it further. Islamic art satisfies me in both these quests. It 
does so because it deals in pattern, symmetry, replication, and 'word' and these 
four elements offer the most potent mixture for the celebration of unity that we 
can discover. It is unlikely that many readers of this book need to be told about 
the significance of pattern and symmetry in offering unity. So I will say noth
ing about these and refer the reader to Chapter 2 of my book [1], where I have 
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developed the topic. I will make only a few brief remarks about the other two 
elements. 

The act of replication is synonymous with life. Life began on planet Earth, 
when somehow, about four thousand million years ago, a molecule learnt to 
replicate itself. DNA was born. The simple act of replication is the most mirac
ulous in the whole universe. In Islamic art, replicating pattern has been used to 
symbolize the infinite. It relates something static, limited, definite, and transient, 
with that which is dynamic, unbounded, infinite, and eternal. For these reasons, 
replication speaks to me about life, sex, DNA, 'God,' infinity, and immortality. 

The celebration of the 'sanctity of the spoken word' through calligraphy is 
another feature of Islamic art which lends itself to profound interpretation. 
Spoken language is the unique characteristic of the human species. It was the 
development of the power of speech in our brain, a million or so years ago, which 
gave us our capacity for self-awareness and for an awareness of a world beyond 
that of immediate experience to which other creatures are confined. It was 
acquisition of language which separated our brain from the brains of all other 
species and set us on the road to culture, civilization, technology, and the trip to 
the moon. 

It amazes me that despite the Bible's proclamation In the beginning was 
the word and the word was with God and the word was God, Western art 
has failed to celebrate 'the word.' In the West, calligraphy has always been 
seen and continues to be seen as a mere craft. In contrast, in the Islamic 
world, calligraphy is regarded as the highest art form. For me, it symbolizes 
human consciousness, human intelligence, human moral sense, and all else that 
we humans possess over and above other animals. 

Some Examples of My Art 

I conclude this article by showing some examples of my art. It needs to be made 
clear that all my work originates through the use of computer graphics. So far 
those pieces which I have produced entirely through my own labors have all been 
in the form of prints. However, through collaborating with other skilled persons 
I have been able to transform some of my computer-graphics conceptions into 
ceramic tiles and murals, sculptures, wall hangings, and other realizations. The 
interested reader may like to visit my Web pages for more examples of my art: 
www.bangor.ac.uk/IslamicArt, and www.islamicart2000.com 

Figures 5 and 6 are intended to show some of the ways I am developing 
Islamic patterns beyond their simple Euclidean two-dimensional periodic 
origins. Figure 5 shows a complex non-periodic tessellation which gives rise to 
a five-pointed star, a revered symbol in Islamic culture which appears on the 
flags of the great majority of Islamic nations. 

Traditional Islamic art has not utilized the concept of sculpture. This is one 
of the areas I am currently developing. The object at the left in Fig. 6 shows 
an example. Another area into which I am extending Islamic patterns is that of 
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Fig. 5. SJ. Abas. A new non-periodic 
Islamic tiling 

hyperbolic geometry. This is of special significance in a book about Escher. The 
image at the right in Fig. 6 shows the transformation of an Islamic pattern from 
Euclidean into hyperbolic space. 

Figure 7 shows examples of my conceptions created in media other than 
computer prints. The left figure shows a new pattern that has been transferred 
to ceramic plates, ceramic murals and glass. The right figure comes from 
extending a classical flat Islamic design into three dimensions and is typical of 
those that have been turned into wall hangings. The pattern shown uses stylized 
Kufic script to transcribe 'Ali,' the name of Prophet Mohammed's son-in-law. Ali 
was the fourth Caliph and is highly revered by the Shia sect of Muslims. 

My two works in color plates 30 and 31 are intended to show examples of 
the kind of globally unifying themes in which I am most interested. The most 
profound question that concerns the individual is the question: Who am l? Reli-

Fig.6. SJ. Abas. Extensions of Islamic patterns to a three-dimensional surface and to the 
hyperbolic plane 
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Fig. 7. SJ. Abas. Work translated from computer graphic prints onto other media 

gion, philosophy, mysticism, literature, poetry, science and art all address this 
question. In color plate 30 I show one of my efforts to portray this question. 
This piece I have called Tu Kisti?, which in Farsi means Who art thou? The 
calligraphic inscription on the top cube transcribes a verse by the Pakistani poet 
Allamah Sir Mohammed Iqbal (1875-1938), which translates as: 

Who art thou 
That the blue skies 

Have opened for thee 
A thousand starry eyes? 

Color plate 31 shows a version of my work which I call The Islamic Fer
ric Wheel [1, p.40]. It sets out to celebrate the discovery, through applied 
science, of a beautifully symmetric structure, namely that of the molecule 
[Fe(OCH3h(OzCCHzCl)lIo, known more simply as the Ferric Wheel. The 
molecule was synthesized by the American chemists Stephen J. Lippard 
and Kingsley L. Taft in 1990 in their efforts to understand certain chemical 
reactions that occur in biological systems. Such structures have been explored 
in Islamic patterns [1, p.4I] and are strikingly beautiful. Writing in Scientific 
American [5, p. 70], the chemist Roald Hoffmann, who won the Nobel Prize in 
Chemistry in 1981, had this to say about the Ferric Wheel: 

-for me, this molecule provides a spiritual high akin to hearing a Haydn 
piano trio I like. Why is this molecule beautiful? Because its symme
try reaches directly into the soul. It plays a note on a Platonic ideal. 
Perhaps I should have compared it to Judy Collins singing "Amazing 
Graze" rather than the Haydn trio. The melodic lines of the trio indeed 
sing, but the piece works its effect through counterpoint, the tools of 
complexity. The ferric wheel is pure melody. 



112 S. Jan Abas 

Acknowledgments 

The tessellation shown in Fig. 5 was discovered in a collaborative study of 
Penrose patterns with Jaime Rangel-Mondragon [9]. Figure 6 originates from 
a collaboration with Gareth Williams; I am also grateful to him for his general 
help in program development for my art work. The calligraphy in color plate 30 
was transcribed in its original form by the calligrapher Aziz Ahmed of Lon
don. Finally, I thank Dr. Ibrahim Sheikh of Manchester for supplying me with 
a photograph of the Kings of Alhambra for Fig. 2. 

References 

[1] Abas, SJ. and Salman, A. S, Symmetries of Islamic Geometrical Patterns, World 
Scientific Publishers, Singapore, 1995. 

[2] Bool, EH., Kist, lR., Locher, J.L., and Wierda, E, M.e. Escher, His Life and 
Complete Graphic Work, Harry Abrams, New York, 1982. 

[3] Critchlow, K., Islamic Patterns: An Analytical and Cosmologcal Approach, 
Thames and Hudson, London, 1976. Paperback edition 1983. 

[4] Ernst, B., The Magic Mirror of M.e. Esher, Ballantine Books, New York, 1976. 
[5] Hoffman, Roald, "How Should Chemists Think?," Scientific American, vol. 263, 

no.2 (1993) 66-73. 
[6] Murphy, le., The Arabian Antiquities of Spain: The Alhambra, James Cavanah 

Murphy, Granada, 1987. 
[7] Nasr, S.H., Islamic Science: an Illustrated Study, World of Islam Festival Publish

ing Company, London, 1976. 
[8] Opper, J., Science and the Arts: A Study in relationships from 1600-1900, Associ

ated University Presses, Cranbury, New Jersey, 1973. 
[9] Rangel-Mondragon, J. and Abas, SJ., "Computer Generation of Penrose Tilings," 

Computer Graphics Forum, vol. 7, (1988) 29-37. 
[10] Schattschneider, D., Visions of Symmetry: Notebooks, Periodic Drawings, and 

Related Work of M.e. Escher, W.H. Freeman & Co., New York, 1990. 
[11] Welch, C.w., Imperial Mughal Paintings, Chatto & Windus, London, 1978. 



Space Time with M.e. Escher 
and R. Buckminster Fuller 

Victor Acevedo 

Escher as Inspiration 

My first memory of seeing M.e. Escher's work was in the mid-sixties, at age 10 
or II, when I pored over a Time-Life series book - I recall seeing his prints 
Relativity and House of Stairs. I didn't realize then how profoundly Escher's 
work would affect my life's path. 

Like Escher, my serious artistic interest was first aroused by an art class in 
high school (in Alhambra, a small town near Pasadena, California). I often think 
about the uncanny synchronicity of the town's name. A few years after this, I saw 
the large Escher retrospective exhibition held at the Museum of Science and 
Industry in Los Angeles, and was fascinated by his images. Soon after, I was 
introduced to the book called The World of M.C Escher [6]. 

Perhaps the first real connection of my art to that of Escher began with my 
pilgrimage to the Alhambra, in Granada, Spain, in July 1977. I arrived at the 
Alhambra in the early hours a bit under the weather; I thought for sure that I had 
a cold or flu. But amazingly, it seemed that after hours of exposure to the calm 
and harmonic resonance of the palace and gardens I felt completely well. 

As Escher had done before me, I had come to view the encyclopedic 
and miraculous array of periodic tilings that adorn the palace. It was fantas
tic and amazingly inspiring. What I didn't expect was a perceptual ontolog
ical epiphany. Standing at one of the portals overlooking the city, I looked 
through a large plate of contemporary safety glass which most likely was placed 
to prevent young children from falling to their death. However it also had 
a phenomenological function. It reflected superbly an adjacent section of an 
intricate Moorish tessellation and in effect, transparently compo sited it over the 
viewable scene below, comprised of buildings, plant life, and rock formations 
in the distance (Fig. 1). It was here in an instant, that the essential pictorial 
metaphor of my reuvre was born. 

In 1978, I acquired two more books about Escher and his work: The Magic 
Mirror of M.C Escher [3] and Fantasy and Symmetry: the Periodic Draw
ings of M.C Escher [7]. I would peruse these again and again as I strove to 
unlock Escher's secrets. Another book acquired that year was The Tao of 
Physics, by Fritjof Capra [2]. The Tao . .. exploded my outlook and gave me 
a comprehensive conceptual basis on which to support the theoretical aspects 
of my work. Its premise is that the world-view and, specifically, the general 
description of sub-atomic phenomena by Western particle physicists, is becom
ing almost interchangeable with the description of reality found in the major 
forms of Eastern mysticism. 
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Fig. 1. Tessellated overlay in a glass reflection at a portal in the Alhambra, July 1977 

Capra's systematic comparison of the two disciplines implies a compelling 
cosmography that is captured in Escher's zoomorphic tessellations. Here, seen 
as both a perceptual phenomenon and a graphic metaphor, Escher's work points 
to a visual art that both embodies and is an artifact of a multisensory and meta
physical "seeing." For example, Escher's print Reptiles (see page 307) illustrates 
quite nicely the dynamic tendency of subatomic events and also lifeforms to ap
pear and disappear, their vital patterns and symmetry temporarily discerned as 
they emerge from and return to an underlying morphogenetic field. Some East
ern mystics would call this field the "void-matrix." In this case, Reptiles is only 
a metaphor. In the real world, a form's properties aren't as easily discerned when 
they're resident in the void. I would imagine that their past or future life sym
metries are remapped across space-time. In a related connection, it is interesting 
that in 1961 Chen Ning Yang used Escher's pattern No. 67 of glide-reflected 
horseman (see page 12) to illustrate his application of apprehended symmetry 
operations in his exploration of particle physics. 

The Quest to Understand Escher's Method of Tessellation 

Although I had struggled to understand Escher's technique of making tessella
tions by working over the MacGillavry book, I was unable to grasp the essentials 
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Fig.2. An example from Escher's 
notebooks revealing the underlying 
structure of a tessellation 

from that technical text. In the summer of 1979 I had the opportunity to spend 
a week in the Hague, where, with the permission of the Gemeentemuseum, 
I finally was able to learn from Escher's original notebooks. I knew that Escher 
and his wife had made copies of the Moorish tessellations at the Alhambra, so 
I thought I might study Escher's notebooks and build on what he did with the 
patterns. For seven days straight, I made hand-transcriptions of Escher's 
personal notebooks, and during that time, I finally unlocked (for me) Escher's 
tessellation methods. (The full content of the notebooks was published in the 
1990 book Visions of Symmetry [9].) 

It was the dot-to-dot coordinates on graph paper that revealed how the 
zoomorphic perimeter of Escher's figures were constructed (Fig. 2). Escher's 
dot plotting and connecting curves that outline animal perimeters have much in 
common conceptually with computer-generated vector graphics. The underlying 
cartesian grid of his graph paper is not unlike the underlying pixel grid employed 
in digital raster graphics. Moreover, the nature of the patterns' figure-ground 
perceptual duality is a striking metaphor for the on-off phenomenology of the 
digital domain in general. 

Tessellated Overlays 

About eight months before seeing Escher's notebooks, I made my first attempt 
to use a tessellated overlay on an image, as inspired by my perceptual experience 
at the Alhambra. This was the oil on canvas called Napoleonic Seal (Fig. 3a). 

I based this neo-surrealist work very loosely on Leonardo's The Last Supper 
but I featured a pagan effigy of an animal-like god at the center. If you interpret 
the triangular seal's fins as the corners of a hat, then the figure at the center of the 
table is a conquering imperial hero (Napoleonic). If you read them as fins, then 
it is a victimized Seal lying prostrate on its dry-docked "Waterloo," as it was in 
its original source image. It seemed an apt metaphor for the bittersweet paradox 
of human experience and the fate of some of our greatest saints. 
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a 

b 
Fig. 3. (a) Victor Acevedo, Napoleonic Seal, 1979, Oil on canvas. (b) A detail of the 
tessellated overlay in this work 
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The use of an overlay of periodic pattern (Fig. 3b) can be seen on the three 
"extraterrestrials" in the lower right corner of the composition. Embedded in the 
head of the alien on the right is an array of cubic blocks familiar from psycho
logical perception studies of convex/concave and used by Escher in his print 
Metamorphosis II (see page 147). 

An Alternative Approach to Zoomorphic Tessellation 

In April 1980, I produced the pencil drawing called Four-fold Rotational Wasp 
- Fish Orifice Covet (Fig. 4). It began as the basis of a grayscale study for my 
color class at Art Center College of Design and was the first complete work 
that was a direct result of my study of Escher's notebooks. Structured on a 5 x7 
matrix of squares, this composition was intended to combine three different types 
of pictorial idioms: surrealist allegorical figuration, nonobjective geometry, and 
Escher-like zoomorphic tessellation. 

It was seeing and transcribing an insect pattern from Escher's notebooks that 
inspired me to create the 4-fold rotational wasp. I could have easily emulated 
the figure-ground interchangeability of Escher's zoomorphics, but I felt my work 
would have seemed too derivative. I decided to adopt an open-packed style. My 
rationale for this was based on looking at photos of groups of parachutists hold
ing hands as they floated down. I noticed the abstract interstitial spaces between 
the figures - here you don't see the figure-ground toggle. Curiously, at the time, 
I did not reference the ubiquitous use of open arrays as seen in textile pattern 
design, especially with botanical motifs. 

Fig.4. Victor Acevedo, Four-Fold Rotational Wasp: Fish orifice 
Covet, 1980. Graphite on paper 
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For my own zoomorphic tessellation I experimented with a looser calli
graphic approach to the linear perimeters of figures and used erratic color 
schemes. The underlying drawing would be periodic but the coloration was 
somewhat randomized. (See the Slated Breakfast color study on the CD 
Rom.) In the tessellation study for the painting called Synchromesh Cezannic 
Kennedy there are permutations and anamorphs of a 3-fold rotational bird 
pattern (Fig. 5b). I always thought it unfortunate that the intricate crystalline 
effect of this "neo-expressive tessellation meltdown" was never as crisp in the 
final painting (Fig. 5a). This effect is almost like administering a wave filter in 
Adobe Photoshop. If you look at the final canvas, this pattern appears almost like 
an impressionist's version of its original tight-knit faceting. 

a 

b 
Fig. 5. (a) Victor Acevedo, Synchromesh Cezannic Kennedy, 1982. 
Oil on canvas. (b) Study for this work. Graphite on paper 
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From Polygons to Polyhedra 

In the Spring of 1980 I saw a diagram in Polyhedra: A Visual Approach [8]. This 
convinced me to expand my study of polygonal periodic tilings to include the 
exploration of space filling and open-packed polyhedral nets or arrays. I had 
already become aware of Escher's interest and work with polyhedra by reading 
chapter 14 "Marvelous Designs in Nature and Mathematics," in Magic Mirror. 
Space-filling polyhedra are the logical 3D counterpart to plane-filling poly
gons, which are the underlying support to Escher's zoomorphic work. Although 

a 

b 
Fig. 6. (a) Victor Acevedo, Approximately Noon Onward: 
lcosahedronic Moment, 1981-3. Oil on canvas. (b) Sculptural study 
for this work. Folded postcards 
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contiguous face-to-face zoomorphic polyhedra are theoretically possible, their 
complexities most likely require computer graphics with a time-based system of 
interlace to be realized in a satisfying manner. 

Sometime later I acquired a copy of the book M.e. Escher Kaleidocycles, 
co-authored by Doris Schattschneider [10]. Inspired by her Escher-based 
development of tessellation-covered polyhedra, I began to use the technique 
in preliminary sculpture studies for drawings and paintings. However in most 
cases I used "texture-mapping" that was nonperiodic or made up of bits of the 
surrounding pictorial evironment itself. My painting Approximately Noon 
Onward: Icosahedronic Moment (Fig. 6a) made in 1982-3 included a cluster of 
icosahedra which I first rendered as a sculpture by folding up a group of ordinary 
picture postcards (Fig. 6b). 

The tessellation study for Sad Voyeur Watching Orthogonal Womanhood 
shows orthographic perspectival cubical clusters housing zoomorphic data 
(Fig. 7). I enjoyed the self-similarity and tension between the hexagonal hous-

a 

b 
Fig. 7. (a) Victor Acevedo, Sad Voyeur Watching Orthogonal Wom
anhood, 1982. Oil on canvas. (b) Tessellation study for this work. 
Graphite on paper 
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ings for the cubes and their corresponding rotational symmetry. This study was 
inspired by the well-known interpenetrating golden mean rectangles that can be 
used as scaffolding to circumscribe an icosahedron. 

The Influence of R. Buckminster Fuller 

It's hard to describe the effect that Buckminster Fuller had on me. He certainly 
changed my life - for the better. I had the great fortune to be with him many times 
in various settings: everything from being one of an audience of thousands to one 
on one, all during the last six months of his life. It certainly was an extraordinary 
time. I've never met anyone like him before or since; I feel he is one of the most 
remarkable human beings I've ever met - a kind of Roshi or holy man and yet 
"the high priest of technology," as he was described on the front page of the Los 
Angeles Times at the time of his death in July 1983. 

I had first heard of him in 1969 through my older brother David, but it 
wasn't until 1980 that I started actively reading and studying Fuller's books. 
I recommend Synergetics [4], [5] to anyone interested in form and structure, 
from metaphor to architecture. It's one thing to be fascinated with polyhedra and 
their spatial and aesthetic properties. It's quite another to find, as I did in Fuller, 
an awesomely comprehensive cosmography utilizing their topological properties 
as tools for modeling micro and macro energetic phenomena. 

It was Fuller's isotropic vector matrix (IVM) - a spatial network made up of 
closely-packed tetrahedra and octahedra - that I have found the most applica
ble to my work so far. This close-packing appears in Escher's 1959 lithograph 
Flatworms [1, cat. no. 431] in the strange underwater labyrinth which the crea
tures inhabit. As Escher would make geometrical models to inform and enliven 
his graphic work, I did as well. Around this time, I built my own model of this 
structure out of wood and styrofoam (Fig. 8). Another polyhedral space filler I've 
utilized in net form is the truncated octahedron. 

An important aspect of Fuller's work that is relevant to visual art is his 
geometry. Based on triangulation and sphericity, it offers a graphic language 

Fig.8. Victor Acevedo, Isotropic Vector 
Matrix, 1983. Wood and styrofoam 
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that is non-cubist and non-cubical. It includes Euler's polyhedral topology of 
visual experience which consists of line, crossings and windows (i.e. edges, 
vertices and faces). This updates the 19th-century's geometric tool set of 
"cylinder, sphere and cone" and its resultant legacy, the 20th-century's lexicon 
of graphical abstraction based on Cubism. 

Since 1982, from traditional painting and drawing to digital media, I have 
utilized the isotropic vector matrix or "octet truss" as a way to explore graph
ical phenomenology. On the symbolic level, a graphed IVM can represent the 
void-matrix - the universal substrate, paradoxically oscillating between eternal 
emptiness and the fullness of an all-pervasive potentiality - the source for the 
perpetual cosmic dance of life and death of all forms. 

This metaphysical read of the IVM comes from my study of The Tao of 
Physics. In 1983 my graphical worldview was reaffirmed by reading The Holo
graphic Paradigm and other Paradoxes: exploring the leading edge of Science, 
edited by Ken Wilber [11]. It encouraged me to continue to make art that is 
about the underlying structural nature of things. One particular essay, "A Multi
dimensional View," by William A. Tiller, was to profoundly affect my thinking. 
Tiller postulates that space is a six-dimensional Euclidean space articulated as 
a close-packed hexagonal lattice with active nodal points. This sounded very 
much like a partial description of Fuller's vectorial matrices. 

It was a simple intuitive jump to replace my tessellation overlays with poly
hedral overlays and to render the closely-packed volumes as skeletal polyhedral 
nets, allowing the interpenetration to be seen. What inspired this was the many 
color plates in the back of Synergetics 2 illustrating various localized polyhedral 
domains nesting perfectly in an aggregate IVM. They suggested a new paradigm 
for reworking my figure-ground cartography. Two of my works that employ this 
graphical effect can be seen on the CD Rom: Macro Synapse - Cuboctahedron 
Periphery (1982) and Void Matrix Lattice (1983). 

Computer Graphics 

By the end of 1983, I was winding down fast from the use of traditional media 
and began learning a new tool set: computer graphics. I first sat in on a brief com
puter graphics workshop held at the Long Beach Museum of Art Video Annex. 
The following year, in Los Angeles, I took a class at West Coast University with 
computer art pioneer, Tony Longson, that entailed programming simple graphics 
on a VAX mainframe. Later I studied the PC-based Cubicomp, an early desktop 
3D modeling and animation system. In 1985, I landed my first job in computer 
graphics, working as a digitizer at Laser Media. 

What I consider my first successful computer graphic image is called 
Ectoplasmic Kitchen, produced in 1987 (color plate 23). Combining influences 
from both Escher and Fuller, this work combines open-packed zoomorphics 
enclosed in a synergetic great-circle spherical domain. The symmetric Escher-
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Fig. 9. Victor Acevedo, The 
Lacemaker, 1997. Computer 
graphic 

like creatures are arranged about 3-fold rotation centers and emerge from an 
underlying triangular and hexagonal grid. 

It is significant that using computers to make images rekindled my fondness 
for utilizing zoomorphic tessellation. The software's ability to easily replicate 
forms and perform symmetry operations such as rotation and translation made 
repeating patterns a quite natural thing to do. Escher's work in many ways prefig
ures the advent of digital art. Another parallel with digital art practice is Escher's 
production of multiple prints of an image, which suggests the possibility of the 
eventual apotheosis of the print, or computer graphic art, over painting. The 
current high-art value system based on the one and only original artifact can be 
gradually revisioned by the multifold potential of digital originals. The printouts 
of images that are created digitally can be considered productions, not reproduc
tions, as in the case of traditional media art work that is digitized and then printed. 
Facilitated by digital imaging technologies, it's easy to predict a future where 
we'll see a significantly greater distribution of affordable serious visual art to an 
unprecedentedly large world-wide audience. 

Since my early experiments with computer art on early PCs, I've contin
ually updated my hardware and software. Conceptually, I continue to employ 
polyhedral nets that interpenetrate my figurative subjects, persevering with the 
metaphor born of that significant experience in 1977 at the Alhambra. The 
prospect of exploring this concept in time-based and interactive modalities is still 
there waiting to be done. 

I close with a final image, The Lacemaker (Fig. 9 and color plate 24), an 
homage to the famous 17th-century painting by Johannes Vermeer. The original 
photograph at the heart of my image was taken on New Year's Eve 1995. It 
was not consciously posed; I caught my subject emulating the posture of The 
Lacemaker simply by happenstance. This underscores my interest in everyday 
life as seen, recorded, and then digitally refashioned into a kind of metaphysical 
photographic archive. 

It's difficult to find Escher's oeuvre cited as an integral part of the mainstream 
story of 20th century art. However one could argue that along with Picasso, 
Pollock, Dali and Warhol, he is one of the most famous artists in the world. In 
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spite of his omission from the literature of high-art history, his work has been 
distributed to a mass audience via popular culture. Moreover, Escher's work 
continues to be studied, referenced and purveyed by the intellectual communities 
of mathematics and science. These very communities are today being actively 
sought out as the proliferation of computer graphics causes the art world to look 
more and more at technology. 

I have always maintained that the graphical and mathematical territory that 
Escher first explored and charted in the 20th century will remain, in spirit, a well
spring of significant inquiry now and well into the future. 
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Between Illusion and Reality 

Sandro Del Prete 

An acquaintance of mine first drew my attention to the pictures of M.e. Escher 
in 1979, when I had almost finished my first book [3]. It was profoundly mov
ing for me to discover that I was not the only one to have such "crazy" ideas 
in his head with the ability to express them on paper. I was certain that M.e. 
Escher and I were kindred spirits, for our minds seemed to operate and analyze 
in a very similar way. Therefore I was able to understand very well what M.e. 
Escher must have felt when he began to deconstruct everyday phenomena, giving 
artistic expression to newly perceived laws, achieving astonishing effects with 
unusual combinations translated on to paper in ever more novel ways. Whatever 
could have triggered M.e. Escher to look at things in this way? 

For me, it came through watching a chameleon. I asked myself what view of 
the world this little animal must have, being able to see in front and behind at the 
same time! So, I also tried to set down double views and perspectives on paper. 
It is very clear that I have been just as fascinated by the pictures of M.e. Escher, 
and he later influenced and inspired me greatly! 

However, there is one very particular feature in both Escher's pictures and 
mine. For me, the idea behind the picture is the most important factor, and this 
cannot be copied. The idea gives the picture its meaning. In the introduction 
to his first book, Escher makes clear that his prints "were made with a view 
to communicating a specific line of thought" [1]. In his many descriptions and 
explanations of his work, both in lectures and in writing, he made clear his wish 
to express ideas as visual images. Naturally, technique and talent are essential to 
translate an idea to an image on paper. 

There are differences between Escher's work and mine, however. I try to 
create aesthetically beautiful pictures with attractive, and sometimes humorous, 
characters. For this reason, you will find very little mathematical precision in my 
pictures, something that is always present in Escher's work. In this respect, he is 
truly a master who cannot be surpassed. 

Although he often felt alone on his chosen artistic path, his work has inspired 
several contemporary artists. He can no longer be regarded simply as a minor 
figure in the history of art. Today, a hundred years after his birth, he stands at 
the center of a movement which has drawn artists from all over the world. These 
artists are not mere Escher imitators, but inspired by his spirit and his work, give 
original expression to their own ideas. 

I offer four of my drawings to the reader as examples. 
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Sandra Del Prete, The never-ending staircase - Hommage a Escher, 1998. Color drawing 

This building consists of four towers. However, the strange aspect is that every 
tower appears to start from the tower beneath it, and it is impossible to find which 
is the uppermost and which is the lowermost. The viewer can follow the staircase 
which leads "up" from one tower to the next without ever reaching the "top." 
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Sandra Del Prete, The twisted monastery, 1998. Color drawing 

Small ledges support the foundations of this monastery. The foundations them
selves comprise books stacked on top of one another, symbolising the knowledge 
on which the monastery is founded. However the construction of this monastery 
is twisted to such an extent so as to appear somewhat mystical. The viewer sees 
monks hauling up a basket filled with vegetables; their vertical rope appears to 
affirm that the rear part of the monastery is actually foremost. 
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Sandro Del Prete, The curved chessboard, 1983. Stone lithography 

This chessboard appears curved at the center because the figures below stand on 
one side of the board, and those above stand on the other side. All lines, how
ever, are drawn dead straight and parallel. The ladders appear twisted in spite of 
this. The curvature of the board is created solely in our imagination and by our 
perception of what is logical. 



Between Illusion and Reality 129 

Sandro Del Prete, Between illusion and reality, 1995. Color drawing 

Stone blocks arranged into an immense yet ruinous wall form the boundary 
between these two worlds. It is an illusory construction made from stones 
weighing several tons, yet some of them seem to dissolve into thin air. This 
monument to the past thus gives rise to the perpetual question: What is illusion, 
and where does reality start? 
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Painting After M.e. Escher 

JosDe Mey 

My title has dual significance: painting "after," or "from" Escher, and painting 
"as" Escher. 

At the outset, it should clearly be pointed out that M.e.Escher did not make 
any paintings during his professional career as an artist. His complete works are 
limited to drawings and prints - lithos, woodcuts and wood engravings, some 
rare etchings, and a few that use other printing techniques. Although there were 
some commissioned designs for public buildings that involved painting panels 
or walls, paintings, by which I mean artworks designed and painted on can
vas, panel, or paper, simply do not exist. That does not mean, however, that 
M.e. Escher hasn't influenced artists in general or any painter in particular. 

In light of these observations, "painting as Escher" isn't really an appropriate 
theme for my essay. So how about painting "after" or "from" Escher? 

After having observed all the adapters of Escher I know, I find that there are 
few painters among them. Artists working with paint on canvas or panel seem 
to practise almost exclusively the pure non-figurative genre. I believe (if I'm not 
mistaken) this kind of art would not have been appreciated by Escher. I'm even 
convinced of the fact that if the meticulous Escher had ever painted, his technique 
would certainly have had similarities with mine. Carelessness in brush tech
nique, neglecting details, negligent composition of materials, erroneous usage 
of colors - these would never have ocurred in the hypothetical works of Escher. 
(Although I've heard or read somewhere that Escher was partly color-blind!) 

Lacking directly comparable paintings, I decided to search for basic fig
ures that Escher and his followers used when composing 'impossible pictures.' 
I purposely use the term "composing" here. Neither the works of Escher nor 
his followers are thrown impulsively on canvas. Thinking through the composi
tion thoroughly and trying it out in several preliminary studies are indispensable 
ingredients in the birth of an Escherian work. 

The potential for making 'impossible' pictures is limited: they depend on 
fairly rare geometric configurations. Escher (and others) borrowed most of the 
basic figures from others, reworking them into concrete, figurative forms. This 
is where we touch on the thorny problem of the boundary between exact (theor
etical) science and art. Or to put it as a question: when does a scientific model 
become art? The solution to this problem I leave to specialized art critics but 
I would certainly like to point out that few (or perhaps no) scientific theorists 
have ever produced art of quality. 

By now I think it has become clear to you, respected reader, that my essay 
is restricted to impossible figures or impossible constructions. However, my 
introduction to the works of Escher had nothing to do with impossible figures. 
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The Path to Painting Impossible Figures 

In 1956, in the Museum of Applied Art in Ghent (Belgium), I saw a series 
of Escher's prints. Among them were Dewdrop, Rippled Suiface, and 
Puddle, which made a deep impression on me (Fig. 1; see also page 8 
and [I, cat. no. 367]). Reflecting the attitude of official art authorities towards 
Escher's work, this first and only exhibition of M.e. Escher in Ghent was not 
shown in the Museum for Fine Art, but in the Museum for Ornamental or Applied 
Art. 

At that time, design (of furniture) was still my main occupation. I also held 
a strong, rather theoretical, interest in painting and sculpture. Three years later, 
in 1959, I read the famous Penrose's article in the British Journal of Psychology, 
in which they exhibited the impossible tribar and other impossible constructions. 
This first contribution about impossible figures would later become an import
ant influence in my decision to exchange interior architecture and design for the 
risky profession of a painter. 

As a lecturer at the Royal Academy of Fine Arts and later at the Higher Insti
tute for Architecture, I was, apart from being a teacher of interior architecture 
and furniture design, also responsible for classes on the theory of color and 
on design technique. The mathematical basis of harmony of forms in art was 
always in the forefront of these subjects. The possible applications of Fibonacci 
series, the Golden Ratio, and other mathematical-aesthetical systems were dis
cussed in this course, organised as a discussion-forum. We focused especially 
on the Swiss group of "Concrete Kunst:" Max Bill, Karl Gestner, and Richard P. 
Lohse (see [4]). 

It was also there that I began to take an interest in the boundary between art 
and science. Several antipodal ideas arise in the search for this difficult limit: 
- picturesque versus pictural (or the colorful scene versus the art of painting) 
- the means versus the objective 

Fig.t. M.e. Escher, 
Dewdrop, 1948. 
Mezzotint 
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Fig. 2. The dual stairs or "Schroder's Steps." This drawing was 
the inspiration behind Escher's lithograph Convex and Concave 

- the basic scheme versus the result 
- the technique versus the art 
- mathematical art or artistic mathematics. 
(See [8] and [9].) 

When I decided in 1968 to leave interior architecture and design for the 
free art of painting, I wanted to depict things that can only exist as "picture." 
What I was going to depict in my drawings and paintings had to be infeasible 
or unrealizable. So I inevitably arrived at Impossible Figures. This was probably 
a reaction to my previous compelling duty to always draw things that techniquely 
and spatially had to be 'correct,' 'measurable,' and 'realisable.' 

A first basic scheme was the famous dual stairs (Fig. 2) of which I drew 
and painted a series of variations for a whole year (Fig. 4). The next step was 

Fig. 3. M.e. Escher, Convex and Concave, 1955. Lithograph 
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Fig. 5. los De Mey, different vari
ations on the Thiery figure from 
1895 and (right) drawing Ode to 
Architect J. Hoffman, 1972-1973 
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a b 

Fig.6. (a) The impossible cube as Escher drew it in preliminary studies for Belvedere. 
(b) los De Mey, the impossible cube and variations on that theme, 1974-75 

the Thiery figure of 1895, some variations of which are reproduced in Fig. 5. 
A typical application of the Thiery figure is at the right of Fig. 6: my 1972 Ode 
to architect 1. Hoffmann number 10/38. 

The Escher lithograph Convex and Concave (Fig. 3) plays with the dual stairs 
and the kind of Thiery figure that is reproduced on the flag at top right in the print. 
Escher explained this convex/concave dichotomy in a letter to his son Arthur in 
1954: 

Convex and Concave . .. is concerned with the widely known phe
nomenon of spatial suggestion which can be imagined as convex or 
concave, as desired. In the middle of the picture I draw the shapes 
in such a way that the observer may just as well see them convex 
as concave; to the right I force him to see things in a convex way 
(e.g. "cube from the outside"; to the left, he has to view things in 
a concave way ("cube from the inside"). [1, p. 79] 

On further consideration, one could suggest that the Thiery figure in 
perspective was used as a starting point for the 1947 Escher lithograph 

Fig. 7. Jos De Mey, Die Untenveisung der 
Messung und seine Folge (The result of' the 
theory of measuring) (after A. Durer), 1988. 
Acrylic on canvas 
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Up and Down (see page 29). The small floor a little above the middle of the 
picture is the double-use surface in the Thiery figure; here it is simultaneously 
a floor or ceiling. 

All the works from the early years of my painting career are abstract and very 
often reversible, both horizontally and vertically. Later I made more realistic 
reproductions, still with the abstract "things" but now resting on firmer ground. 
The base component from that period is the impossible cube, which also appears 
frequently later on. In Escher's vignette Man with Cuboid (see page 375), this 
cube is not completely impossible. It still shows two normal faces - the bottom 
and the top (Fig. 6a). 

Around 1975 I drew several new versions of the cube in which all the sur
faces were impossible. And even better: there are no longer any real clear-cut 
surfaces. All the aspects of the cube flow into one another. It could be described 
as a Mobius strip in the form of a cube (Figs. 6b and 7). I'm probably not the 
inventor of this fully impossible version, but in 1975 I was aware only of Escher's 
drawing and interpretation. 

Escher's Influence 

There are only a few prints by Escher that can be related directly to my works. 
The most important is Belvedere for which the impossible cube served as 
a starting point (Fig. 8). The small man on the bench contemplating the absurd 
cube in his hands, as well as the sketch in the foreground on which the ribs of 

Fig. 8. M.e. Escher, Belvedere, 1958. Lithograph 
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(a) 

(b) (e) 

Fig. 9. Jos De Mey. (a) A normal cube with impossible connections, 1976. (b) Souvenir of 
Margriet, 1977. Acrylic on canvas. (c) Rather Illogical Architecture - Surrounds for a Very 
Logical Figure of Max Bill, 1998. Drawing 

a cube are drawn with their hazardous crossings, are the keys to understanding 
this enigmatic construction. 

Closely related to the impossible cube is the normal cube with impossible 
connections (Fig. 9a). I'm not acquainted with any works of Escher based on this 
impossible figure. That's why two of my works reproduced here give reference 
to other artists (Figs. 9b and 9c). 

Apart from the impossible cube we can also make the impossible square and 
the impossible rectangle (Figs. lOa, lOb). As far as I know Escher used neither 

(a) (c) 

Fig. to. (a) Two variations of the impossible square. (b) An impossible four-beam figure with 
a perspective effect. (c) An impossible four-beam figure with impossible connections 
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Fig. 11. Jos De Mey, 
Curious Wagtail in 
a Strange Small Window, 
1977. Acrylic on canvas 

of these figures in his works. Some of my works utilize this motif, appearing in 
several variations, frontally as well as in perspective (Fig. 11). 

We have seen that apart from the completely impossible cube there can 
exist also a possible cube with impossible connections. That is also true for the 
impossible rectangle where a possible rectangle with impossible connections can 
be devised (Fig. lOc and color plate 21). 

Finally there is the impossible triangle of the Penroses, already mentioned 
above, and also a little bit from Oscar Reutersvard (see page 205). Escher used 
this feigned triangle as a starting point for his 1961 lithograph Waterfall (see 
page 65). The great number of preliminary studies [3, p. 89] show the long and 
difficult process Escher went through before he finally obtained a clear image of 
his idea. My own drawings based on the impossible triangle (Fig. 12) are much 
more simple than Escher's intricate picture. 

To make the series of basic figures complete I would like to mention so-called 
"multiple surfaces." That term was invented by Bruno Ernst (Hans de Rijk) to 
be able to interpret my works better [2]. He states "a multiple surface looks in 
a certain place in a drawing or painting like only one flat surface; put in another 
place in that same picture it is like two or more flat surfaces. This is the oldest 
type of impossible figure (i.f.) that was, often unintentionally and unconsciously, 
put into the pictures." [2, p. 62] 
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Fig. 12. Jos De Mey. LEFT: An Awkward Drilling Platform, 1987-1990. RIGHT: A Latent 
Threat for an Unstable Construction, 1995. Ink drawings 

Fig. 13. Bruno Ernst, the history of a multiple surface, 1986 

In Fig. 13, you can see Ernst's depiction of how this can originate. In my 
ink drawing of 1983 (Fig. 14) there is only one surface on the upper part of 
the wall. This surface multiplies itself on the ground to four walls that stand 
at different distances from the viewer and that enclose a rather large space like 
a summerhouse. 

My last two illustrations (Fig. 15 and color plate 22) give a glimpse of my 
design technique. 

These drawings show how, beginning with a scheme of Reutersvard, I finally 
reach an apparently possible pictural figure by reversing, broadening, and 
narrowing, then finally by using perspective with the viewing angle that of 
a standing person's eye. That final figure could be used as a basis for a painting 
or an elaborated drawing. 
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Fig. 14. los De Mey, Carefully Restored Roman Ruin in a Forgotten Flemish 
Locality with Orientallnfiuences, 1983. Ink drawing 
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Fig.IS. los De Mey, starting from a scheme of Reutersviird, developing into painting 
projects, 1991 
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Some Final Thoughts 

It is probably useful at this point to quote Escher himself, "Always try to do 
that which seems too difficult for you; try to exceed your supposed limits." (from 
a letter to his son George on June 29, 1969) [10]. Escher always wanted to do 
just that: what was, in fact, too difficult. Was it ambition? Yes, but not primarily 
that. It was a typical inner passion that is so characteristic of the real artist. His 
willpower, his stubborn perseverance and his enormous skill made it possible for 
him to convert visionary images into clear images. It was often at the expense of 
sleepless nights and eternal experimenting in order to finally achieve the fragile 
balance between inner rest and creative expression. He was looking for balance 
but always preserving emotions. 

Escher also always tried to bridge the opposition between abstract and figu
rative. His works (and also mine) are figurative inform but abstract in meaning. 
In other words: a figurative representation of abstract ideas. 

In a lecture in Amsterdam in 1963 he explained that subtlety is also necessary. 
"In my opinion an impossible situation only really stands out when the impos
sibility is not immediately obvious ... There should be a certain mysteriousness 
that does not immediately hit the eye." [1, p. 147] 

The link between Escher and the scientific world was his insatiable urge to 
know everything. In this he resembled what a scientific investigator should be. 
Escher and his adapters belong to the category of "thinking artists" such as many 
great artists before them were and many still are. These are artists who inves
tigate systematically the surounding world in an artistic-methodical way. The 
strong need for studying the phenomenon of human perception is another char
acteristic that Escher and his followers have in common. In this, they put the 
liability of that perception in perspective. 

Without M.e. Escher, my works as well as those of many other artists would 
certainly have been completely different. Nevertheless I think I can say that 
I have been using enough different pictural elements and techniques to distin
guish my paintings clearly from the works of Escher. My intention is to elaborate 
his ideas, using new approaches and a more painted elaboration. The architec
ture, the scene, the figuration, and the application of colors in my works are 
strongly related to my own Flemish present and past. It is striking that Escher 
rarely made use of Dutch scenery. Apart from Day and Night with its bird's-eye 
view of a typical Dutch landscape, his architecture, scenery, and figuration are 
almost exclusively southern, and in particular, more Italianesque. 

I especially try to respect Escher's attitude towards art. His searching for 
exactitude and the best possible technical quality when conceiving and realising 
his works have always been an example for me. I also want to express my 
gratitude to Bruno Ernst who has often helped me with his analytical under
standing and comments on the things that I instinctively put on paper or canvas. 
I also want to emphasize strongly that I am not, even less than Escher was, 
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a practitioner of exact science. If I was, I would never make any art, even less 
paint. .. 

Fortunately there are scientists who are interested in art. Science can, to 
a certain extent, be considered as art. I see myself as an artist with a certain 
interest in science. I'm probably a scientific artist but I'm certainly not an artistic 
scientist. 
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M.C. Escher: Art, Math, and Cinema 

Michele Emmer 

Computer graphics can provide not only a pure visualization of many well
known phenomena but also provide a new way to study mathematical problems, 
and in particular, geometrical ones. It can be said that a new branch of mathemat
ics has been developing in the last few years, called "Visual Mathematics" [6]. 
The great potential of computer graphics as a new exploratory medium was 
recognized by mathematicians soon after the technology became available. As 
display devices and programming methods grew more sophisticated, so did the 
depth and scope of applications of computer graphics to mathematical problems. 
This does not mean that there is no longer any room for handmade drawings and 
illustrations on mathematical topics by artists and mathematicians. 

One of the most interesting examples of the relationship between art and 
mathematics is illustrated in the life and work of the Dutch graphic artist M.e. 
Escher. This topic has been revisited many times in my project "Art and Mathe
matics," which began in 1978. That project has produced movies, videocassettes, 
software, and many "traditional" papers and books over the last twenty years. In 
this project, I produced a film and a video on Escher's work that feature com
mentary by mathematicians Sir Roger Penrose and H.S.M. Coxeter and also by 
the crystallographer Caroline MacGillavry [4]. In making the video, the idea was 
to make all the animations using the original drawings of the Dutch artist, in 
order to make a film "a la mode d'Escher." Computer graphics was not known 
to Escher because he died in 1972, before this technology was widespread. 

Conferences and exhibitions have been also organized with the cooper
ation of mathematicians, scientists and artists. An international conference, 
"M.C.Escher: Art and Science" was held in Rome in 1985 [3], and in 1998 
the Escher Centennial conference in Rome and Ravello focused on the visual, 
mathematical, and artistic aspects of his work. (A website for the congress was 
maintained: http://mercurio.mat.uniromal.itlescher981) 

The Graphic Artist M. C. Escher (1898-1972) 

Maurits Cornelis Escher was born in 1898. His tale is quite unusual: for a long 
time, his work was almost completely unknown and unappreciated. During his 
20 years spent in Italy, he had only a handful of exhibitions. At a certain point in 
the 1960s, however, his fame began to grow, especially among scientists, math
ematicians, physicists, and crystallographers. The history of the relationship of 
Escher with scientists (mathematicians in particular) is quite interesting in terms 
of understanding how the Dutch artist thought of his work. The first large exhibi-
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tion of his work was held during the International Congress of Mathematicians 
in Amsterdam in 1954. This show, besides introducing Escher's work to math
ematicians, also gave Escher a chance to meet H.S.M. (Donald) Coxeter and 
Roger Penrose, with whom he developed long and fruitful relationships. 

In the introduction in the catalog of the 1954 exhibition, mathematician 
N.G. de Brujin wrote that it was not only Escher's geometrical patterns that 
interested him, but that he was fascinated by finding the same imagination that is 
at work in mathematics, and which for many scholars, represents the most inter
esting part of their work. De Brujin added that the congress participants would 
find themselves surprised to recognize their ideas expressed in such a different 
way from the usual. Obviously, even then, mathematicians were aware of the 
fact that Escher was no mere illustrator of scientific and mathematical ideas, but 
expressed something at a deeper level in an unusual way. 

Escher defined himself, and not unreasonably, as a graphic artist. In his 
acceptance speech upon receiving the Culture Prize of the city of Hilversum in 
1965 he explained: 

If I am not mistaken, the words "art" and "artist" did not exist 
before or during the Renaissance: there were simply architects, 
sculptors and painters, practising a craft. 

Print-making is another of these honest crafts, and I 
consider it a privilege to be a member of the Guild of Graphic 
Artists. Cutting with a gouge, engraving with a burin in an abso
lutely smooth block of polished wood is not something to pride 
yourself on - it's simply nice work. Only as you get older, it's 
slower and more difficult and the chips don't fly around the 
workroom quite so wildly as they used to. 

Thus I am a graphic artist with heart and soul, though I find 
the term "artist" rather embarassing. [1, p. 125] and [7, p. 22] 

The fundamental event in his life, Escher said, was in 1938, when the Escher 
family had left Italy after a long stay. "In Switzerland, Belgium and Holland .... 
I found the outward appearance of landscape and architecture less striking than 
those which are particularly to be seen in the southern part of Italy. Thus I felt 
compelled to withdraw from the more or less direct and realistic illustration of 
my surroundings. No doubt this circumstance was in a high degree responsible 
for bringing my inner visions into being." [8, p. 7] 

All his works illustrated in his first book The Graphic Work of M.e. Escher, 
except for the first seven, were done with the idea of communicating a detail 
of these interior visions. "The ideas that are basic to them often bear witness 
to my amazement and wonder at the laws of nature which operate in the world 
around us. He who wonders discovers that this is in itself a wonder. By keenly 
confronting the enigmas that surround us, and by considering and analyzing 
the observations that I had made, I ended up in the domain of mathematics. 
Although I am absolutely without training or knowledge in the exact sciences, 
I often seem to have more in common with mathematicians than with my fellow 
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artists." [8, p. 8] These last two comments by Escher summarize perfectly the 
relationship that the artist established with the scientific community. That Escher 
himself thought of scientists as his privileged audience is beyond doubt. 

Escher died in 1972 and thus never had a chance to witness the boom in pop
ularity that his woodcuts and lithographs have experienced. Today, his work is 
known throughout the world by everyone, from designers to computer graphics 
experts, from scientists to psychoanalysts, from students to architects. Escher the 
artist enjoys enormous enduring popular recognition with scarce consideration 
by art historians. 

Escher: the Video 

The title of the first book containing the collected works of Escher, The World of 
M.e. Escher [10], is very appropriate. Escher created his own world of meticu
lously constructed images, a magic world at once fantastic and imaginative but 
also realistic, coherent and detached, observed with an eye apparently lacking in 
emotion. Escher was an artist of minute details, tiny elements which create insta
bility and disturb the apparent calm of the whole. Regarding this, mathematician 
c.P. Bruter wrote that the eye creates local images which, little by little, are 
projected onto a common receptacle and probably reproduced several millions 
of times. The construction of these individual maps, defined by the trajectories 
outlined by the viewer's eye movements, enables one to construct an image of 
the surrounding space that is stable and well ordered. Escher's drawings only 
appear to be strange, since each individual image faithfully represents reality. 
[2, p. 222] 

This is the first reason for using a movie camera to examine Escher's work: 
cinematic technique first of all lets us concentrate attention on what the film
maker wants us to see. The film forces us to look at Escher's world as if we 
were part of it. We are not distracted by anything else. The second reason is that 
Escher's drawing technique is very precise and detailed. Cinematic technique 
allows us both to isolate these minute details and also to magnify them many 
times in order to appreciate the precision ofthe artist's method. Another import
ant element in using film is the fact that a movie forces those who look at it to see 
things passing quickly on the screen in a definite order. Many of Escher's works 
are like a story that develops and must be observed in the sequence suggested by 
Escher himself. In these several ways, the movie camera permits a very precise 
and accurate analysis of Escher's works. 

Escher himself suggested the use of cinematic technique. In his book The 
Regular Division of the Plane he wrote: 

In this book it is the images and not the words that come first ... 
For me it remains an open question whether the play of white 
and black figures as shown in the six woodcuts of this book 
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pertains to the realm of mathematics or that of art. .. [1, p. 155] 
and [7, p. 92] 

... the first woodcut . .. show[ s] clearly that a succession of 
gradually changing figures can result in the creation of a story 
in pictures. In a similar way the artists of the Middle Ages 
depicted the lives of Saints in a series of static tableaux . .. The 
observer was expected to view each stage in sequence. The 
series of static representations acquired a dynamic character by 
reason of the space of time needed to follow the whole story. 
Cinematic projection provides a contrast with this. Images 
appear, one after the other, on a still screen and the eye of 
the observer remains fixed and unmoving. Both in the medieval 
pictorial story and in the developing pattern of a regular divi
sion of the plane the images are side by side and the time factor 
is shifted to the movement the observer's eye makes infollowing 
the sequence from picture to picture. [1, p. 158] and [7, p. 98] 

145 

A very significant example of "a succession of gradually changing figures" 
which sums up the various aspects noted by Escher, is given by his Meta
morphose prints. In particular, his Metamorphosis II seemed to me a perfect 
cinematic sequence. I have used the animation of this work as the final sequence 
of the video. In his section entitled "Metamorphosis" in Regular Division of the 
Plane, Escher describes one of the sequences of images in this work as follows: 

First the black insect silhouettes join; at the moment when they 
touch, their white background has become the shape of a fish. 
Then figures and background change places and white fish 
can be seen swimming against a black background . ..... [A] 
succession of figures with a number of metamorphoses acquires 
a dynamic character. Above I pointed out the difference between 
a series of cinematographic images projected on a screen and 
the series of figures in the regular division of plane. Although in 
the latter the figures are shown all at once, side by side, in both 
cases the time factor plays a role. [1, p. 170] and [7, p. 120] 

In 1964 Escher visited his son George in Canada. He had been invited by 
several organizations in the United States, including the Massachussets Institute 
of Technology and Bell Laboratories, to give presentations on his work. Shortly 
after arriving in Canada, Escher had to be admitted to Saint Michael's hospital 
in Toronto for an emergency operation. All speaking commitments had to be 
canceled, and Escher would never again have a chance to give his carefully 
prepared lectures. In his usual meticulous manner, he had written out the 
complete English text of his lectures and these texts have been preserved. They 
were published in 1989 in Escher on Escher: Exploring the Infinite [7]. The 
chapter entitled "The lectures that were never given" contains this lecture. (We 
should note that the lecture was given, but not by Escher. The notes and lecture 
slides were sent to Arthur Loeb at Harvard, who gave the lecture at Ledgemont 
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Laboratory in Lexington, Massachussets in Escher's absence.) The final part of 
this lecture was dedicated to Metamorphose II (a large, continuous reproduction 
of this work may be found in [11].) 

I propose to round off this talk by showing you a woodcut strip 
with a length of thirteen feet. It's much too long to display in one 
or even in two slides, so I had it photographed in six parts, which 
I can present in three successive pairs and which you are invited 
to look at as if it were one uninterrupted piece of paper. 

It's a picture story consisting of many successive stages 
of transformation. The word "Metamorphose" itself serves as 
a point of departure. Placed horizontally and vertically in the 
plane, with the letters 0 and M as points of intersection, 
the words are gradually transformed into a mosaic of black 
and white squares, which, in turn, develop into reptiles. If 
a comparison with music is allowed, one might say that, up to 
this point, the melody was written in two-quarter measure. 

Now the rhythm changes: bluish elements are added to the 
white and black, and it turns into a three-quarter measure. By 
and by each figure simplifies into a regular hexagon. At this 
point an association of ideas occurs: hexagons are reminiscent 
of the cells of a honeycomb, and no sooner has this thought 
occurred than a bee larva begins to stir in every cell. In a flash 
every adult larva has developed into a mature bee, and soon 
these insects fly out into space. 

The life span of my bees is short, for their black silhou
ettes soon merge to serve another junction, namely, to provide 
a background for white fishes. These also, in turn, merge into 
each other, and the interspacings take on the shape of black 
birds. Then, in the distance, against a white background, appear 
little red-bird silhouettes. Constantly gaining in size, their 
contours soon touch those of their blackfellow birds. What then 
remains of the white also takes a bird shape, so that three bird 
motifs, each with its own specific form and color, now entirely 
fill the surface in a rhythmic pattern. 

Again simplification follows: each bird is transformed into 
a rhomb, and this gives rise to a second association of ideas: 
a hexagon made up of three rhombs gives a plastic effect, 
appearing perspectively as a cube. From cube to house is but 
one step, and from the houses a town is built up. It's a typical 
little town of southern Italy on the Mediterranean, with, as 
commonly seen on the Amalfi coast, a Saracen tower standing 
in the water and linked to shore by a bridge. [It is the town of 
Atrani.} 
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M.C Escher, Metamorphose 1I 1939-1940. Woodcut 
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Now emerges the third association of ideas: town and sea 
are left behind, and interest is now centered on the tower: the 
rook and the other pieces on a chessboard. Meanwhile, the strip 
of paper on which "Metamorphose" is portrayed has grown to 
some twelve feet in length. It's time to finish the story, and this 
opportunity is offered by the chessboard, by the white and black 
squares, which at the start emerged from the letters and which 
now return to that same word "Metamorphose." 

Thank you very muchfor your attention. [7, pp. 48-53] 

So ends Escher's lecture. 
When I was making my video I was not aware of this lecture text, but my idea 

was exactly that described by Escher, perhaps even more: not only a story, but 
what in cinema is called a storyboard, a precise description of a sequence to be 
filmed, usually given by drawings and words. So I used Escher's original wood
cut as a storyboard for making the animation of Metamorphose. What Escher had 
to describe in words, because it was impossible with slides to continuously show 
the complete ribbon of the print to the audience, I could describe in the movie 
without any words, using just the animation to follow the continuously chang
ing forms in the woodcut, accompanied by music, another suggestion by Escher 
himself! To paraphrase Escher, we can say: In this film it is the images and not 
the words that come first. (A short excerpt from this video is on the CD Rom.) 

Of course filming is not just only a way to analyze Escher's works. As 
I pointed out in my essay "Movies on M.e. Escher and their Mathematical 
Appeal" [5], by filming the prints and drawings we arrive at something new: the 
images flow quickly by; they are in movement, not just statically side by side. 
We have taken Escher's suggestions and extended them to a world of Escher, or 
better, a world according to Escher, which moves and changes in three
dimensional space. Cinema is illusion, and Escher's technique suggests we not 
only analyze but reinvent, starting from his ideas. 

An important part of Escher's art is his incredible graphic technique. In order 
to display his ability, I spent a week in the Geementemuseum in Den Haag in 
Holland to make careful pictures of the original works of Escher as part of the 
preparatory work for the video. When you make an animation, you need to 
construct the drawings for the animation frame by frame. Of course you cannot 
use Escher's orginal drawings and woodcuts and cut them in pieces! So after 
making the pictures of the originals, designers who were expert in animation 
used the pictures to make hundred of drawings in order to subdivide the works of 
Escher into small parts to be put together again in making the movie animation. 
So it can be said that the animation was made using not only the written 
suggestions of Escher but the animations were made "a la mode d'Escher"! 
The collections of drawings made to produce the animations for the movie are 
an interesting example of drawings in which geometry, design and cinema are 
combined. 
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A Final Comment 

In the last few years my video on Escher and others in the series "Art and 
Mathematics" have been distributed and used in schools, universities, cultural 
institutions, museums. They have been used for educational and cultural 
purposes. But the video of Escher also received awards as a film. This gave 
affirmation to my first ambition: to make a film that can be seen by almost 
everyone. A film on mathematics, art and culture, visually interesting and 
attractive. As any film must be, and mathematics can be too! 
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Organic Structures Related to M.e. Escher's Work 

Tamas F. Farkas 

Escher as Inspiration for Research 

M.e. Escher interpreted three-dimensional spatial structure with the help of 
the living world - fauna, flora and human figures. His spatial forms behave in 
a unique way: they appear to be realistic, but they cannot be constructed in the 
real three-dimensional world. This visual phenomenon, illusion in the plane, was 
approached from different viewpoints by Escher. In representing spatial struc
tures Escher utilized the Penrose triangle and the Mobius band. I have dealt with 
representing these "organic" forms in the plane, defining rules for organization 
of basic structures. Designing and experimenting with such organic structures 
has become an especially exciting field for basic research. 

Here I introduce the basic principles that may help you recognize and under
stand the different areas of my investigations. I have defined five main fields of 
inquiry that intersect with art and science. 
1. Continuous stereoscopic configurations. These are generally prismatic fig

ures intersected by a square. These occur in M.e. Escher's prints Mobius 
Strip I [1, cat. no. 298] and Mobius strip II (page 75), and Waterfall 
(page 65). 

2. Visual and logical relationships between stereoscopic configurations; or
ganizing modular systems into adjacent figures. Examples are given by 
M.C. Escher's prints Stars [I, cat. no. 359] and Belvedere (page 135) 

3. Visual and logical organizations of stereoscopic formations usually created 
from cubes or short prismatic units such as in M.e. Escher's print Cycle 
(page 77) 

4. Organization of stereoscopic figures into systems similar to stairways as in 
M.C. Escher's print Ascending and Descending (page 6). 

5. Symmetrically recurring plane and stereoscopic formations filling the plane 
and space. (These configurations may be multiplied in all directions of the 
space, filling the surface accordingly.) M.e. Escher's print Metamorphose II 
(page 147) is an example. 

My Spatial Art 

I have been concerned with researching and making artistic presentations of 
strange stereoscopic configurations since 1972. To date, I have designed about 
1,500-2,000 impossible forms. 
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Fig. 1. Tamas F. Farkas. LEFT: Celtic XII, 1996. RIGHT: Celtic VIII, 1996. Graphics on paper 

The main direction of this research is developing the so-called continuous 
stereoscopic configurations of type 1. Their primary characteristic is that one, 
two, or three lines form the structure. The line describes a recursive spatial path 
in the plane. The rectangular prism looks real, and usually moves in all directions 
of the given space, in 90° steps. The viewer can comprehend the movement of 
spatial structure in the picture series Celtic XII 96 (Fig. 1, left). Forms follow 
each other playfully underneath and above. Similar rules describe the structure 
of Celtic VIII 96 (Fig. 1, right, and color plate 28), where a star-structure be
comes a continuing spatial formation. Here the stream is also a self-recurring 
one. In some places within the form, the configurations cover each other in 
short sections, but they do not cross one another or join each other. Many of 
them are organized on a hexagonal grid, while even more follow a triangular or 
rectangular net. 

In works of type 2, the stereoscopic configurations diverge, cross, and con
nect with each other. Lateral faces appear simultaneously; usually the cubes or 
prismatic parts connect to each other, creating an impossible figure. They appear 
on a hexagonal net, but they also exist on triangular or rectangular nets. If we 
start from the center of Atlantis VI 86 (Fig. 2, left), we perceive the space in all 
directions. The joining of the cube-like formation is not real, and that is why we 
discover six projections of it. The effect of Magical Space 86 (Fig. 2 right) is like 
revolving a frame from one view to another. 

Stereoscopic configurations, cubes and prisms create a unified system by 
touching each other or merging into one another in works of type 3. The basis of 
structures originating in this manner is determined with a special spiral or circle. 
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Fig. 2. Tamas F. Farkas. LEFT: Atlantis VI, 1986. RIGHT: Magical Space, 1986. Oil on canvas 

Fig. 3. Tamas F. Farkas. LEFT: Crystal-M 18,1986. RIGHT: Pyramid. 1997. Oil on canvas 

The spiral could have one, two, three, or even six arms. In these works, one may 
discover several lateral faces simultaneously. Cubes are compressed in a special 
way in Crystal-M 18/86 (Fig. 3, left), creating an unreal three-dimensional for
mation, as they grow out from each other. Here, one can discover six frontal 
views, or a spiral track of a crystal-like construction. 

More complex stairway figures usually organize themselves into one system 
in works of type 4. We may either go round on the steps of these stereoscopic 
configurations, or move forward to the center. Pyramid 97 (Fig. 3, right, and 
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Fig. 4. Tamas F. Farkas, Dynamic Pattern II, 
1990. Oil on canvas 

color plate 29) contains three Penrose triangles which are combined with an im
possible staircase construction. If we go around the outside of the structure, we 
don't feel its unreality - it looks like a "buildable" form, but trying to get to the 
center provides the disappointment of three-dimensional reality. 

In works of type 5, we find repetition of plane or stereoscopic configurations 
on the surface. The plane figures are generally situated so as to be equidistant 
from one another. One form may repeat itself, or three of them may create a basic 
system in which the forms traverse each other. The stereoscopic figures are able 
to cause similar effects. The system can continue in all directions to fill a two
dimensional plane in a regular and symmetric manner. Therefore, the system 
is continuable and expandable to infinity. The form of the figures can differ 
several times, and so we can discover one, two, or three forms within one system. 
Dynamic Pattern II 90 (Fig. 4) can be "read" in many ways. 

We owe deep thanks to M.C. Escher for opening the gate to an extremely 
exciting and varied world, and enlarging the borders of visual perception with 
his work. 

The works shown here, along with many more, are shown in color on the CD 
Rom. 
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Extending Escher's Recognizable-Motif Tilings 
to Multiple-Solution Tilings and Fractal Tilings 

Robert Fathauer 

Tiling of the plane is a theme with which M.e. Escher was preoccupied 
nearly his entire career as an artist, starting around 1920. He was particularly 
interested in tilings in which the individual tiles were recognizable motifs, and 
kept a notebook in which he enumerated over 130 examples of this type of 
design [9]. Many of these were incorporated in finished woodcuts or lithographs. 
Notable examples include Day and Night (1938), Reptiles (1943), Magic 
Mirror (1946), Circle Limit IV (1960), also known as "Heaven and Hell," and 
the Metamorphosis prints of 1937-1968. 

Of Escher's numbered examples, all but the last are isohedral tilings. This 
means that a symmetry operation that maps a tile onto a congruent tile also maps 
the entire tiling onto itself. Escher's lone non-isohedral design, executed in 1971, 
was based on a wooden puzzle given to him by the theoreteical physicist Roger 
Penrose [9, pp. 318-319]. Penrose's and Escher's tiles were derived by modify
ing the edges of a 60° /120° rhombus. The four edges of the rhombus were each 
replaced by the same polygonal curve, but in four different aspects, related to 
each other by rotations and glide reflections. 

Another theme that intrigued Escher was the depiction of the infinite in 
a finite print. All of Escher's numbered examples of recognizable-motif tHings 
can be continued to infinity; i.e., they tile the infinite Euclidean plane. A number 
of Escher's finished prints depict tiles that diminish to infinitesimally small size, 
for example, Square Limit (1964), Smaller and Smaller (1956), Path of Life I 
(1958), and Path of Life II (1958) (see pages 232, 58, and [3, cat. nos. 424, 425]). 
Other prints in this class employ hyperbolic geometry, where the infinite plane 
is represented in a finite circle. His four Circle Limit prints of 1958-1960 are in 
this class (see the article by Douglas Dunham, pp. 286-296). Though the concept 
of fractals as such was not known to Escher, these prints possess one character
istic of fractals: they exhibit self-similarity on different scales, near the edge of 
the circles. 

Two mathematical advances that took place in the 1970's have interesting 
applications to tiling. Because Escher died in 1972, he was not able to employ 
these in his work. The first is the discovery by Roger Penrose of a set of two 
tiles that can tile the plane in an infinite number of ways, none of which are 
periodic [6]. The second is the development and formalization of fractal 
geometry, largely by Benoit Mandelbrot [7]. In this article, I will show new 
Escher-like tilings using both Penrose tiles and fractals. 
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Recognizable-Motif Tilings Based on Penrose 
and Related Tiles 
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There are three versions of the Penrose tiles. The first, known as PI, contains 
six different tiles [6]. Penrose later succeeded in reducing the number of tiles to 
two. In the set P2, these two tiles are commonly referred to as "kites" and "darts," 
while in the set P3, the tiles take the form of two rhombi. In all three sets, mark
ings or distortions of the edges are necessary to indicate matching rules that force 
tilings constructed from the sets to be non-periodic. Tilings formed by all three 
sets are characterized by regions of local five-fold rotational symmetry. 

Penrose was acquainted with Escher, so it was almost inevitable that 
Penrose would try his hand at a recognizable-motif tiling based on his non
periodic tiles. He used the P2 kite and dart version of the tiles, and converted 
these to fat and skinny chickens [5]. I have also used the kites and darts as the 
basis for a recognizable-motif tiling, making a Phoenix bird from the dart tile 
and a scorpion and diamondback rattlesnake combination from the kite tile 
(Fig. I; a color print based on these tiles can be seen on the CD ROM). Note that 
there are short edges and long edges in the kite and dart tiles, each length appear
ing four times. These two lengths of edges are modified independently to create 
recognizable motifs. 

There are several characteristics that I feel a recognizable-motif tiling should 
possess if it is to be as esthetically pleasing as possible. Escher touches on some 
of these in his writings. These are: 
(a) The different tiles should be oriented in a way that makes sense. For 

example, if one of the tiles is the view of a creature from above, then other 

(a) 

Fig. I. (a) Modification of the Penrose kites and darts to form scorpion, 
diamondback rattlesnake, and Phoenix bird tiles. (b) A portion of a tiling 
based on these tiles 
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tiles in the tiling should also be viewed as from above. If side views are 
depicted, then gravity should be in the same direction for all the tiles. 

(b) The motifs for the different tiles should be complementary. For example, 
different types of sea life, or possibly opposites such as angels and devils. 

(c) The different tiles should be commensurately scaled. That is, if a tiling is 
made up of one tile depicting a horse and another a man, then the two should 
be related in size in a way similar to real horses and men. 

Note that the scorpion and rattlesnake tiles in Fig. 1 violate the third rule, 
as a real scorpion is smaller than a rattlesnake. Penrose's tiling of chickens is 
likewise not completely satisfactory, as the chickens are shown in side view, but 
gravity points in different directions for different chickens. Violating the rules 
above makes tilings seem less natural, less an extension of nature. Escher's work 
for the most part conforms to these rules, but there are some exceptions. These 
include his drawing number 72 ([9], p. 174), in which fish appear of comparable 
size to boats, and his drawing number 76 ([9], p. 177), in which birds appear of 
comparable size to horses. 

One area Escher didn't explore was the design of recognizable-motif tilings 
that could be assembled in different ways. The Penrose tiles are not the only 
tiles that fall in this category (see, e.g., related early work by B0ggild [2]), but 
they provide a convenient starting point for such explorations. As a departure 
from the Penrose tiles themselves, I examined alternative matching rules for the 
Penrose P3 rhombi, which have angles of 72° / 1 08° and 36° /144°. In this case, 
a single line segment occurs eight times as an edge of the tiles, as shown in Fig. 2, 
where a notch in the line indicates orientation. When the tiles are assembled, the 
notches must fit into one another. 

If one examines a single rhombus, allowing only rotations of notched edges, 
one finds 16 combinations of edges, of which 10 yield distinct tiles. There are 
then 10 x 10 = 100 distinct pairs of rhombi with notched edges. If one also 
allows glide reflection ofthe edges, there are 48 = 65, 536 combinations, not all 
of which yield distinct pairs of tiles, of course. Four of these pairs of tiles are 
shown in Fig. 2; one pair is the Penrose set P3. Another of these pairs was used 
to create a set of tiles I call "squids" and "rays." Two tilings constructed using 

~L::7L7~ 

DODD 
(a) (b) (c) (d) 

Fig.2. Four sets of matching rules for rhombi with angles of 36°/144° and 72°/108°. 
(a) A pair that tiles only periodically (except for trivial variations). (b) A pair that tiles 
only non-periodically (the Penrose set P3). (c) A pair that tiles both periodically and 
non-periodically; used for "squids" and "rays." (d) A pair that doesn't tile at all 
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Fig. 3. Two tilings constructed from the "squids" and "rays" tiles. The left one is periodic, 
while the right tiling, with five-fold rotational symmetry, is non-periodic 

this set are shown in Fig. 3. Note that the squid and ray tiles meet all three of the 
criteria listed (a) - (c). 

In addition to the Penrose tiles, with their characteristic five-fold (n = 5) 
rotational symmetry, analogous sets of rhombic tiles can be constructed for other 
values of n [II]. I have also explored matching rules and recognizable-motif tiles 
for n = 7 and n = 12. The rhombi for n = 7 are shown in Fig. 4, along with 
insect-motif tiles based on these. The same line segment appears twelve times 
as an edge in these three tiles. The rhombi for n = 12 are shown in Fig. 5, along 
with two reptile-motif tiles for each rhombus. The same line segment appears 

Fig. 4. Rhombi and insect tiles for 
the n = 7 analog to the Penrose tiles. 
From top to bottom the tiles repre
sent a beetle, a moth, and a bumblebee. 
The angles of the rhombi are approxi
mately 25.7°/154.3°, 51.4°/128.6", 
and 77.1 ° /102.9° 

Fig. 5. Rhombi and reptile tiles for the n = 12 
analog to the Penrose tiles. From top left 
to bottom right the tiles represent two tad
poles, a snake, a Gila monster, a horned lizard, 
a frog, and a toad. The angles of the rhombi are 
30° /150°, 60° /120°, and 90° /90° 
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Fig. 6. Two periodic tilings that can be constructed with the tiles of Fig. 5 

24 times as an edge in these six tiles. Two tilings constructed from these tiles are 
shown in Fig. 6. 

A different approach to realizing multiple-solution recognizable-motif 
tilings is to creatively combine simple geometric tiles. Penrose modified his 
set PI by replacing straight-line segments with arcs of circles as one means of 
enforcing matching rules [6]. By combining these tiles six different ways and 
adding internal details, the tiles shown in Fig. 7 are obtained. Color plate 15 
shows a portion of one of many possible tilings that can be constructed with 
this set of tiles. While the tiling of color plate 15 is non-periodic, this set allows 
periodic tilings as well. 

(a) (b) 

Fig. 7. (a) A portion of a curvilinear version of the Penrose set PI. (b) Six tiles constructed 
from this set: a butterfly, a caterpillar, a ladybug, a flower, a single leaf, and a group of three 
leaves 
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It should be noted that John Osborn has independently done related work on 
recognizable-motif tilings with multiple solutions [8]. He has used Penrose tiles 
and other rhombi as templates. Penrose's chickens, two designs by Osborn, and 
several of the author's designs have been commercially produced as puzzles!. 

Recognizable-Motif Tilings Based on Fractals 

The recognition of fractals as a distinct branch of geometry was significant for 
several reasons. It led to a new way of viewing the world around us, in which the 
fractal nature of coastlines, tree branches, and other objects has been recognized 
and characterized. In addition, the Mandelbrot set and related mathematical 
"beasts" have revealed visually intriguing constructs [7]. These are created by 
iteration, which is the repetitive calculation of a formula until it converges to 
a result. While Escher built some fractal character into his prints, he lacked the 
insight and vocabulary provided by Mandelbrot's work. 

To clarify the degrees and ways in which fractals can be employed in 
recognizable-motif tilings, I would like to group these in four categories. The 
term "bounded tiling" as used here refers to a tiling that is fully contained 
in a finite area by means of the motifs becoming infinitesimally small at the 
boundary, while an "unbounded tiling" would cover the infinite Euclidean plane. 
A "singularity" is a point at which the motifs become infinitesimally small, so 
that any finite area containing that point contains an infinite number of tiles. 
Finally, a "self-replicating" tile is one that can be subdivided into smaller exact 
replicas of itself. The four categories are: 

(l) Bounded tilings with non-fractal tiles and non-fractal boundary. 
(2) Bounded tilings with non-fractal tiles and fractal boundary. 
(3) Unbounded tilings with fractal tiles that are not self-replicating. 
(4) Unbounded tilings with fractal tiles that are self-replicating. 

Escher's Square Limit and Circle Limit woodcuts are all oftype (1). My Bats 
and Owls print (Fig. 8) is also of this type. One distinction is that in Bats and 
Owls there are singularities in the interior of the tiling as well as on the boundary. 
Note that the boundary of this tiling is an octagon, but not a regular one. The 
ratio of the long side of the octagon to the short side is J2: 1 (the octagon can be 
obtained by dividing a square into a 4 x 4 grid of equal squares, then cutting on 
the diagonals of the four corner squares, leaving the center half of each original 
edge). 

An example of a bounded tiling of type (2) with non-fractal tiles and frac
tal boundary is in Fig. 9. A quadrilateral tile is used as the basis for a seal motif. 

1 Penrose's designs have been produced as puzzles by the English company Pentaplex, 
Osborn's by the American company Damert and by himself, and Fathauer's by the 
American company Tessellations. 
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(a) 

Fig.8. (a) Tiles on which Bats and Owls is based, and their relation to right triangles. 
(b) Robert Fathauer, Bats and Owls, 1994. Screen print 

(a) 

(b) 

Fig.9. (a) Tile on which Seals is based, and its relation to a quadrilateral. (b) The first 
six generations of the quadrilateral tiles comprising a one-tenth wedge of the overall tiling. 
Rotating this group nine times by an angle of 36° about the point P produces the full tiling. 
(c) Robert Fathauer, Seals, 1993. Screen print 
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The overall tiling, which has ten-fold rotational symmetry, is made up of an infi
nite number of generations of successively smaller quadrilaterals. The boundary 
bears some similarity to a cross section of a head of cauliflower, which is 
often used as an example of a fractal-like structure occurring in nature. It cannot 
be seen on the scale shown here, but this tiling actually fails by overlapping of 
tiles in the tenth generation. However, there are related tilings that exhibit neither 
overlaps nor gaps with an infinite number of iterations [4]. Another example of 
a print based on a tiling of type (2), with a fish motif, are on the CD Rom. 

Two examples of type (3) unbounded tilings with fractal tiles are in Figs. 10 
and 11. Both of these designs have singularities distributed throughout the tiling, 
and both tilings if expanded would cover the infinite Euclidean plane. In Fig. 10, 
a "root three" rectangle (with long side to short side ratio of vS:1) is used to 
form a fractal tiling by repeated subdivision. With an infinite number of subdivi
sions, the tiling possesses an infinite level of detail and can therefore be expanded 
to fill the Euclidean plane without loss of detail. The simplest distortion of this 
rectangle, taking triangular notches out of the top and bottom edges, automati
cally leads to an infinite number of triangular protrusions on the side edges as 
a consequence of the construction of the tiling. Color plate 16 shows a tiling 
constructed using the serpent tile of Fig. 10. 

(a) 

(b) 

Fig. 10. (a) The first, second, third, and seventh steps in generating an infinite fractal tiling 
from a rectangle with a long side to short side ratio of .J3: I. (b) Tile on which Fractal 
Serpents is based, and its relation to one of the rectangular tiles in (a). Making the two long 
triangular notches in the top and bottom of the rectangle (middle figure) automatically creates 
the smaller triangular protrusions on the sides as a consequence of the fractal construction. 
This makes each individual tile a fractal object 
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· .. . ... ... 
• •• •• • · .. . ... . ... ... .. .. . .. 
• •• •• • ... . ... . ... ... .. .. . .. 
• •• •• • ... . ... . ... ... ... . ... . ... ... 

• •• •• • · .. . ... . ... . .. ... . ... . ... ... • •• •• • · .. . ... . ... ... .. .. 
• •• •• • ... . ... . ... ... ... . ... . ... ... 

Fig.H. (a) The starting cross and first, second, and third steps in generating an infinite fractal 
tiling. (b) Primitive mask motif based on the cross in (a). Making a rounded notch in the top 
of each mask automatically creates an infinite number of rounded protrusions along the sides 
of each mask. (c) Robert Fathauer, Fractal Masks, 1995. Woodcut 
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l 

(a) 

Fig.12. (a) The starting square and first three iterations used to generate a fractal self
replicating tile. (b) An approximation of the fractal tile after five iterations, with interior 
details added to suggest a dragon motif 
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The geometry in Fig. II is closely related to that in Fig. 10. In this case, how
ever, a cross is replicated and reduced in size to fill a square area. Only in the 
limit, after an infinite number of steps, is the square completely filled. Again, 
since there is an infinite level of detail, the crosses can then be expanded to fill the 
Euclidean plane. To form a tiling with recognizable motifs, the cross is replaced 
with a group of four primitive masks. Note that each mask is a fractal object, with 
an infinite number of rounded protrusions on the sides of each mask that result 
from making a single rounded notch in the top of each mask. 

An example of a fractal tiling of type (4) is shown in Fig. 12. The tile 
is generated iteratively according to an algorithm described in the mathemat
ics literature [I], [10]. With each iteration, the last shape is reflected about 
a vertical axis and replicated eight times, and these nine shapes are then placed 
in a particular arrangement. After an infinite number of iterations, a fractal tile 
is obtained that is self-replicating. That is, the tile can be subdivided into nine 
smaller replicas of itself that are reflected, or 92 still smaller replicas of itself 
that are not reflected, or 93 even smaller replicas of itself that are reflected, and 
so on. 

Categories (3) and (4) might not have been fully satisfying to Escher, whose 
motivation for exploring fractal-like tilings was to fully contain an infinite tiling 
in a finite area. However, he surely would have enjoyed the complexity and 
fascinating forms found in fractal tiles, as well as the new way of looking at 
nature afforded by fractals. The four categories listed above are not the only 
possible types of tilings based on fractals. One can only speculate as to whether 
they are the sort of tilings that Escher might have made had he had access to the 
vocabulary of fractal geometry. 

By exploiting new mathematical discoveries unknown to Escher we can 
create recognizable-motif tilings that are quite distinct from Escher's work. 
This is particularly significant because of the thoroughness with which Escher 
explored the aspects of tiling that were known to him. 
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A Circle Limit in Stone 

Helaman Ferguson with Claire Ferguson 

Escher Connection 

From its home at the Mathematical Sciences Research Institute (MSRI) in Berke
ley, California, the Eightfold Way overlooks the mountains adjoining Grizzly 
Peak and San Francisco Bay. It is a polished tetrahedral form carved out of 
white Carrara marble, cupped in a black serpentine column and centered in 
a tessellated disc of stone tiles: the disc is subtitled Circle Limit 7 (Fig. 1). 

It would be convenient in a volume dedicated to M.e. Escher's Centennial 
for me to say my Circle Limit 7, a hyperbolic tessellation, was wholly inspired 
by Escher's Circle Limit I, II, III, IV series. This was not at all the case. Both 
Escher and I responded aesthetically to the same mathematics. The mathematics 
includes the geometry of the Poincare disc model of the hyperbolic plane as 
initially developed by R. Fricke and F. Klein. Later-generation sources were 
H.S.M. Coxeter for Escher and W. Thurston and I.H. Conway for me. In this 
respect, our respective work is somewhat irrelevant: it is the mathematics that 
provides the jewels just waiting for an artist to set into a crown. Both Escher and 
I were developing core mathematical ideas of the geometry of fractional linear 
transformations. The wonderful idea is that there are more triangles in hyperbolic 
space, and hence more symmetries, indeed multiply-periodic noncommutative 
symmetries. This means there are more regular tilings possible in hyperbolic 
geometry. However, in assigning the subtitle Circle Limit 7 to the base platform 
of the Eightfold Way sculpture, I am most definitely inspired by Escher's 

Fig. I. The Eightfold Way and its platform compon
ent hyperbolic disc, Circle Limit 7. Photograph taken 
from an upper window in the MSRI building 
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picturesque Circle Limit titles. This came after the fact, as did the realization that 
perhaps Circle Limit 7 is the first circle limit in stone and the largest physical 
Poincare disc anywhere. 

Aesthetic Concepts 

The name Eightfold Way arises from the remarkable paths traced by the incised 
and excised pattern over the hand-polished marble. This same combinatorial 
pattern persists when tracing the paths of the tessellated base Circle Limit 7. 
If the observer runs her finger along any groove or ridge, alternating left and 
right turns at each comer, then in cight pivots she will return to her starting 
point. The name Circle Limit 7 for the two-dimensional base on which the three
dimensional sculpture is mounted was chosen not because it is the seventh of 
a series of circle limit prints (Escher's names merely numbered the order in 
which he made his prints), but rather because it is a hyperbolic tiling by regular 
heptagons (seven-sided polygons). 

The creative process that released the abstract ideas encased in this eons
old stone combines the analysis of science with the emotion of the artist to 
produce a symphony of elegant counterpoint. Gothic tracery and Alhambra 
tilings unite in this one work. As noted earlier, Circle Limit 7 was inspired 
by the same mathematics of hyperbolic geometry that inspired M.e. Escher 
when he created his Circle Limit series of four woodcuts. In Michele Emmer's 
video [5], H.S.M. Coxeter discusses his interaction with Escher on this series 
of prints. Escher had earlier made several prints in which figures repeated on 
a smaller and smaller scale towards the center of the print. Until he saw Coxeter's 
paper that depicted a hyperbolic tiling of triangles, Escher had not been able to 
do a print in which the figures repeated outwards, forever diminishing in size, to 
the edge of the circle limit. I myself don't fault a draftsman, however gifted, for 
not discovering non-euclidean geometry in the course of doing a woodcut. (For 
Escher's Circle Limit prints, see articles in this book by H.S.M. Coxeter, Douglas 
Dunham, and Victor Donnay; also see [1,6-8,16].) 

The base platform of the Eightfold Way makes a direct visual connection 
with Escher's circle limit woodcuts. The cover image of Marvin Greenberg'S 
book [13] is the geometric backbone of Escher's Circle Limit N. This was 
modelled on a tessellation of the hyperbolic plane by 45°-45°-90° triangles 
which are pairings of the alternately-colored 45°-45°-90° triangles in Fig. 7 
of the paper by Coxeter [2] - the figure that so influenced Escher. This figure 
contains the solution to Escher's problem of infinite repetition radiating outward 
to a limiting circle and is the precise mathematical source of his Circle Limit 
series. Escher's wonderful woodcuts came after his recognition of the solution 
and an unthinkable amount of painstaking labor. 

One general theme reflected in my Eightfold Way sculpture is that topology 
has an underlying rigid geometry and vice versa. The rigid geometry in this case 
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is expressed by the hyperbolic tiling Circle Limit 7. This geometry-topology 
theme has arisen repeatedly in the last couple of centuries in mathematics, from 
Euler to Poincare, Klein, and Fricke. Recently the theme has been developed 
extensively in the work of William Thurston and others [17]. For more about 
the mathematics of Klein's quartic Hurwitz surface which inspired this three
dimensional sculpture and two-dimensional hyperbolic disc, see the entire book 
referred to in [12]. Some of these ideas have been developed further in [10] 
and [11]. 

Hyperbolic Precursors? 

Sand paintings are a traditional Buddhist art form. The sand version of the Eight
fold Path mandala involves arcs of circles in a disc arrangement suggesting 
a connection with the hyperbolic disc (see [14]). There are interesting mirrors 
that I have seen at the Art Institute of Chicago where the back of the mirrors 
have hyperbolic-like arrangements of arcs of circles. They are made with Dragon 
arabesques, Eastern Zhou Dynasty, Warring States period or early Western Han 
Dynasty, 3rd/2nd century B.C. These artifacts are gifts of the S. M. Nicker
son Endowment. Again, these circle arc forms are suggestive of hyperbolic disc 
constructions. Could these have Eightfold Path origins? Had Escher seen those 
images? Had Poincare, for that matter? 

Getting the Circle Limit into Stone 

Early in 1992, Bob Osserman, a co-director at MSRI, pressed upon me the sug
gestion of a hyperbolic disc platform for the marble sculpture Eightfold Way that 
had been comissioned for MSRI. He did this by faxing me various images from 
Klein and Fricke. I hesitated only because this desirable feature would exceed 
the budget given by the donor. When Bob assured further funding, I yielded to 
his insistence. 

It was important to specify exactly in computer form the hyperbolic tiling 
blocks. In October 1992, I visited MSRI and worked with Silvio Levy on final
izing the tile data for input to the PC system which controlled the water-jet I 
was planning to use to cut the hyperbolic tiles. I had worked out my own Math
ematica programs for tiling the Poincare disc with regular 120° heptagons, but 
these programs were not PC-compatible. Silvio had been through something like 
this before when he generated an automatic version of Escher's Circle Limit III 
(see [15]). 

Developing the hyperbolic platform in stone required some pretty exten
sive computer logistics and special material handling. The heptagonal prism 
with 120° angles had to fit the real size of the conformal Poincare disc that 
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Fig.2. Silvio Levy's Geomview picture of 
the heptagonal tiling of the Poincare disc. 
The tiles outlined are a fundamental set of 
those to be cut in stone 
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Fig.3. Circle Limit 7, the hyperbolic tiling 
of heptagons installed and curing at MSRI. 
The earthquake-stabilization hole in the 
middle is not yet drilled into the concrete 
pad and footings 

would mathematically scale with the rigid central hyperbolic regular heptagon. 
The next difficulty was cutting the hundreds of heptagonal tiles in stone to the 
desired precision of a few thousands of an inch. I solved the precision problem 
with computers and water-jet cutting technology. 

Silvio saved the project a great deal of time by adapting the Geometry Cen
ter's word-generation programs to extract the postscript form to the input data I 
needed for the water-jet programs. The water-jet system is a robot system which 
responds only to a meticulously prepared set of instructions (Fig. 2). 

The black stone in the hyperbolic platform base of the Eightfold Way is one of 
the many forms of the mineral serpentine, a magnesium silicate related to granite 
in its plutonic or subterranean origins, but a compacted mineral talc with small 
rhomboid crystal size. Also called steatite, serpentine comes in a wide spectrum 
of quality and hardness. The softer steatites, which may contain asbestos-type 
fibers, are called soapstones. Because this mineral is impervious to heat and 
chemicals, it was carved by some of our more ancient ancestors into utensils, 
and is used today to line steel furnaces, build efficient wood stoves, and provide 
laboratory table tops. Some varieties are as hard as granite but with a finer grain. 
I desired one of these hard, dense black types, deposits of which occur in the Blue 
Ridge mountain area of Albemarle County in Virginia. I used this material for 
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the fluted heptagonal prism and for the heptagonal tiles. This serpentine is 
hundreds of millions years old, a suitable material to express mathematical ideas 
of timeless beauty and power. 

To accomodate the circle at infinity (the boundary of the disc) there are 14 
disc rim or corona stones. Interior to that are 217 hyperbolic heptagon stone 
blocks. Each heptagon has seven interior angles, each 1200 • The 217 -tile ensem
ble has 23 dark and 194 light serpentine heptagons surrounding a center prism 
with an exact conformal heptagon base. Given the role of Janos Bolyai in the 
early history of non-euclidean geometry (see [13]), I thought it would be appro
priate to have someone of Hungarian heritage set this non-euclidean geometry 
disc. This really did happen, perhaps by accident. The tiles were finally set in 
May 1993 by an old-world tile man suitably named Lajos Biczo. Joe Christy of 
MSRI facilitated the setting of the tiles and protected them like a mother hen 
while the grout cured. The rest of the sculpture could not be installed until the 
tile setting and grout were thoroughly cured (see Fig. 3). The final installation 
of the complete Eightfold Way was in August 1993. 

Water-Jets 

The abrasive Colorado River carved the Grand Canyon out of solid rock. Look
ing over the south rim at the tiny filament of water glistening in the sun far below, 
I mused about capturing that sort of power in my studio. Close up, the thin stream 
of a water jet is no larger than the observed sliver of that distant river. The noise of 
the water jet seems to compress millions of years of erosion into a few seconds 
of roaring tornado sound, churning the catch chamber below into white water. 
This violent roar comes from a filament of water issuing from a diamond orifice 
under a pressure of 55,000 pounds per square inch. When I used a water-jet to 
cut the stones for the Circle Limit 7, this device was still somewhat experimental. 
Since that time it has become a common industrial tool, used to cut all manner 
of materials from textiles to five-inch thick steel. Water-jets are not suitable for 
carving; they cut clear through - the tiny water-jet explodes from one side of the 
material to the other (Fig. 4). 

Water-jet devices are also robots in the strict sense that they respond to 
a predetermined straight line program which allows no variation. All motions 
have to be calculated in advance. How does one debug a water-jet? A complete 
set of 232 blocks were first cut from 3/4 inch plywood in a debugging run. This 
set of wooden hyperbolic tiles was then assembled before cutting the serpentine 
stone (Fig. 5). 

The final stones, counting the prism, were 24 black and 208 green serpen
tines. The Virginia green in this case was actually a bit harder stone than the 
black and the greens tended to be the smaller stones. All the heptagons were cut 
to great accuracy with seven circular-arc geodesic edges and seven 1200 interior 
angles (Fig. 6). 
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Fig. 4. Water-jet robot in the 
process of cutting out one of 
the serpentine blocks for the 
hyperbolic tiling. This set
up, part-holding, and cutting 
process had to be done over 
232 times 

Fig.S. To debug the water
jet program, a full set of 
wooden blocks was cut and 
then assembled 

Fig. 6. The full set of stone 
tiles as cut by the water-jet 
robot. Note the dark cluster 
in the middle and the corona 
stones on the rim. The clus
ter "lifts" and "sews up" into 
the tessellated tetrahedroid 
which forms the white mar
ble component of the Eight
fold Way 
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The cutting itself took about a week for both the debugging run with plywood 
and the actual cutting of the stones. One of the most difficult parts of the cutting 
process was to figure out how to hold the part to be cut. Part-holding became 
more challenging for the smaller heptagons in both the wood and the stone. 

Triskelions 

The heptagons in Circle Limit 7 imply seven-fold symmetry. With 1200 corners, 
each heptagon vertex forms a triple point or a triskelion with the edges of its 
three neighbor points. The grooves or ridges of the three edges are curved to meet 
the neighbor point. In the lifting of the system from the platform to the marble, 
there are 56 points, 84 edges, and 24 heptagons. Thus in the marble part of the 
sculpture there are 56 triskelions in all, even though they can be thought of as 
coming from infinitely many in the hyperbolic disc. In carving this marble, I used 
a small plexiglass equilateral triangle as apattern to keep these triskelions under 
some equiangular control. This was a loose qualitative 1200 consideration which 
rhymes with the more exact quantitative 1200 triple points of the Circle Limit 7 
base platform. 

The triple-point symmetry is literal in the quantitative two-dimensional 
Circle Limit 7, the base upon which the sculpture rests. Here the triple points are 
embedded in a system of infinitely many triple points. An infinite discrete group 
can be associated with this platform. This infinite group acts by hyperbolic trans
formations on the hyperbolic plane and has a fundamental domain of exactly 24 
heptagons. In this case, there are 23 darker heptagons grouped around the one 
dark polished stone heptagonal prism in the center of the hyperbolic disk. The 
triskelions have been cut to have metrically accurate 1200 angles. The discrete 
group transforms the fundamental domain in such a way that certain edges are 
identified. Indeed, the identification is given by the eightfold way path sequence 
of left and right described earlier. The transformations sew up the 24-heptagon 
domain into a surface of genus three, namely, the marble surface lying above the 
fundamental domain. 

The boundaries of the 24 white marble heptagons carved into the tetrahedral 
form are articulated as either ridges or incisions. The incisions, or cuts, define the 
doubled outside boundary of the lower fundamental domain. The ridges on the 
marble also (compared to the incisions just described) form edges of heptagons. 
These ridges correspond to the geodesic arcs in the hyperbolic plane which lie 
inside the fundamental domain (the cluster of darker contiguous heptagons). 

Unlimited Prints! 

Developing the circle limit of heptagons of the Circle Limit 7 was very different 
from Escher's technique of creating woodblocks for his prints. I believe Escher 
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would have been delighted to use today's computer technology. After cutting 
the wood blocks of the heptagonal disc tiling I made six large (6' x 6') canvas 
multicolor rubbings of the hyperbolic tesselation. By now, many people have 
made crayon and paper rubbings of the stone hyperbolic platform Circle Limit 7 
in its setting at MSRI. I personally encourage people to do those rubbings. They 
are easy to make and can give a frame able result to take home to share the joy 
of the thing. Like most graphic artists who limit the number of prints they make, 
Escher drilled holes in his circle limit wood blocks to prevent more impressions 
from being made. There are no limits to the number of impressions to be taken 
from the circle limit of heptagons of the Circle Limit 7. 

Location 

The Eightfold Way sculpture with its Circle Limit 7 base is permanently installed 
in the southeast patio area of the Mathematical Sciences Research Institute, 
located in the east hills of the campus of the University of California at 
Berkeley, 1000 Centennial Drive. Also located on Centennial Drive to the north 
is the Space Science Laboratory. Centennial Drive winds up the hills from the 
Berkeley campus past the Berkeley labs up to the Lawrence Hall of Science. 
Across the street from LHS are parking lots for MSRI and SSL; there is also 
a trail leading up the hill to MSRI through the scrub and scree from those 
parking lots. The telephone number for MSRI is (510) 642 0143 and their web 
site is www.msri.org. 
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Portrait of Escher: Behind the Mirror 

Kelly M. Houle 

From the first time I encountered M.e. Escher's work, I began to think about 
the possibility of hidden worlds. Even as a child, I wondered if there would ever 
be a moment when I would suddenly "find" the fourth dimension, the way I had 
discovered so many of the mysterious worlds within Escher's work, or if I would 
ever discover that I had a twin who had been living life as my mirror reverse. I 
became fascinated by the process of discovery and the feeling of sudden realiza
tion when I came to understand one of Escher's many illusions. Now, I have the 
same reaction to anamorphic art. 

Anamorphosis, translated from the Greek roots "ana", meaning again and 
"morphe", meaning form, refers to an image that is literally "formed again". 
This process of distorting an image so dramatically that its correct dimensions 
are only reconstructed when the viewer changes his or her perspective just as 
dramatically, allows two different interpretations of a single image. Anamorpho
sis provides a specialized means for creating ambiguous images which, for me, 
symbolize many of the mathematical and philosophical paradoxes I have often 
tried to visualize. The lucid mirror reflection with its grossly deformed cylindrical 
projection is a metaphor for the existence of multiple geometries, higher dimen
sions, and order that resides within a seemingly chaotic system. Anamorphic art, 
combined with the right subject matter, alludes to the coexistence of opposing 

Fig. 1. A Fashionable Lady, cylindrical anamorphosis (without mirror), 
c. 1900. Reproduced from [6], with permission 
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truths, and the notion that reality depends on the perspective system used by 
the observer. In Escher's work, as with anamorphosis, perspective is relative. It 
is this property of anamorphic art that echoes the same themes that character
ize Escher's work: hidden worlds, impossible worlds, and the infinite. For this 
reason I chose Escher as the first subject in my series of anamorphic portraits. 

Anamorphic Evolution 

For centuries, anamorphic art has been used for a variety of purposes by artists 
within mathematical and scientific circles. The few artists who possessed an 
understanding of the optics involved in anamorphic construction kept their equa
tions, grids, and mechanical drawing devices as well-guarded secrets [1, p. 1]. 
Considered magical, early mirror anamorphoses (which first appeared between 
1615-1625) gained a mystical following and were even used in religious 

Fig. 2. Jean Frant;ois Niceron, Anamorphic gridfor cylinder and anamor
phosis of Saint Francis of Paola. 1638. Reproduced from [1], with 
permission 
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conversion by European missionaries. The cylindrical anamorphosis Crucifixion 
from about 1640 is an example of an early anamorphic painting with a religious 
theme [1, p. 148]. In the early 1900s anamorphic art experienced an increase 
in popUlarity. Seen as toys, these optical diversions became very popular, and 
proliferated to the point of excess. The drawings featured ordinary objects 
and cartoon-like caricatures of people and animals (Fig. 1). By this time, the 
subject matter had become devoid of any philosophical or poetic depth. Even 
the reflected images were flat and two dimensional. Eventually the technique suf
fered from overuse, and anamorphic art virtually disappeared from the eye of the 
mainstream public. 

Today, the process of creating anamorphic images no longer remains a secret 
(see inset "How Cylindrical Mirror Anamorphoses Work") and anyone with 
patience or the right computer software can distort an ordinary drawing or photo 
so that it can be viewed reasonably well with a curved mirror. A recent book, 
reminiscent of those in the early 1900s, has cartoon-like circus images to view 
with an enclosed mylar mirror along with explanation of how to produce original 
anamorphic images with a simple grid [7]. The challenge to the anamorphic 
artist today is to use anamorphosis as a tool to convey a vision, the way Escher 
used the tools of impossible figures, tessellations, and reflections to express his 
ideas about the possibility of simultaneous worlds, the nature of infinity, and the 
sometimes ambiguous nature of spatial relationships. Escher's work challenges 
the viewer to look at a situation from many points of view at once. Anamorphosis 
does the same thing. 

I use a combination of methods to create anamorphoses. First, I transform the 
image from a Cartesian coordinate grid to a modified polar grid similar to the 
one described in Jean Franc;ois Niceron's 1638 text La Perspective Curieuse. [6, 
p. 162-167]. (See Fig. 2.) I combined what I could gather from my own rough 
translation of the French text by Niceron with what I knew about optics to 
design a set of polar grids that are mathematically exact based on the diameter 
of the mirror I want to use, the size of the drawing, and the average height of the 
observer. I use the grids to plot several points and lines from the original sketch 
by hand until I have a basic outline of the subject. I prefer not to use a computer 
to create my anamorphoses. Over time I have found that an exact coordinate 
translation is not always pleasing to the eye. I like having the freedom to modify 
my design while looking into the cylindrical mirror. I check the reflection 
constantly to make sure that my drawing has been accurately and 
effectively translated into its mirror reflection. I have found that anamorphic 
images, especially those that occupy 360 degrees, are in many ways more like 
sculpture than drawing. The act of making adjustments to the drawing while 
walking around it helps me to better create something that will be experienced 
in three dimensions. 

Once I have plotted the image carefully, I look into the curved mirror to 
complete drawing. Many times I finish this stage without looking directly onto 
the surface of the drawing itself. This results in a collection of apparently random 
brushstrokes, abstract geometric shapes and swirls, depending on the amount of 
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detail I want in the finished piece. Although I know from experience what shapes 
and subjects work best, I rarely know exactly how a particular image will look 
once it has been distorted. Often, I am surprised by the result. 

Anamorphic Escher: Strange Symmetry 

Catoptric anamorphosis, the type of anamorphosis that requires curved mirrors 
to interpret the purposely skewed perspective, allows the viewer to see an image 
and its distortion simultaneously. This type of anamorphosis is especially 
reminiscent of Escher's prints that include mirror reflections, and carries the 
same suggestion of hidden worlds. Because anamorphosis makes it possible for 
an image to exist in two forms at the same time, it provides a concrete, visual 
model of the idea that there may be several ways to interpret an object or event, 
that there may be some hidden structure in things that at first seem random and 
meaningless. 

It has been said that Escher's work concerning the infinite tiling of the plane 
was his way of searching for order in a chaotic world. Escher once wrote, "I try 
in my prints to testify that we live in a beautiful and orderly world, and not in 
a formless chaos, as it sometimes seems." [5, p. 21] The anamorphic transform
ation of chaos to order echoes Escher's inner struggle against the entropic nature 
of the universe, and the solace he found in the existence of natural crystalline 
structures which mysteriously arrange themselves to form regular geometric pat
terns. Similarly, in anamorphic transformation, the melted, formless streaks on 
a flat surface rise like steam, assembling themselves to compose a recognizable 
image in a third dimension. This change from a flat drawing to a form that has 
height and depth reminds me of many Escher prints that show creatures emerging 
from a two-dimensional plane to begin a life cycle in three-dimensions, and then 
returning to the flat plane again. The action of taking the cylindrical mirror and 
placing it on the surface of the anamorphic distortion causes a kind of metamor
phosis of the flat drawing into its reflection. Like Escher's prints, anamorphosis is 
about becoming rather than being, a way of showing progression from one form 
to another. The mirror creates a path for this process, a window to the possibility 
of other universes. In seeing an anamorphic distortion along with its represen
tational reflection, it seems possible to visualize order residing within apparent 
chaos. Between the realms of order and chaos stands the monolithic anamor
phoscope, a cylindrical mirror that has the power to rearrange and make sense 
of an abstraction. Placing the mirror properly allows patterns to emerge from 
the flat painting and appear in its reflection. The mirror gathers up the formless 
sea of lines into a perceivable image. It becomes a tool that changes the amorph
ous wisps into recognizable figures. Looking into a cylindrical mirror, the viewer 
may expect to see his own reflection. Instead, he or she discovers some parallel, 
yet otherwise imperceptible, universe. 
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How Cylindrical Mirror Anamorphosis Works 

The Law of Reflection 
A cylindrical mirror distorts information in two different ilirections. To see 
why this is true, look at the cylinder from two different points of view ... 

The side of the mirror is straight, 
like the surface of a flat mirror... 

~ 
-~ 

but its edges are rounded, like 
the surface of a curved mirror. 

~ 
'l,ff 

In both situation , the angle of incidence i equal to the angle of reflection. 
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In the case of a curved surface, these angles are measured from a line tangent 
to the curve at a specific point. 

The Cone of Vision 
Light rays travel to our eyes in straight lines from all directions. 
The area of the pupil i maJl compared to the area from which light may 
travel. This causes an effect called the "cone of vision." 

The cone of vi ion cau es some intere ting patterns when combined with the 
way light is reflected in curved mirrors. Rays (shown as traveling from the 
pupil) trike the urface of the mirror at various angles. 

Thi pattern shows the radial reflection 
of light due to the law of reflection for 
curved mirror and the cone of vision. 

This pattern shows how light rays spread 
out as they strike farther and farther from 
the surface of the mirror due to variation 
in the angle of incidence. 

The anamorphic transformation produce a et of polar coordinate that return 
to their rectangular origins when viewed with a cylindrical mirror. 

7 

8 
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2 , 
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rectangular grid polar grid 
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By including the mirror, the artist provides the key to solving the riddle of the 
anamorphic distortion, just as Escher lets us in on the secrets behind his para
doxical drawings. As Bruno Ernst observed of Escher, "He asks us to admire 
the puzzle but no less to appreciate its solution." [3, p. 64] The presence of the 
solution within the puzzle of Escher's work creates a kinship of understanding 
among those who are familiar with it. When we see what Escher wanted us to 
see, we are surprised, amused, enlightened. Like Escher, we then want to let 
others in on the secret, to feel the companionship of shared appreciation of the 
explanation. 

Escher builds the impossible according to a strictly legitimate 
method that everyone can follow; and in his prints he demon
strates not only the end product but also the rules by which 
it was arrived at . ... (Escher's) impossible worlds are dis
coveries; their plausibility stands or falls by the discovery of 
a plan of construction, and this Escher has usually derivedfrom 
mathematics. [3, p. 66] 

Anamorphic art has the same effect on those seeing it for the first time. 
The anamorphoscope performs the same function as Escher's mathematical 
framework by providing a code for deciphering the anamorphosis. 

Escher made several drawings depicting the effect of curved mirrors on 
surrounding objects. In the lithographs Still Life with Reflecting Sphere (Fig. 3) 
and Three Spheres II (see page 80), Escher shows how a convex spherical mirror 
distorts recognizable objects. The horizontal and vertical lines of a room, for 
example, become transfigured as the entire space surrounding the mirror is 
compressed into a compact sphere. Objects no longer resemble themselves, as 
the familiar architecture becomes warped. 

The most surprising aspect of anamorphosis is that it appears to perform 
the reverse operation by returning familiarity to a purposely distorted form. The 

Fig.3. M.e. Escher. Still Life with 
Reflecting Sphere. 1934. Litho
graph 
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effect of a curved mirror seems more astonishing when a recognizable image 
appears from a distortion. Whether the curved mirror deforms or restores famil
iarity, it shows the existence of contradictory realities: the world outside the 
convex surface and the world within the reflection. For my portraits of Escher, I 
chose two images that showed Escher looking at his own reflection in a spherical 
mirror. One was from a photograph taken of Escher and the other was Escher's 
self-portrait Hand with Reflecting Sphere (Fig. 4). 

Escher I: Double Reflection (An Anamorphic Portrait) 

When making self portraits, artists often include artifacts in the image to 
emphasize an aspect of their profession or personality. In his lithograph Hand 
With Reflecting Sphere Escher chose to emphasize his own hand. George Escher 
wrote that his father's print Drawing Hands (Escher's depiction of his own hands 
drawing themselves into existence) was "a true self portrait" of his father. 

Father's hands are the feature of him which I most vividly 
remember. Looking at their precise movements, neatly 
arranging tools, sharpening gouges and chisels with rhythmic 
motions, preparing wood to a smooth, velvety finish, I could 
sense the pleasure that this activity gave him. [4, pp. 8-9] 

Escher often expressed that he preferred to be known as a graphic artist, 
a printmaker, a craftsman. Escher's inclusion of his own hand in the print forces 
us to imagine the meticulous nature of his occupation as a graphic artist, and 
makes us very aware of his existence as he draws his own reflection. 

Escher chose to draw his reflection as it was distorted by a curved mirror, an 
object that appears several times in his work. A spherical mirror forces anyone 
looking into it to remain immovably in the center of the reflection. Escher him
self noted that "Your own head, or more exactly, the point between your eyes, 
is in the center. No matter how you turn or twist yourself, you can't get out of 
that central point. You are immovably the focus of your own world." [5, p.60] 
In this case Escher's "world" was his studio, a place where he would allow him
self to become lost in other worlds, where the laws of physics no longer reigned. 
Escher holds his "world" in his hand. In this sense he has given himself complete 
control over this part of his life. Escher's prints were his to manipulate without 
the restraints of gravity or the chaos he felt within the realm of human existence. 

Escher does not include other people in this illustration of his world. His 
work left him outside the mainstream circles of mathematics and art. He did 
not feel a connection with other artists or other aspects of the art world, and he 
felt that the mathematical side of his work was on the periphery, a secret gar
den into which he was the first and only soul to venture. "I walk around all alone 
in this beautiful garden, which certainly does not belong only to me, but whose 
gate is open to everyone. I feel a revitalizing yet oppressive sense of loneliness." 
[2, p. 156] The presence of the mirror in his self portrait sets up a boundary 
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Fig.4. M.e. Escher, Hand with Reflecting 
Sphere, 1935. Lithograph 

between Escher's inner life (where his imagination was free to explore without 
the constraints of conventional time and space), and the outside world. The place 
where Escher's hand meets the surface of the mirror is the link that connects 
the two worlds. His craft was his means of expressing questions, and possibly 
answers, about the paradoxical nature of time and space to a world of grateful 
admirers, many of whom he would never know. 

In Escher I: Double Reflection, an anamorphic projection of Escher's Hand 
with Reflecting Sphere (Fig. 5), a second mirror boundary stands between our 
world and Escher's. Escher's self portrait, as he drew it, exists in the reflection 
of a cylindrical mirror. Its anamorphic distortion from which the reflection is 
generated extends outward from base of the cylinder. Escher's portrait is re
formed in the reflection with his hand extending both inward and outward 
from the base of the cylindrical mirror. The seamless worlds flow from one 
to the other with Escher's hand as the bridge in between the two realms: our 
three-dimensional world, and the world of Escher's drawings. 

Escher plays with our perception of the dimensionality of objects in the 
lithographs Magic Mirror (page 221) and Reptiles (page 307) by manipulating 
light and shadow. He explained 

The flat shape irritates me - I feel like telling my objects, you 
are too fictitious, lying there next to each other static andfrozen: 
do something, come off the paper and show me what you are 
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capable oj? . .. So I make them come out of the plane. Not, of 
course, in reality, On the contrary, I am deliberately inconsis
tent, suggesting a plasticity in the plane by means of light and 
shade ... My objects, given life in a fictitious way, are now 
able to proceed as independent plastic creatures, and they may 
finally return to the plane and disappear into their place of 
origin. [2, p. 168] 

a 

b 

Fig. 5. Kelly M. Houle, Escher I: Double Reflection, cylindrical anamorphosis, 1998. 
Charcoal on illustration board. (a) Without mirror. (b) With mirror 
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Looking at an anamorphic distortion without the cylindrical mirror in place, 
the flat drawing appears to be composed of two-dimensional shapes. The original 
image of Escher's hand holding a reflective globe, which was drawn according 
to the rules of light and shading, has been bent around a central point. In the 
distorted anamorphic drawing, the forms appear to lose their depth because there 
is no longer a consistent light source. We are used to light traveling in a straight 
line from a point source and falling on objects from one particular angle. When 
the original image is bent and stretched into a circular swath, the shadows seem 
to fall in all directions. When the curved mirror is used to reflect the anamor
phic distortion, the forms take on the familiar rules of light and shading that 
make them seem three-dimensional. The reflection now appears more realistic 
and three-dimensional than the anamorphic distortion. However, anamorphosis 
(like all drawing techniques) is deceptive. The flat drawing is the true three
dimensional object. The drawing has length and width and the thin layer of 
charcoal on the heavy tooth of the paper adds the third dimension of height. The 
reflection, like a shadow, exists in only two dimensions. 

Escher II: Infinite Reflection 
(The Continuity of Self And Space) 

My second anamorphic portrait of Escher is based on a photograph of Escher 
looking at his own reflection in a spherical mirror ([2], frontispiece). Similar 
to his self portrait Hand With Reflecting Sphere, this photograph shows Escher 
absorbed in the contorted space of the spherical reflection from a third person's 
point of view. Like the photographer, we are seeing Escher's profile as he gazes 
into the mirror. Escher II: Infinite Reflection or The Continuity of Self and Space 
(Fig. 6) is a cylindrical anamorphosis of this famous photograph. 

I went through several preliminary anamorphic sketches of this photo, but 
none of them produced the effect I wanted my portrait of Escher to have. Escher's 
work is startling, and I wanted something that would surprise and shock a person 
seeing this piece for the first time. I knew I finally had the right idea when the 
image of an infinite portrait of Escher woke me from my sleep one night. I had 
visualized Escher's profile reflected on one side of a cylindrical mirror (Fig. 6b). 
As the image progressed 90 degrees counterclockwise, the scene would change 
to show Escher with the spherical mirror in his hand, looking at his own reflec
tion (Fig. 6c). Progressing another 90 degrees, only the spherical mirror would 
be visible (Fig. 6d). The question in my mind was how to connect the whole thing 
so that it would be a seamless portrait. The answer was enough to jolt me from 
my sleep. I saw the back of Escher's head reflected in the same sphere (Fig. 6e). 
With this design in mind, I sketched what I had dreamt about. 

The process of making a continuous anamorphic drawing is more compli
cated than the first type mentioned earlier in this article where there is only one 
point where the image appears in its correct dimensions. Constructing a 360-
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degree anamorphosis requires at least four places where the continuous image 
has the correct perspective. This process requires a grid similar to the four
point perspective system described by Dick Termes in his article The Geometries 
Behind My Spherical Paintings ([9], p.244; also see his article in this book, 
p. 275). The result, a continuous, infinite, anamorphic portrait of Escher, pos
sesses the property of infinity similar to many of Escher's designs, and therefore 
evokes similar reactions by those who see it. 

Escher found many ways to express the concept of infinity in his prints. 
Tessellations in the form of circle limit designs, Mobius strips, and the cyclical 
regeneration of forms were some of the ways he was able to express the idea of 

a 

b 
Fig. 6. Kelly M. Houle, Escher ll: Infinite Reflection, cylindrical anamorphosis, 
1998. Charcoal on illustration board. (a) Without mirror. (b) View I, Escher's 
profile. (c) View 2, Escher with mirror. (d) View 3, spherical mirror. (e) View 4, back 
of Escher's head 
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Fig. 6. (continued) 
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infinity in two dimensions. He also experimented with ways to show infinity in 
three dimensions. 

Instead of leaving the plane only in imagination ... it is possible 
to do so in reality. I do not mean that the figures should step out 
of the plane completely as separate individuals ... What I have in 
mind is the possibility of bending and folding the picture plane 
itself. [2, p. 169] 

Escher looked for ways he could express infinity in a three-dimensional 
object without compromising his profession as a graphic artist working in two 
dimensions. He decided that tiling the surface of a sphere to form a continuous, 
three-dimensional tessellation was the most perfect way to express infinity, but 
he knew there was no way to bend a flat piece of paper into a sphere. He sug
gested that it was possible to bend a piece of paper into a cylinder so that the 
ends would join to form a seamless tessellation. A cylindrical mirror provides 
a way of bending the picture plane similar to this method described by Escher. 
However, by using anamorphic techniques, it is possible to form a continuous, 
infinite image in three dimensions without changing the shape of the paper. 

In addition to visualizing the concepts of infinity and the simultaneous 
worlds through cylindrical anamorphosis, this art form has allowed me to 
express another Escherian theme: impossible worlds. In Escher II, I have 
depicted a situation that can neither exist in three-dimensional space nor be 
represented using traditional methods of drawing in two dimensions. Using 
optical illusions, one may draw structures that are impossible to build, such as 
the Penrose tribar. However, even with these methods it is not possible to draw 
a spherical mirror that can reflect both a man's face and the back of his head at the 
same time. Such events, reserved for descriptions of life in higher dimensions, 
can be represented anamorphic ally with a cylindrical mirror. 

The mirror is the pivotal element in anamorphic art. Without it, an anamor
phic projection may seem meaningless unless the artist disguises it with familiar 
objects or scenes. Even then the piece is fragmented without the mirror. A world 
exists in another form that we are unable to perceive. The anamorphic mirror 
extends the viewer's senses, allowing him or her to see beyond the confines of hu
man perceptual boundaries. In Escher's print Relativity (see page 265), he hints 
that there may be creatures living out their lives in universes parallel to ours, that 
the empty space around us may be filled with activity when seen from another 
point of view. It is interesting to note that these beings exist in opposing spaces. 
Every "up" staircase has a "down" component in an opposite dimension. Like 
this print, an anamorphic drawing suggests that a mirror image of our world may 
exist, and could possibly be seen once we develop the tools to detect it. 

The beauty of catoptric anamorphosis and Escher's work lies in the ability 
of each to unify apparently dichotomous truths. The viewer experiences two 
simultaneously existing, yet different, realities. Instead of being mutually ex
clusive, dualities such as chaos and order, infinity and boundedness, become 
intertwined. Each one is necessary for the other's existence. They are integral, 
interconnecting parts of the same whole. 
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Life After Escher: A (Young) Artist's Journey 

Eva Knoll 

Expressing the influence of Escher on my own work is akin to testing a new med
ical discovery without a control group. I have been exposed to his work for as 
long as I can remember, and certainly for as long as I've had an active interest 
in art, making it difficult for me to imagine a world without his work. That is 
not to say that he has had no impact; some directions I have been exploring were 
clearly visited by him first; other influences are more subtle. 

The most obvious influence is certainly visible through my early experimen
tation with space-filling shapes. (see Figs. 1 - 3). The object of much of my early 
work was to explore the structure of two-dimensional space. In fact, Escher, one 
of the first artists whose work I searched out and studied, also served to teach me 
a very basic understanding of art. It is through his work, at first, that I became 
aware of the importance of this underlying structure in art work. Escher didn't 
just attempt to copy nature as he saw it. He succeeded in exploring the struc
ture of his visual world, and how it would look if he put it together in a different 
way. His was also the work that allowed me to understand that art, at least visual 
art, is really the result, one might even say the by-product, of the explorations 
which are the real interest of the artist. Some of his illusionary work, for 
example, is really the result of his playing with the 2-D representation of3-D and 
how he can stretch it. After so many centuries (until the Renaissance) of trying 
to represent reality as accurately as possible, artists such as Escher could now 
misrepresent reality, deliberately and with perfect control. The most important 
impact this discovery had on me was that it justified the experimental and at times 
rather eclectic nature of my work. 

Fig. 1. Eva Knoll, Frost on a Window, 
1994. Mixed media 

Fig.2. Eva Knoll, Tiles with quasi
ellipses, 1992. Acrylic on ceramic 
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Fig.3. Eva Knoll, Balance, 1993. Ad
hesive plastic on glazed ceramic tiles 

Eva Knoll 

I'" \\\~ 
Fig. 4. Generating rules: vocabulary 
and syntax (from [SD 

This experimental outlook turns my work into a continuous process that 
really only makes sense as a whole; in other words, my work is really a single 
piece which can only be truly understood viewed in its entirety. Although it is 
unfinished as yet, here is a glimpse into its current state. 

Early Work 

My early experiments with space-filling shapes were very methodical, using 
a square grid, a simple vocabulary, and a set of transformations. The vocabulary 
comprised simple straight lines joining certain vertices of the grid and quarters 
of circles inscribed in squares of side length 1, 2 or 3 (Fig. 4). The syntax of 
transformations comprised all the symmetries of the square grid, including trans
lation, reflection, rotation and glide reflection. I rendered these patterns in color 
in more formal pieces like the one in color plate 12 and Figs. 5 and 7. In some 

Fig. 5. Eva Knoll, Study in Green, 1995. 
Aquarelle 

Fig.6. Eva Knoll. Triangular Pattern, 
200 I. Computer generated 
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Fig. 7. Eva Knoll, Depth 
Perception, 1995. Sand
blasted glass and adhesive 
plastic 

instances, having found many patterns that were "cousins" in that they differed 
only in one aspect of vocabulary or syntax, I would combine them into one piece, 
reminiscent certainly of Escher's Metamorphosis II (page 147). 

Although there are occasional pieces designed to recall natural phenomena 
(the patterns in the background of color plate 13 resemble waves - all the more 
because they were rendered in shades of blue), most of the time, I deliberately 
stayed away from figurative art, choosing instead to focus on the structure of 
space. This conscious decision reflects some of my other influences, in particu
lar, my cultural heritage and my upbringing. Ties with Switzerland through my 
family, structural engineers in previous generations - these certainly affected 
my work. The link with Switzerland is revealed if we take a short trip through 
the art history of the last centuries. As mentioned before, until the Renaissance, 
the main focus of artists was to represent reality as accurately as possible. With 
the rise of modernity, this interest changed direction. Some movements, like 
Surrealism, tried to represent the world of dreams. Other artists experimented 
with moods and feelings engendered by what they saw. Still others focused on 
abstract art, where the interpretative element is entirely gone and forms are 
valued for their intrinsic beauty and not in relation to others [11, p.62]. The 
artists of that movement were trying to achieve for the visual arts what had been 
taken for granted in music for a very long time: 

Depuis des siecles [ ... ] la musique est par excellence l'art qui 
exprime La vie spirituelle de l' artiste. Ses moyens ne Lui servent jamais, 
en dehors de quelques cas exceptionnels ou elle s' est ecartee de son 
propre esprit, a reproduire la nature, mais a donner vie propre aux sons 
musicaux. I [14, p. 59] 

I For centuries [ . .. ] music is the perfect example of art which expresses the spiri
tuallife of the artist. The musician's means, aside from a few exceptional cases where 
music moved away from its spirit, are never used to reproduce nature, but to give life 
to musical sounds. 
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The Abstract movement quickly branched out into different directions. The 
one that interests us here is the Constructivist Movement, begun in Russia, con
tinued in Germany (where it paralleled the Bauhaus), and finally reaching, in 
some form or another, most of Europe, as well as North and South America. The 
Constructivists, instead of representing the known universe, sought to construct 
a new world in their art which would only loosely share its structure with the one 
we know in order that: 

released from its attachments to natural phenomena and bound to 
natural laws, this art gives the feeling and shaping mind, the creative 
imagination, the greatest possible freedom. This art demands three 
things from the observer: constant refinement of the senses, serenity of 
spirit, and alertness of mind. And to those who are willing to learn its 
language, it returns these three things, the most precious that we can 
possess, with interest: refinement of the senses, serenity of spirit, and 
alertness of mind. [12, p. 142] 

Because of its very general mandate, the Constructivist Movement was 
interpreted very differently in the countries that welcomed it. In Switzerland, in 
particular, artists searched for a self-expression which would bring an art that is 

non-figuratif entierement conf;u avant son execution, dont chacun des 
elements plastiques [ . .. Jest choisi et Justifie en fonction de regles 
simples, etablies la plupart du temps selon des lois matMmatiques et 
physiques et s'appuyant souvent sur la tMorie de laforme. 2 [3, p. 9] 

This passage describes the intentions of the Swiss Concrete Art Movement 
centred in Zurich and led by such artists as Max Bill, Richard Paul Lohse, 
Camille Graeser, and very marginally, Hans Hinterreiter. I, of course, did not 
become aware of this heritage until years later, when I had to explore the ante
cedents of my formal research in graduate school. It is a curious phenomenon 
to get acquainted on a conscious level with an art that has had an unconscious 
influence for such a long time, and to find out that I was not the only one who 
eschewed the figurative in order to focus more sharply on the structural. 

Besides studying the structure of space in two dimensions, I became very 
interested in the interpretation of color, not on a symbolic level, but in terms of 
its perception, depending on such factors as juxtaposition, form, and identity. 
The identity of color itself has an impact in the sense that blue, for example 
recedes, while yellow or red come forward. Further, a circular patch of red and 
a triangular patch of red do not produce the same impact. Finally, a specific 
color will appear differently when juxtaposed with a color opposite or adjacent 
in the spectrum. This experimentation is better accomplished, once again, with
out the distraction of figurative or symbolic representation. Color plate 14 shows 
some results of these experiments. The thirteen paintings all use the same design, 

2 non-figurative, entirely conceived before its execution, each one of its plastic elem
ents chosen and justified through simple rules, mostly established according to 
mathematical and physical laws and often based on the theory of form. 
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but vary in their colors, demonstrating the influence of color choice on percep
tion. Despite the richness of these two areas of exploration, after about 10 years 
I needed a new direction, a universe that would show me new things about the 
structure of space. 

New Challenges 

Looking for a new direction, I considered at first following the same path I had 
before, substituting the regular triangular grid for the square grid in the design of 
my space-fillers. Despite some interesting results (Fig. 6), this new realm proved 
disappointing, not challenging me enough. I decided instead to explore the struc
ture of 3-D space. Early signs are visible that I was to head that way eventually. 
In Fig. 7, for example, the pattern called for a spacial layering of its variations 
in order to show their relationship. The pattern and its variations were layered 
by using a 7-mm thick pane of glass on the front and back on which the differ
ent patterns were applied. This emphasized not only the relation between the two 
patterns, but created a depth effect that is all the more striking when viewed up 
close and in real life (the parallax effect adds an interesting dimension). 

From the beginning of my systematic explorations of the structure of space, 
the three dimensions proved much more complex to comprehend than expected. 
Perhaps due to my almost exclusively planar geometrical experience, I had 
begun to take for granted the snug fit of regular geometric objects. Since both 
squares and equilateral triangles (as well as hexagons) tile the plane, I assumed 
that cubes and regular tetrahedra must each fill space. That is of course only 
true of the cube: regular tetrahedra need the help of regular octahedra to prop
erly fill space. I discovered this fact the hard way, when I transferred a design 
from an inexact paper model to a precisely-shaped lathed wood piece. Figure 8 
illustrates my attempt at showing the beginning of tetrahedral space filling: join 
five tetrahedra at a common edge, effectively using the common edge as an axis 

Fig. 8. Eva Knoll, Five rotated tetrahe
dra, 1993. Lathed wood 

Fig.9. Eva Knoll, Folded 2-space, 1996. 
Acrylic paint and paper 
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of rotation. Then rotate each tetrahedron around the opposite edge. This process 
would only work if five regular tetrahedra placed in this manner spanned 3600 • 

Unfortunately, a few degrees render this untrue except in an inaccurate model: 
regular tetrahedra do not fill space! In Fig. 8, the tetrahedra had to be deformed 
slightly before they could be rotated about the second set of axes. This early 
experiment demonstrated the need for a more careful exploration of the struc
ture of space. Indeed, if my experiences with planar geometry were to come to 
any use, I needed to find a link between the two universes, a kind of metaphorical 
gateway, a method. 

To find this link, I went looking for objects and methods that involved an 
in-between world, of two-and-a-half dimensions. Origami is a good example of 
such a world. I set out to discover how a medium that can be considered two
dimensional (paper) acts in the three-dimensional world. Figs. 9 and 10 show 
some of the results of my experiments: Folded two-space shows the interesting 
way in which concertina folds can, without running parallel, remain coplanar. 
Figure 10, a sampling of origami experiments starting with a circular piece of 
paper, shows the structure of a finite circle (as opposed to the infinite circle of 
space-fillers), as well as some of its behaviour in space. This early experimenta
tion with circular origami inspired Project Geraldine that I am still involved with 
at present, which I will describe later. 

Origami, even if it allows the creation of objects that exist in three
dimensional space, remains a tool that defines surfaces, not volumes. Parallel 
to these explorations, I had not completely forsaken my space-fillers. Why not, 
then, find a vocabulary and syntax (just like I had in 2-D), that would allow me 
to fill 3-D space at will? Returning to the design parameters I had been using 
for 2-D space filling, I set out to translate them into their 3-D equivalents. The 
syntax was easy to translate: instead of using the symmetry groups of the square 
grid, I would use the symmetry groups of the cubic grid. As for the vocabulary, 
that would pose a more complex problem. First, I simplified my vocabulary so 
that it would include only the elements that were entirely comprised inside one 
square (Fig. lla). Then I set out to find all the surfaces that cut through a unit 
cube given that the said surface intersects the faces of the original cube in one of 
the curves of Fig. Ila. Although the number of these surfaces is limited, it was 
soon obvious that the search for all of them would be futile. An additional pa
rameter needed to be established. Advised by John H. Conway, I decided to limit 

Fig. 10. Eva Knoll, Origami decorations, 1997. 
Paper 



Life After Escher: A (Young) Artist's Journey 195 

• ..... , . ~ - __ ~ . i 
; 

, 
. , 

~. .......~... .. ! .......... - ...... ~ .. ; ....... -

Fig. 11. (a) Simplified Vocabulary. (b) 91 cubes: 3-D vocabulary (from [8]) 
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Fig. 12. 3-D Space-filler I 
(from [8]) 

my search to the surfaces that, following the previously defined criteria, would 
be bounded by only three or four of these curves (Fig. 11 b). Once the vocabu
lary and syntax were established, I found myself with a complete medium for 
the design of 3-D space-fillers! 

Figure 12 illustrates a simple example of such a space-filler composed only 
of eighths of a sphere of unit radius and their complementary elements (D-2 and 
E-2 from Fig. lIb). These explorations, accomplished as part of my Masters ' 
thesis, were made using SGDLsoft, a very powerful computer-modelling pro
gram developed at the Universite de Montreal. Unfortunately, static computer 
modelling does not easily allow for the playing around with 3-D objects that is 
required to determine more elaborate space-filling compound elements using the 
vocabulary and syntax described above. 

The second part of my Masters' project involved testing the method of trans
fer I had just developed on an independent system. I chose for this Opus 84 
by Hans Hinterreiter, a round painting with a diameter of 82 cm, depicting 
a deformed regular space-filling pattern [2, p.31] . This painting proved an 
interesting challenge with its layers of patterns and its high level of complexity. 
In fact, the painting was so rich in its own right that the 3-D version became too 
complex to be fully grasped (even the computer was not powerful enough!). 

Returning to the circular origami exploration, I discovered that beginning 
with the circle allowed me to subdivide my paper accurately into a regular 
triangular grid (because sin 30° = 1/2), opening the door into triangular grid 
spaces. Soon thereafter, I found that I could use this method to construct deltahe
dra (polyhedra composed exclusively of equilateral triangles) [4, p. 78, 142]. It 
was thus that Geraldine was built (Fig. 13) [9]. Thanks again to John H. Conway, 
I learned that she was in fact an endo-pentakis-icosi-dodecahedron. 

The interesting aspect of this experiment was the process of transformation 
between the flat triangular grid and the assembled deltahedron. Practical consid
erations came into play and forced additional steps in the process. After forming 
the first dimple by folding and tucking in the extra 60° of paper, I realized that 
I would end up with so much extra paper inside the polyhedron, that I would not 
be able to close it. This problem prompted me to cut off some of the excess, leav
ing enough to provide a tab to help with the stability of the shape. Repeating this 
process until the polyhedron was finished, I disassembled it again and was left 



Life After Escher: A (Young) Artist's Journey 197 

Fig. 13. Geraldine, assembled 
(Endo-Pentakis-Icosi-Dodecahedron), 
1998. Paper model 

Fig. 14. Geraldine "snowflake" fractal 
net, 1999. Computer generated 

with a strange snowflake-like shape with its own aesthetic (Fig. 14)! Using this 
method to construct a deltahedron is meaningful because every cut made in the 
"snowflake" directly reflects the shape of the polyhedron, allowing the builder 
to experience the building of the shape in a new way. 

The flat shape is built by subtraction, each cut corresponding to as-vertex 
on the assembled polyhedron. This new link between the plane and space has 
prompted further experimentation to find other deltahedra and their correspond
ing "snowflake," even to systematic exploration of the mathematics of these 
shapes [9]. In the meantime, a version of the project was completed out of 
material used for making kites, using I-meter-edge triangles. It is now being used 
in a special project in mathematics education at the Rice University Math School 
Project in Houston Texas in joint work with mathematician Simon Morgan 
(Fig. 15). The set was first used in a participatory event at "Bridges: Mathemati
cal connections in Art, Music and Science" in July 1999 at Southwestern College 
in Kansas where the audience was actively involved in the construction process, 
experiencing first -hand the relationship between the two forms of the object. This 
is the first work of mine that is intended to be experienced through its building 

Fig. IS. Geraldine, assembled, 1999. 
High-tech textile and carbon fiber 
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process. Participating in the process is important because it gives the opportunity 
to understand the shape of the polyhedron and the nature of space, the subject of 
much of my work. 

Future Endeavours 

Although my work certainly has a distinct 'air de famille,' it is difficult to say 
what is still to come. There are many possible directions still to be explored, and 
every one has unlimited potential. My approach is definitely experimental, and 
an interesting consequence of my focus on the process is that I will often let my 
hands do the figuring out, observe the phenomenon from outside in a practical 
manner and then try to understand on a rational level what is occurring. This 
leaves much room for serendipity, certainly, but has given interesting results so 
far. Stylistically speaking, this has assuredly taken me far away from Escher. 
After all, I come after him, and I am not a printer by training. Though I respect 
Escher immensely for what he has given us, I do not intend to imitate him, but 
rather to build from where he left off. This is equally true of the Constructivists, 
and of other media and traditions such as origami, which I seem to be following 
a bit as well. 
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Sharing some Common Interests of M.C. Escher 

Matjuska Teja Krasek 

I have often wondered at my own mania of making periodic drawings. 
What can be the reason of my being alone in this field? 
Why do none of my fellow-artists seem to be fascinated 
as I am by the interlocking shapes? - M.e. Escher [7] 

Escher's questions (above) would probably be different today if he were still 
among us. Today many more people share Escher's fascination with interlock
ing shapes. This was evident in June 1998 in Rome and Ravello at the congress 
which celebrated the occasion of 100 years since his birth. People in many 
professions met there with one common starting-point - the life and art of M.e. 
Escher. Why would people in disparate professions (artists, scientists) come 
together to talk about his art or to make an "Homage to Escher" with their own 
art works? I believe it is because we, like Escher, are curious about the laws of 
nature, and seek for beauty, harmony and order. And certainly because we are 
fascinated by his artistic work. 

Escher's passion was patterns, periodic drawings which he called "regular 
divisions of the plane." He also experimented with some nonperiodic tilings. As 
R.A. Dunlap writes, "Although he did not experiment with quasiperiodic tilings 
of the Penrose type, some examples of nonperiodic tilings which exhibit five
fold symmetry are known." [2] Two examples of Escher's nonperiodic tilings 
are a mezzotint Plane Filling I (1951) representing thirty-six different creatures, 
and a lithograph Plane Filling II (1957). Escher described his work with non
periodic tilings as his "(secondary) hobby for irregular fillings." [8] The only 

M.e. Escher, Plane Filling /, 1951. 
Mezzotint 

M.e. Escher, Development II (first version), 
1939. Woodcut; never printed 
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Fig. 1. A Penrose tiling 
(P3) 

known example of Escher's attempt at a nonperiodic tiling which exhibits five
fold symmetry is a carved block of wood that evidently was not printed (see 
below). However, this carving became a basis for his woodcut Development II 
(1939). More about Escher's interest and use of fivefold symmetry in his other 
art works can be found in [2]. 

The discovery and creation of patterns began a very long time ago. Recog
nizing patterns in nature and their surroundings was necessary for human beings 
to survive (the changes of seasons for example). When humans began to make 
clothes, pottery, buildings in which to live, or adornments for their bodies, they 
created new patterns. From the ancient stone pavements to the sophisticated 
computer-generated patterns of today, people want to divide the plane and seek 
for order. They also seek for patterns that are not expressed in tangible objects, 
such as patterns of behavior, emotions, and beliefs. 

The golden mean, fivefold symmetry, self-similarity, and inward infinity are 
some of the characteristics that are found in nature, art, and science that also 
influenced Escher's creativity. These also interest me as a painter. All these 
are present in Penrose aperiodic tilings and in three-dimensional quasicrystals. 
My favorite description of Penrose aperiodic tilings is Martin Gardner's: "most 
patterns, like the universe, are a mystifying mixture of order and unexpected 
deviations from order." [4] I think this is one of the reasons for the beauty of these 
particular patterns. 

Let us examine the Penrose tiling P3 (Fig. I) in which the tiles are Penrose 
rhombs - a thick one and a thin one. These two shapes are derived from a regular 
pentagon from which the special characteristics of the tiling are inherited. The 
golden mean appears in this pattern in various ways, as do fivefold symmetry, 
self-similarity, and the possibility of endless dissection of the figure into simi
lar ones on smaller and smaller scales - what I call "inward infinity." To tile 
the plane with these two rhombs, following the matching rules that produce the 
aperiodicity, is a process not without difficulties. As those who have tried to put 
the pieces together know, all can go well for awhile, and then you may not be 
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Fig.2. Teja Krasek, Quasicrystal 
World, 1996. Acrylic on canvas 

able to continue the pattern. And for a painter, there is an additional challenge: 
to tile within a rectangular frame so that its edges cut the tiles in some regular, not 
random way. One of my solutions can be seen in Quasicrystal World, which was 
exhibited at the exhibition "Homage to Escher" at the Escher centennial congress 
(Fig. 2 and color plate 25). In this painting the edges of the frame cut the tiles in 
half or in quarters. Here the basic composition of the tiles has bilateral symmetry. 
However, the arrangement of colors does not respect this symmetry completely, 
deviating deliberately from it according to a particular order. The use of opposite 
pairs of colors (orange-blue and red-green) supports the composition. 

To explore relations between the two Penrose rhombs and the regular pen
tagon, we first draw a quasicube composed of two thick rhombs and one thin 
rhomb (Fig. 3). In this drawing, two (left and right) pentagons interlace (each is 
shown in dashed outline), producing a thick rhomb as their intersection. Then we 
draw a grid inside the cube and with its help we explore what can be found there 
(Fig. 4). In the left thick rhomb of this cube, there are 18 pentagons, each with 
a pentacle inside, and they diminish to the opposite corners of the rhomb. These 
overlapping pentagons easily tile the plane of the rhomb, organized like rings 
of a chain. In the words of Ernesto Cesaro: they are "reduced by an appropriate 
factor." [6]. The appropriate factor here is the golden ratio. The thick rhombs that 
separate the two positive-negative halves of this pattern also follow this princi
ple. And we know that we can draw inside each regular pentagon or its inscribed 
star smaller and smaller stars and pentagons ad infinitum. 

The right thick rhomb of the quasicube in Fig. 4 shows how the quasi cubes 
can progressively reduce in size from the center to the corners and, conversely, 
into the center. The rhomb could be completely filled with the smallest cubes 
which have the same characteristics and contain the same information as the 
whole image. Here we can see how thin and thick rhomb are related: if a thin one 
is diagonally placed into the thick one, the ratio of the side of the thick rhomb 
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Fig.3. A quasi cube of Penrose 
rhombs 

Matjuska Teja Krasek 

Fig. 4. Teja Krasek. Filling the quasicube with 
self-similar patterns 

to the side of the thin one is the golden mean. This interplay can go on forever, 
producing self-similarity. The upper thin rhomb of the quasicube in Fig. 4 also 
shows relations between the two rhombs. Here thick ones are placed into the thin 
one and they diminish into the comers, reduced each time by a scale factor of 
the golden ratio. Each of these thick rhombs could also be filled with the designs 
present in thick rhombs below. There is another series of diminishing rhombs 
in the center of the image that divides it from top to bottom. Quasicube V is 
a color painting of a quasicube that shows relations between the shapes we have 
discussed (Fig. 5 and color plate 26). 

Fig.S. Teja Krasek, 
Quasicube V, 1997. 
Acrylic on canvas 
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In Fig. 6 (I), at the center, we have a decagon consisting of Penrose rhombs; 
this configuration can be found in the Penrose tiling P3. In this drawing, the star 
of five thick rhombs is filled with the help of the drawing in Fig. 4. In addition 
to all the relationships we have noted in Fig. 4, here there are also golden trian
gles and elements of the Penrose tiling P2, known as "kites and darts." And if we 
pay particular attention to the quasicubes in this drawing we see that they can be 
perceived both as convex and concave, similar to the phenomenon of the Necker 
cube. 

In Fig. 6 (II) we can observe a decagon in which a regular pentagon is drawn. 
Into it a pentagram is placed and we can see the many relations with Penrose 
rhombs. In Fig. 6 (III) these relations are now shown as a net. Here there are 
patterns that become smaller and smaller, scaled by the golden mean, producing 
self-similarity. Into each smallest decagon in the center of a star a smaller 
version of the whole net could be placed and this interplay could be repeated 
again and again forever. 

Fig. 6. Teja Krasek. Interplay of Penrose tiles, I, II, Ill. Drawings 
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13 

Fig. 7. Teja Krasek, An ambiguous figure. Drawing 

We know that dividing the plane into smaller and smaller similar forms was 
one of Escher's passions. Some of his beautiful solutions to this problem can be 
seen in his prints Development II (1939), Smaller and Smaller (1956), Path of 
Life I (1958), Path of Life II (1958), Path of Life III (1966), and his color drawing 
Butterflies (1950). 

In the quasicube there are other interesting aspects to observe in addition to 
relations between shapes. For example, we can find ambiguous figures or impos
sible objects. If we choose one of the Fibonacci numbers (for instance 21 cm) for 
the lengths of the sides of the Penrose rhomb, we can observe how the lengths 
of some line segments in a composition approximate successive numbers in the 
Fibonacci sequence (Fig. 7). Some similarities with the work of Josef Albers 
can also be found here. In his work Trotz der Geraden (1961), for example, he 
created an impossible figure, that is, a perceptually unstable composition. In this 
type of art work, Albers was interested in the movement of the observer's eye as 

Fig. 8. Teja Krasek, A perceptually 
unstable composition, 2000. Com
puter graphics 
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Fig. 9. Oscar Reutersvard, Opus 1 nO 293 aa, 1934. 
Drawing 

his mind tries to grasp the whole image. Similar effects can be observed in my 
Figures 7 and 8 (some variants in color can be seen on the CD Rom). 

Albers made several variants of his compositions - Structural Constella
tions, 1957/8, for example. Creating variants when some particular problem is 
already solved is one of the differences between artists and scientists. Escher also 
created variants and was interested in making optically contradictory compo
sitions or "impossible objects," just as Oscar Reutersvard was. Reutersviird's 
artwork Opus 1 n° 293 aa (1934), Fig. 9 [3], inspired my work shown in Fig. 10. 
In his drawing, Reutersviird used equal rhombs for the cubes which form an 
impossible object, while I use thick and thin Penrose rhombs which build 
quasicubes. If we compare my impossible figure with Reutersviird's, we see that 
mine seems to have a mirror-image right side added. There is another interesting 
thing about Fig. 10: the composition is ambiguous. When you stare for a while 
at a certain point (the top of the lowest quasicube in the middle column), all 

Fig.10. Teja Krasek, Impossible figure from quasicubes, 1996. 
Silkscreen 
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cubes suddenly transform from convex into concave and the whole composition 
assumes quite a different character. If at first we perceive the composition as an 
(impossible) object consisting of (apparently) solid cubes, now it is transformed 
in our minds into a composition made of boxes missing two front walls. 

With colors, we can express other relationships and highlight shapes which 
can be found in a quasicube; we can produce depth, heighten ambiguity, and 
create interesting compositions. Some of the effects that I found interesting can 
be seen on the CD Rom. 

An artist's task is to transform invisible thoughts into visible expressions and 
share them with other people. By studying different kinds of patterns we can 
somethimes reveal systems hiding in our universe. In order to know them better, 
we need cooperation between people through sharing various kinds of knowl
edge. M. C. Escher showed us with his own example in interacting with scientists 
and mathematicians that such cooperation can be fruitful for everyone who 
participates. And I think that the congress dedicated to him confirmed this, as 
does this book. 
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New Expressions in Tessellating Art: 
Layered Three-Dimensional Tessellations 

Makoto Nakamura 

When I came across Escher's tesseIIating art more than 20 years ago, it made 
a strong impact on me. Since then, I have been working on tessellating art my
self. Like Escher, I have used my tessellations to create art that is fanciful, and 
in which tightly-packed creatures metamorphose or break out of their confined 
space. Some of my tessellating art has been expressed in screen process print
ing and sculpture, but most of my work is paintings. One example of my early 
work, Wind and Wave, is shown in Fig. 1; color plates 10 and 11 show this and 
another scene. In these works, you need to look closely to find the many tessel
lations that comprise the scene. Many more examples of my tessellation art (in 
color) are on the CD Rom. 

My most recent work is to extend the idea of tessellation to three dimensions. 
In this article, I will give a brief explanation of my "layered three-dimensional 
tessellation" work, in which tiles take on thickness and form layers that fill 
space. Alternating layers are actually different tesseIIations - the figures that fit 
together to make them are not merely thickened planar tiles that fit together 
to form a thickened plane, as can be easily done with any shape that can tile 
the plane. Each figure, as you will see, fills part of three separate layers in the 
space-filling tessellation. 

This art form would be better presented in an animation than in still pictures, 
but I hope that from my computer-drawn images of the three-dimensional forms 
and their construction, you will be able to understand the essential ideas. 

Fig.!. Makoto Naka
mura, Wind and Wave , 
1993. Gouache 
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~ Layered Three-Dimensional Tessellation - Dogs 

The basic principle of each individual 
figure is to make the "body" and the 
"sub-body" (such as limbs and ears) 
which is attached to the body, in two 
layers. Most importantly, the body and 
the limbs are made of two separate 
boards in the basic patterns by using 
surface tessellation technique. 

(A) 

• Construction of Layered tessellation 

This layering is so that the sub-body will 
fill up the space created in the adjacent 
sub-body layer. 

Layer (8) 

• Construction of Plane tessellation 
Rectangu lar type Parallel movement 

Body Hind leg Foreleg 

(B) 

• Construction of Individual object 

In fitting together the tiles, in the sub
body layer. an ear belongs to the body 
below and a hind leg to the body in the 
adjacent layer. 

r \\ c Layer (A) ""\ 

lIJ~ ~lIJ 
\ 

Fig. 2. 

Layer (AI \ \. -.l 
\........:::: Layer (8). 

front view side view front view 
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Each tile is a figure (usually an animal), built in three separate layers, each 
layer cut from a thick board. The middle layer I call the body. The body is 
sandwiched between two other layers, which I call the sub-body. The sub-body 
usually consists of parts such as limbs and ears, which come in mirror pairs that 
are attached to opposite sides of the body. For each figure, the body and the sub
body are cut from two separate boards; their basic patterns are determined by 
making two planar tessellations. The tiles having the outline of the body make 
one tessellation, while the tiles having the outline of the sub-body make the 
second tessellation. The patterns must be designed so that simultaneously, two 
criteria are satisfied: (1) the sub-body parts must fit in the right positions on the 
body and (2) in the layering of the figures, the sub-bodies from the layer below 
will exactly fill up the spaces in the adjacent sub-body layer above. In some 
patterns, the sub-body is half the area of the body and in others it has the same 
area as the body. In fulfilling (2), the rule that is sometimes followed is that 
the ear belongs to the body below and hind leg to the body in the adjacent 
layer above. Such shifting of the sub-body parts between the layers can be 
designed quite freely - this is a main characteristic of layered three-dimensional 
tessellation. 

In Fig. 2, diagrams outline how a dog figure (individual object) is designed 
for a layered tessellation, and how the two separate tessellation layers of body 
and sub-body fit together to form the layered space-filling tessellation. This 
typifies the process of designing such tessellations. 

There are many variations possible in these layered tessellations. The 
tessellations in the two different layers (body layer and sub-body layer) can be of 
entirely different types (as planar tessellations), and also, layers can be stacked 
in different ways. For example, layers of the same tessellation (for example, 
the body layer) will alternate in stacking, and can be stacked with or without 
shifting, or can be rotated with respect to each other, or can be placed so that 
one is the mirror image of the other. Figure 3 outlines five variations of lay
ered three-dimensional tessellations. The dog tessellation in Fig. 2 is shown here 
as type (B). More detailed explanations follow for the other four types of lay
ered tessellations described in Fig. 3: (A) Dinosaur and (C) Cat are in Fig. 4, 
(D) Wild Goose and (E) Frog are in Fig. 5. Finally, in Fig. 6, we give exam
ples of two other layered tessellations with different layering properties. Rabbit 
utilizes a tessellation which has 900 rotations, with the sub-body half the size 
of the body and in the layering, shifted in part. Pegasus (with flying figures, 
rather than Escher's rearing ones - see page 309) has 1800 rotations in the planar 
tessellations as well as between layers, hence has 1800 rotations on four sepa
rate axes. These and additional layered tessellations can be seen in color on the 
CD Rom. 

It is probably hard to appreciate these layered three-dimensional tessellations 
by just seeing a mass of individual objects form a three-dimensional block. To 
really understand them and to appreciate them, it is essential to use a dynamic 
form of presentation to show free shifting and transformation taking place 
between individual objects and the solid mass into which they coagulate. 
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Some Variations on a Type of Basic Pattern 

Here are some variations on one type of basic pattern. These are examples of when the body, 
which is the basic element of the object, is designed in a translation, or parallel movement pattern 
in one layer in the layered three-dimensional tessellation. Even though the body is fixed to one 
shape, the limbs and other parts subordinate to the body can be divided and shifted quite freely. 
From these examples, you can see that you have more freedom in choosing a drawing method you 
wish to use than in the division of a plane surface. There are also variations other than these. 

Body 

+ 

<> 
Sub- body 

(8) 

Type 01 Sub-body; 
parallel moV9mef'1l 

Are .. oISUO-COOy: 
50 percent 01 Body 

(~ 

(0) 

(E) 

Type 01 Sub-body: 

At ... 01 Sub-body 
50 po<cent 01 Body 

Type 01 Sub-body 

~ 

Aleas Of $ub-·bOdy' 
l00porcentolBody 

Typo 01 Sub-body 
.1;-8)(1$ 1SOOrota'tKln 

Areas of Sub-body· 
50 percent 01 Body 

(Al and (B) represenlthe parallel movement with the sub· body being half the size of lhe body. 
They are classified In the same group but are shown here as examples of the dlfferenl styles of Shifting. 

Fig. 3. 
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J,.r Layered three-dimensional tessellation - Wild Geese 

• Construction in Plane 

• Construction of Individual 

" Layered three-dimensional tessellation - Frogs 

. Construction in Plane 
Rec:IarClulal type Parallel """"""'" 

(5l 

. Construction of solid 
Nested h_rcI1y of foreleg. and M1d legs 

m . Construction of individual 

Fig.S. 

The hoaow of the head fits the 
pain. of the breast and tai 

side Wow front view 
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..., Layered three-dimensional tessellation - Rabbits 

Body 

• Construction in Plane 
Square Type Two rotalJOn axes 

. Construction of solid 
No"Od hlorardly 01 oar. foreleg . and hrod tog 
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As I mentioned earlier, this art form would be best presented in an animation. 
The spread of personal computers in recent years will serve as a major factor in 
making this possible. 

The layered three-dimensional tessellation can also be used as a puzzle, 
an application other than an animation. If the joints of the animals are made 
kinetic by the modification of some parts, the mass object itself can be a three
dimensional jigsaw puzzle. 

However, I find what is most fascinating about layered three-dimensional 
tessellations is the pleasure of creation. This is certainly what sustained Escher's 
interest in tessellation. At present there are quite a few people enjoying the 
creative game of making planar tessellations, and I am one of them. I believe the 
layered three-dimensional tessellation technique, which can challenge anyone, 
will bring new pleasure to them. 



The Mirrors of the Master 

Istvan Orosz 

"La spa'chio e it maestro dei pittori" 

"The mirror is the master of the painter" 

It is Leonardo da Vinci who writes these words [1]. For Leonardo, mirror is not 
only a symbol of an everyday object or a useful tool. In these few words we can 
discern the eternal question of art: the dilemma of showing illusion and essence, 
the transcendent and empirical world. Mirror is the starting point of every visual 
presentation - to hold up a mirror to the world to face itself is the most ancient 
metaphor of art. 

Mirror and master. For me these words have recently gained a personal 
meaning. I was just preparing for the Rome congress commemorating the 
hundredth anniversary of Escher's birth when I received a letter from Bruno 
Ernst, Escher's close friend. He sent me a pencil sketch showing a mirror and 
a gate, but disposed in such a clever manner that the scene behind the opened 
gate can only be seen in the mirror (Figs. 1 and 2). Originally he offered the idea 
to Escher. He suggested that Escher make a graphic work based on the sketch 
but the ailing artist could not carry it out. Obviously the opportunity to try the 
impossible, to imagine myself in Escher's place, fascinated me. What would he 
have done with the idea, how would he have developed it further, had he had the 
strength to work on it? While I was making rough sketches based on Ernst's idea, 
I had the feeling that Escher's eyes were following me - from the anamorphic 
viewpoint of another dimension. 

Fig. I. Bruno Ernst: The Magic Gate 
and the Mirror, pencil sketch 
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Fig. 2. Reflection scheme constructed 
on the basis of the Bruno Ernst sketch 

The obvious first step before getting to work seemed to be to study Escher's 
pieces in connection with mirrors, and then those of Bruno Ernst in which 
mirrors and reflection play an important part. Then finally to collect my own 
memories: to review what I had already done with mirrors. It was unavoidable to 
also recall some other mirror depictions in art history, partly as reference point, 
or simply because I could not escape their influence on me. 

In the first step of my study - examining Escher's work with mirrors - Bruno 
Ernst's writings helped me. As is generally known, Ernst classified and grouped 
Escher's works during Escher's lifetime and was in constant consultation with 
the artist. [2] The first category was entitled Penetration qfWorlds. The prints in 
this group, just a dozen in number, are all mirror depictions. We could further 
divide this category in to two separate groups: the convex surface mirrors and 
the spherical mirrors that are simultaneously self-portraits. 

The message of the mirror self-portraits is not difficult to interpret, especially 
in light of Leonardo's words. But if we wish a more precise explanation, it is 
worth recalling a notable mirror painted about five hundred years earlier, not far 
from Escher's homeland. This is the famous convex mirror hanging in the center 
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of Jan van Eyck's painting, just behind the Arnolfini-eouple (Fig. 3). In the mir
ror you can easily recognize the painter just leaving the room. On the wall above 
the mirror there is a notice in Latin: "Johannes de Eyekfuit hie". Johannes de 
Eyek has been here. Let us try to interpret the mysterious text along with the 
mirror as if we put the elements of a puzzle together. It would go together like 
this: Johannes de Eyek has been the mirror here. This is not only the philoso
phy of the younger van Eyck, but also that of art in general, and the most explicit 
formulation of the artist's role. So according to Jan van Eyck, the artist is nothing 
else but the mirror itself, and this idea is expressed by Escher's spherical mirror 
self-portraits as well. 

It is also worth examining the painting of the Arnolfini Portrait because we 
can consider it as an early expression of the idea suggested by Bruno Ernst. To 
show a hidden part of the scene by means of a mirror: this was Jan van Eyck's 
idea. Something very similar happens in the Las Meninas painted by Diego 
Velazquez (Fig. 4). In fact, if we change the position of the painter and the 
couple we get nearly the same setting. Velazquez shows only the reflection 
of the otherwise invisible Royal couple. They are represented in the mirror 
hanging on the back wall of the atelier and we understand that they must have 
been standing in the unrepresented foreground just at the same place where we, 
the viewers, are standing now (Fig. 5). Both pictures are among the most enig
matic paintings of European art and the most important message they convey is 
to make perceptible the escape from a traditional depiction of space. 

Fig. 3. Jan Van Eyck. Giovanni Arnolfini and his Bride, 1434 
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Fig. 4. Diego Valazquez. Las 
Meninas, 1656 

Fig. 5. The reflection scheme of the painting Las 
Meninas by Diego Velazquez 
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Mirrors and Perspective 

A second type of mirror depiction is characterized by the approach Escher used 
in his lithograph Still life with Mirror (Fig. 6) and in his woodcut Still life and 
Street. In both works the external space appearing in the mirror and the internal 
space surrounding the mirror is united in one single coherent view. The 
perspectives of both the spaces outside and inside the mirror lead to one 
common vanishing point so naturally that we can only guess we are already 
"inside" and just stepping through the surface of the mirror as if we had joined 
the ancient Chinese painter Vu Tao-ce [3]. 

Mirror and perspective are inseparable from the beginning. Let me refer to 
the famous experiment of Brunelleschi with the mirror and the hole in the picture 
and in which he is said to have demonstrated perspective for the first time. In that 
picture he delineated the Florentine Baptistry viewed from the main door of the 
cathedral. We know from the contemporary accounts and memoirs [4] that there 
was a small hole in the middle of the painted panel. The spectator was required 
to stand in the doorway of the cathedral and to peer through that hole from the 
back of the picture at a flat mirror held in such a way as to reflect the painted 

Fig. 6. M.e. Escher. Still Life 
with Mirror. 1934, litho
graph 
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Fig.8. Comparing the holed picture to 
reality with the help of a mirror 

Fig. 7. The scene sketch of the Brunelleschi experiment: 
the making of the first perspective picture with the help 
of two mirrors as I imagine it 

surface. If the mirror was removed, the viewer could see the Baptistry itself so did 
not notice any change. The descriptions of witnesses were recorded to document 
and to understand the demonstration, but there is no indication in the memoirs 
how Brunelleschi constructed the geometry of the painting in order to create the 
illusion of the space. Art historians suppose that in this work Brunelleschi used 
the technique of linear perspective: the same procedure that was described by 
Alberti about twenty years later. [5] 

I believe that Brunelleschi used a mirror not only for the demonstration, but 
for the creation of the illusion as well. It is clear from Manetti's memoir that the 
picture itself was painted onto a mirror. r6] It makes sense to paint a picture on 
a mirror if the image appears as a reflection in the mirror - the painter merely 
needs to copy that reflection onto the surface of the mirror. During this proced
ure it is most important to keep in mind the viewpoint of the observer. In order 
to fix the same point of view, the most practical solution is to peer at the mir
ror with only one eye, through a hole in fixed position. Presumably Brunelleschi 
used a setting of mirrors when he made the "first perspective". When I attempted 
to draw the scheme of that assemblage, I found that this is not far from the idea 
in Ernst's sketch (Figs. 7 and 8). 
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The discovery of perspective, or rather the fact that Renaissance artists 
began to apply perspective so it became part of European thinking, brought about 
a crucial change not only in art, but in the philosophical sense of self as well. The 
consequences of that invention can hardly be overestimated. The world as it had 
been commonly perceived and experienced by everyone suddenly changed. Let 
us imagine the grids with which one constructs perspective, the often-mentioned 
pyramid of Alberti. This is the configuration of visual rays on a plane as they 
proceed from an object into the eye in a pyramidal form. If we move to the right 
or to the left, or viewpoint changes so no longer is anything we see eternally 
fixed. The infinity of the world is there at the base of the pyramid of rays, and 
at its opposite end, at the apex of the pyramid there is that certain point, our eye, 
what we may call the Archimedean point. And so there we discover the Self. The 
invention of perspective, the idea of infiniteness and the sense of personality as 
being alone are all pieces of the same story, begun in Italy. And in this continu
ing story, in its twentieth century chapter, Escher played a main role. Perspective, 
infinity, personality: he weaves these three elements ad absurdum in his art. 

Mirrors and Illusion 

Another use of mirrors by Escher can be seen in his lithograph Magic Mirror, 
made in 1946 (Fig. 9). In this print especially, the shape of the mirror and its 
diagonal placement reminds us most of the Bruno Ernst sketch. As if it had been 
inspired by Lewis Carroll tales, the magic mirror wittily transforms reality and 

Fig. 9. M.e. Escher. Magic Mirror, 1946, lithograph 
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illusion into each other. The little winged fairy creatures are going round and 
round in an endless procession. The mirror in the center of the picture is their 
place of birth and rebirth. They step out from the mirror into reality as three
dimensional beings. In the lithograph, the task of the magic mirror is to reflect 
reality and to create new reality all at the same time. Bruno Ernst possibly wanted 
to refer to this, to the creation of new reality when he chose the title Magic Mirror 
for his book on Escher [7]. 

When the Bruno Ernst sketch in Fig. 1 was drawn (or at least when Ernst 
showed it to Escher more than twenty years after the print Magic Mirror was 
finished), the master was already interested in other things. Perhaps foremost 
was "impossible objects". From 1958 to 1961 he produced his three significant 
lithographs Belvedere, Waterfall and Ascending and Descending, which are 
considered the height of the oeuvre. The "most Escherish Eschers", as Bruno 
Ernst put it, are probably the best known faces of the artist. These are drawable 
but unrealizable forms in the three dimensional world. "Whoever Makes 
a Design without the Knowledge of Perspective will be Liable to such Absurdi
ties as are shewn in this Frontspiece" was written by Hogarth in 1754 under one 
of his engravings in which he collected the most preposterous impossibilities 
(allegedly he wanted to make a dilettante aristocrat appear ridiculous) [8]. 
At nearly the same time the Italian architect Piranesi made his Imaginary 
Prisons [9] in which he broke with traditional perspective views, constructing for 
the first time whimsical dreamlike spaces, in which walls, arches, and columns 
do not obey the academic rules of geometry but rather the impulsive expression 
of the artist. 

For Escher, the constructing of impossible objects probably meant an escape 
from the burden of formal geometry, but it did not mean getting rid of the rules 
as in the case of Piranesi, and it did not mean the parody of paradoxes as with 
Hogarth. "If you want to express something impossible, you must keep to certain 
rules," he said in one of his lectures. [10] I think we may suppose that if Escher 
had dealt with Ernst's offered idea, he surely would have made use of his experi
ence gained while drawing impossible forms. We may also suppose this because 
later Ernst himself turned in that direction. I do not know if the discussions 
between Ernst and Escher played any part in the fact that in his photographs 
Ernst analyses the connections between impossible objects and their reflections. 
In one of Ernst's works he builds up - seemingly precisely - the best-known and 
most simple impossible object, the Penrose tribar [11], but the strangeness he 
creates become obvious only when it is viewed in a mirror placed beside the ob
ject. The angle of the mirror reveals that the slats that make up the tribar are twice 
broken and twisted (Fig. 10). I feel a sickening uncertainty when I see the same 
set of objects in different roles in a second photo. Here, by changing the position 
of the camera (which is our point of view), the object seen in the mirror becomes 
impossible. The conclusion might be that the impossible is true and the real is 
false. 

Other artists as Shigeo Fukuda and Sandro del Prete also notice that forms 
considered impossible are not realizable, but only for a traditional and conven-
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Fig. 10. Bruno Ernst. Photograph of an impossible tribar, 1985 

tional way of thinking. In a more cunning view - if you like, with anamorphic 
vision - they are not unreal [12]. It is not by chance that I use the word anamor
phosis. [13] I admit I have been dealing with this field of art for over a decade. 
Anamorphosis was developed at the time of the High Renaissance and art works 
employing this technique were popular in the 16th and 17th century. The tech
nique has been more or less forgotten since that time. Art historians use this 
word for distorted figures without meaning which gain their message only when 
viewed from a particular angle or through a special lens or in the surface of 
a mirroring object. Perhaps my mirror games and experiments gave Bruno Ernst 
the idea to send me the drawing originally meant for Escher. The mirror cylin
der of the anamorphoses, and the mirror appearing in the Ernst's sketch fulfill, 
in fact, the same function, as both make the hidden meaning of the picture visi
ble. In the first case the mirror is part of the drawing while in the second case it 
is a real object which is independent of the picture. The crucial difference is not 
this, but the character of the picture appearing in the mirror, "the picture in the 
picture." In contrast to the two-dimensional reality of the drawing, the image of 
the anamorphosis is just a virtual phenomenon, which is not obvious either in the 
flat figure in the print or on the surface of the mirror placed onto the print. "Two 
and a half-dimensional speculation," we can say, referring to the two Latin words 
speculum and speculari, meaning mirror and thinking. Thus we may interpret the 
connection between them as: to think means to reflect. This way, reflecting and 
thinking are two parts of equation - this message is also included in Leonardo's 
words on the master. 
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Mirrors in My Work 

From among my works prepared for the Escher Congress I think the etching The 
Well (Figs. 11 and 12) is the nearest to realizing Bruno Ernst's idea, at least if 
I think of his notion to show a fairy-tale landscape behind the gate. The Amalfi 
bay coast is an enchanting fairy tale-like place and it was an exceptionally special 
place for Escher who has described his beautiful time spent there. In my print, I 
designed the front side ofthe gate in the wall so as to embed Escher's self-portrait 
of 1934, which can be made visible in a mirror cylinder placed on the drawing of 
the well. (In other words, it can only be seen anamorphically). I have mentioned 
that towards the end of his life, impossible spaces and objects attracted Escher. 
I, too, have been attracted to the depiction of impossibilities. In my work Up and 
down (Fig. 13) I tried to draw an impossible mirror which is able to show or 
reflect the two staircases behind two doors opposite each other. The Swan 
(Fig. 14) is also an example of a paradox of reflection. Not only is the reflection 
of the bird strange (the left and right sides are changed), but also the impossible 
pavillion seems to be possible when it is reflected on the surface of the lake. 

Fig. 11. Istvan Orosz. The Well, homage to M. C. Escher and Bruno Ernst. 1998, etching 
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Fig. 12. Istvan Orosz. The Well, 1998, etching with mirror cylinder 
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Fig. 13. Istvan Orosz. Up and Down, 1998, 
etching 

Istvan Orosz 

Fig. 14. Istvan Orosz. The Swan, 1996, 
etching 

Fig. IS. Istvan Orosz. Johannes de Eyekfilit hie, 1997, etching 
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Fig. 16. Istvan Orosz. 
Arnolfini-anamorphosis, 
etching, 1996 
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Johannes de Eyck fuit hic (Fig. 15) is the title of my drawing that uses 
elements of the Arnolfini painting; here I attempt to show the world behind the 
door with the help of two mirrors. My Arnolfini anamorphosis (Fig. 16) is a sort 
of "double reflection". I meant to present the famous spherical mirror - hanging 
in the background of the Van Eyck picture - in such a way that the viewer should 
recognize the distorted figures only on the surface of a special mirror cylin
der. My Escher-anamorphosis (Fig. 17) is also a kind of "double reflection". I 
anamorphic ally distorted one of his self-portrait lithographs framed in a circle so 

Fig. 17. Istvan Orosz. 
Escher-anamorphosis 
(for Kelly Houle) 
etching, 1998 



228 Istvan Orosz 

Fig. IS. Istvan Orosz. Ba/cony, 1997, 
etching 

that the original image can be recaptured only in the reflection of a mirror cylin
der. (I dedicated this work to Kelly Houle who made several interesting examples 
of double reflections and anamorphoses.) In my etching Balcony (Fig. 18) I have 
studied the reflection coming from a combination of two viewpoints realized in 
a paradoxical space. 

Although I began with a study of Escher's works, and the Ernst sketch greatly 
influenced my way of thinking, still (unconsciously or perhaps consciously) I 
have created my own independent works. In following my own way, I wanted 
to be faithful to the mirror. Let me quote Leonardo again: "L'ingegno del pittore 
vuol'essere a similitudine dello specchio" [141. That is, "The spirit of the painter 
must become similar to the mirror." Leonardo makes clear that very human 
attitude in which we as individuals refer to everything in relation to ourselves, 
that is, as a reflection in a mirror. We are unable to see, to feel, to perceive 
anything objectively, separated from ourselves. To think, to write a poem, to 
create a piece of art, or to look into a mirror, these are basically all the same. 
When we wish to find the spirit of Escher's work, I feel it is important to 
realize the individual gesture of turning to the mirror. In this gesture, one cannot 
be an outsider; so Escher gave up depicting a certain part of the world he saw. 
For me, Leonardo's words say that in the mirror of my works Ernst is reflected 
in a way, and he is there in Escher's work, and in Escher's work Leonardo's face 
also dawns a bit. And so on. 
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Tilings and Other Unusual Escher-Related Prints 

Peter Raedschelders 

Mathematics is beauty. For most people, this is hard to understand. Mathematics 
is often synonymous with strange symbols and formulas, which are understood 
only by mathematicians. How can something that is pleasing to look at be the 
result of these formulas? One can use these formulas to make graphs, and as soon 
as we use these graphs for making drawings, strange things happen. At first sight, 
these drawings have little to do with mathematics. However if one looks closer, 
the mathematics behind the drawings becomes clearer. Many of M.C. Escher's 
prints can be considered to be "mathematical." For most people, these prints were 
their first and only acquaintance with this kind of drawing. Escher often claimed 
that he understood little of mathematics, but nevertheless many of his prints are 
the result of it. And who is to say that the prints of M.C. Escher aren't beautiful? 

Creating Escher-like patterns is a real challenge. The challenge is to make 
such drawings without copying Escher and of course without trying to be as good 
as Escher, because that would be quite impossible. For my prints, mathematics 
is often used as a starting point, but not always. Sometimes simple paper folding 
gives a new idea for a print. But all my prints are the result of the M.e. Escher
challenge. And there is no need to be a mathematician or an artist to create 
these kinds of drawings. The prints here are the result of a hobby and a lot of 
patience by a non-mathematician and non-artist. These prints illustrate a number 
of techniques for creating Escher-like patterns. 

All the drawings are made by hand and afterwards prints are made from them. 
The computer was only used as an aid to prepare some preliminary sketches and 

Fig. 1. Grid of hyperbolas on which 
Fig. 2 is based 
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graphs. We will explain in general terms some of the methods used and we hope 
to stimulate your imagination to create these kinds of drawings on your own. The 
definitions used are not completely mathematically correct, but, we hope, clear 
enough for you to understand the ideas. 

Hyperbolic Turtles 

A tiling consists of a set of tiles that covers the plane without gaps or overlaps. To 
be regular, all tiles have to be of the same size and shape. But it is also possible to 
create tilings with tiles that have the same general shape, but which are deformed 
slightly from one tile to the next. 

In order to make this kind of tiling, the first thing that is required is a basic 
tile: a turtle in our first example. The turtle is simply a rectangle that has been 
deformed. Finding this deformation is part of the game. The turtle was the 
result of a lot of trial and error, but now there is some good computer software 
that greatly reduces the time spent finding a basic tile. Having found the turtle 
we could now make a regular tiling, but Escher had already done that so we tried 
to make something different. Since a grid of hyperbolas contains deformed rect
angles (Fig. I), and because the turtle is itself a deformed rectangle, a solution 
was easily found (Fig. 2). 

Fig. 2. Peter Raedschelders, Hyperbolic Turtles, 1984 
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Turtles with a Limit 

In Fig. 3, the same turtles are now deformed in order to make a tiling with one 
border as a limit. This was the first step in our search to find a tiling that was com
pletely surrounded by border limits. Escher produced a tiling of reptiles with just 

Fig.3. Peter Raedschelders, Turtles with 
Border Limit, 1984 

Fig. 4. M.e. Escher, Regular Division o/the 
Plane VI, 1957. Woodcut 

Fig.S. M.e. Escher, Square Limit, 1964. Woodcut Escher's grid on which Figs. 4 
and 5 are based 
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one border as limit (Fig. 4). In making this, he succeeded in making a repetitive 
division of the square that also could be used as the underlying division 
in his print Square Limit (Fig. 5), that is completely surrounded by border 
limits. Escher's studies for these self-similar "division" prints (mis-identified 
as studies for Smaller and Smaller) can be seen in [5, pp. 68-69]; his explana
tion is in [1, pp. 168-169], and Bruno Ernst's explanation is in [3, pp. 103-105]. 
Unfortunately we were unable to go further with our Turtles border limit tiling. 

Seals 

The tiling in Fig. 6 solves our problem: it can be completely drawn on one 
sheet of paper, and the sides have border limits. The basic idea is quite simple: 
divide the central square into two isosceles right triangles, place on each side of 
these triangles smaller isosceles right triangles and repeat this procedure. This is 
similar to Escher's procedure. 

It is clear that the triangles can be used as tiles. The second process is to de
form each tile into a recognizable object or animal. First, each side of a triangle 
has to be replaced by the same curve or the same set of lines. Due do the 
symmetrical aspect of the two largest triangles, the curve itself has to be 
symmetrical. Secondly, one has to imagine the new form as an object or animal; 
in this case we recognized a seal. The result is a non-regular octagon filled with 
seals, similar in concept to that of Escher's Square Limit. 

Fig. 6. Peter Raedschelders, 
Seals, 1985 
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Butterflies 

The starting point for the print in Fig. 7 was a regular hexagon. Again we tried to 
make a tiling with border limits but the results turned out differently than that in 
Fig. 6. Here, the boundary is a fractal. We can never reach the final border of this 
tiling in a finite number of steps. Instead of a regular border limit, it has several 
point limits within the tiling. It was impossible for us to use a single tile to fill 
the pattern completely, so we were forced to invent two kind of tiles. Both tiles 
were deformed into different types of butterflies. 

Due to the form of the butterflies, the tiling has some gaps, so it is certainly 
not perfect from a mathematical point of view. But again, with the help of some 
simple mathematical forms, we have created some beauty or at least something 
pleasing to look at. The center of this print is reminiscent of Escher's symmetry 
drawing 65 with moths, based on squares rather than hexagons [7, p. 167]. 

Fig. 7. Peter Raedschelders. Butterflies, 1985 
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Stegosaurs 

Sometimes simple paper-folding gives an idea for making a tiling. Take a sheet 
of square paper. Fold the paper in half diagonally to make an isosceles right 
triangle. Now take one 45° corner of the triangle and fold it into the other 45° 
corner, making a smaller isosceles triangle of half the area. Repeat this process 
to make ever smaller isosceles right triangles. You will obtain a set of triangles, 
each of them half the size of the previous one. This set of triangles can be used 
for making a tiling (see below). 

The grid on which Fig. 8 is based 

Fig. 8. Peter Raedschelders, Stegosaurs, 1994 
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At the time I did this division into triangles for Fig. 8, my daughter Bar
bara was very interested in dinosaurs, so I decided to deform each triangle into 
a stegosaurus. The problem was that the complete tiling filled only half a square. 
As a result, this set of triangles was not very useful for making a good-looking 
print. In order to solve this problem, the stegosaurs were drawn in their natural 
environment. 

Tropical Fish and Five Snakes 

Sometimes a mathematical sketch results into two totally different prints. Until 
now we have considered the grids used for the tilings as flat. But what happens if 
one considers the grids as being 3-dimensional? A grid of squares on the walls, 
floor, and ceiling of a bathroom can be filled with square tiles, and the result is 
a tiling of a three-dimensional surface. However the same grid can be used to 
define 3-dimensional cubes. These cubes can then be used to draw houses. Now 
the grid is considered to be 3-dimensional. 

First we take a grid of hyperbolas (Fig. 9a) and fill it with tropical fish, obtain
ing Fig. 9b, a tiling of the same type as the tiling with turtles of Fig. 1. The only 
difference between these two prints is that for the turtles we used four "axes," 
whereas for the tropical fish we used five. 

Next, we take exactly the same grid with the same hyperbolas on it, but now 
use it to build a three-dimensional structure, in the same way as drawing houses 
using a square grid. The hyperbolic grid also shows "squares" but now they are 
curved. The result (Fig. 9c) differs totally from a tiling: complex curved surfaces 
appear. Five snakes live in this world, and if one looks very carefully, one can 
see that the snakes live on a single surface. Probably the only place where such 
a world could exist is somewhere far away in the universe. 

Fig.9. (a) Grid of hyperbolas on which prints 
on next page are based 
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City with Tunnel 

(b) Peter Raedschelders, 
Tropical Fishes, 1993 

(c) Peter Raedschelders, 
Five Snakes, 1994 
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There exist other strange worlds. Only a small number of people live there, so 
the city is rather small in Fig. 10. Not only small but also dangerous. You can 
safely take a walk around the city but take care that you don't fall into the tunnel 
(at the top of the square). If you do fall into that hole, don't panic, just follow 
the tunnel. After some time you will see the end of the tunnel. If you then come 
out, you will be at exactly the same spot as where you entered the tunnel. You 
will see the same buildings, the same city, but you are on the opposite side of the 
square! 
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Fig. 10. Peter Raedschelders, 
City with Tunnel, 1993 

Once there was a mathematician who lived in this city. He suggested building 
a dome at the underside of the square covering the complete "under-city." In that 
case the whole city would be built according to a mathematical model he once 
described. The city with dome is a Klein Bottle, named after the German math
ematician Felix Klein (1849-1925). Escher also created such imaginary worlds: 
Double Planetoid (page 37) and Tetrahedral Planetoid [1, cat. no. 395]; large 
reproductions of these and studies for them can be seen in [5, pp. 94-97]. 

a b 

(a) If one looks at the city in Fig. 10 from the right side, it looks like this, only the tunnel is 
enlarged. Deforming the tunnel does not change the topology of the city. (b) After building 
the dome, the city looks like this; it is a Klein bottle 
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Space 

As soon as the third dimension is involved, the problem of perspective occurs. 
When we draw a cube, we usually use three vanishing points to draw it in correct 
perspective. Depending on the position of the cube in relation to our eye, there 
are different vanishing points. But what happens when we draw a cube with four 
vanishing points, one to the left, one to the right, one up and one down? To show 
this, we need several cubes placed next to each other and on top of each other. 
We repeat this process in order to build a real three-dimensional structure, and 
in order to give it more depth, we place some "space-animals" in it. The print 
in Fig. 11 consists of 54 triangles, all with the same pattern of lines. Escher used 
ordinary perspective in several of his prints, but he used non-standard perspective 
in House of Stairs [I, cat. no. 375], [5, pp. 120-126]. 

Fig. II. Peter Raedschelders, Space, 1994 
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Ducks 

One of the unsolved problems with tilings is, "Does there exist a single tile 
which forms an aperiodic set ?" This means that every tiling made with copies 
of this tile is necessarily nonperiodic. If we take a copy of a tiling and move 
it in a certain direction over a certain distance, we say that the copy has been 
translated to a new position. It is often possible that the copy coincides with 
the original tiling. If we can do this in two non-parallel directions, the tiling is 
periodic. If we can't do this, it is nonperiodic. The print Turtles with border limit 
(Fig. 3) is nonperiodic, because there is only one direction of coincident move
ment. We used turtles with the same shape but different sizes in that print. What 
we are searching for is a nonperiodic tiling with identical tiles, all the same size 
and shape. So the unanswered question is: "Is it possible to find a tile so that 
using identical copies, it is only possible to make tilings that are nonperiodic?" 

During our search for this special tile, we did not find it, but we found a tile 
(Fig. 12a) that makes nice nonperiodic as well as periodic tilings. This tile is 
based on a hexagon (Fig. 12b). We deformed the tile into a duck, and made 
a nonperiodic tiling with the duck tile. 

In the center of the print (Fig. 13) there is a infinite row of black ducks all 
facing left. As soon as this first row of tiles is drawn, all other rows of ducks are 
forced, that is, the position of all other ducks in the tiling is completely deter
mined; there is no other way possible to complete the tiling. If you try to place the 
ducks in another way, after a while, you will find places where the ducks don't 
fit properly. There will be gaps or overlaps, and of course this is not allowed. 

The duck has six different orientations because its form is based on 
a hexagon. We colored three orientations black, and the other three white. 
Because all rows (except the center one) are forced, the different triangular 
groups of ducks, which are visible in the print, are also forced. Each of these 
triangles has 2n - 1 ducks. 

Let us take a look at the left triangle with size 7 (above the center row). 
Not counting the ducks at the vertices, the triangle consists of 7 ducks of the 
center row along the bottom, 7 black ducks facing up on the left side and 7 white 
ducks facing down on the right side. At the top vertex of this triangle there is 
again a black duck facing up. It now appears that we have the same pattern if we 
take the triangle of size 7 on the right side (above the center row). This would 

a b 

Fig. 12. The duck tile, based on a regular hexagon 
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Fig. 13. Peter Raedschelders, Ducks, 1995 

mean that we have found a first direction of translation, and if we could then find 
a second one, the print would be periodic. But look at the duck at the top vertex 
of the triangle on the right side - it is a white duck facing down, and since all 
rows are forced, we had no choice for the orientation of this duck. So the two 
triangles including their top ducks are not the same. Thus there is no translation 
to the right or left by 8 duck lengths. So we don't have periodicity for two 
triangles of size 7. Since we can repeat this procedure for all sizes of triangles, 
the print is non periodic. It can also easily be seen that the triangles grow bigger 
and bigger and that there will be no second infinite row somewhere that looks 
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the same as the center row. This second infinite row would also be necessary to 
have periodicity. 

When looking only at the coloring (and not at the orientation of the ducks), 
one probably thinks that the tiling is very symmetrical (not considering the 
central row of course) with respect to a change of colors across a center line. It 
seems that every black duck above the center row has a white counterpart at the 
same place under the center row. But once again this is not true. It is important 
to remember that all rows are forced, which means that the orientations of all the 
ducks in each row are also forced. Since the coloring is orientation-dependent, 
the coloring of the tiling is forced too. Now look at the top row of the print. Only 
part of that row is drawn. On the left there are black ducks, on the right white 
ones. If the coloring of the print were symmetrical with respect to a center line, 
the bottom row of the print would be white on the left, black on the right. But 
just the opposite is true. So the coloring of the print is not symmetrical. 

Thus we found a single tile which allows a nonperiodic tiling. If this tiling 
were the only one possible, then the problem of finding one aperiodic tile would 
be solved. But as we mentioned before, this duck tile also allows periodic tilings. 
In Fig. 12b, we showed that the duck tile was based in a hexagon. The three 
comers are labeled A, Band e. For the two sides of the hexagon that meet in 
comer A, comer A is a rotation center. The same is true for the sides that meet in 
comer B and comer e. According to the "Escher Hexagon" theorem discussed 
in [7] and [6], the duck tile is an "Escher Hexagon". Escher used the "Escher 
Hexagon" to produce several periodic tilings, including his most famous one by 
lizards, his symmetry drawing 25 (page 427). 

The "Escher Hexagon" is based on a convex hexagon tile that Escher read 
about in a paper by the mathematician F. Haag. Haag showed that a such 
a hexagon will tile the plane in a periodic way and Doris Schattschneider was so 
kind to inform me that the duck tile can be considered as of this type [8]. So the 
duck tile can produce periodic tilings. For the periodic tiling we didn't deform 
the tile into a duck, but we deformed it into a cuddly animal (on the CD Rom). 
The cuddly animal looks different from a duck, but the properties of the tiles are 
the same. 

Conclusion 

Often simple ideas lead to beautiful tilings (with or without recognizable tiles) 
and this world, the world of tilings is the domain not only of mathematicians. 
To enter this world all you need is a piece of paper and a pencil. Escher made 
masterpieces of tilings and together with them he gave us a challenge to create 
similarly-inspired patterns. We can admire the masterpieces and we should 
accept the challenge. With the help of some mathematics, some imagination, and 
a lot of patience, as an honour to M.e. Escher, we can meet this challenge to 
show that mathematics is beauty. 
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Escher-Like Patterns from Pentagonal Tilings 

Marjorie Rice 

My first acquaintance with tiling pentagons was from Martin Gardner's "Math
ematical Games" columns in Scientific American magazine, in July and in 
December 1975. Although every triangle and every quadrilateral can tile the 
plane (that is, fill the plane with congruent copies, without gaps or overlaps), 
only certain types of pentagons can tile the plane. Until Gardner's article, it was 
believed that all such types were known; there were eight different types. 

I became fascinated with the subject and wanted to understand what made 
each type unique. Lacking a mathematical background, I developed my own 
notation system and in a few months discovered a new type which I sent to 
Martin Gardner. He sent it on to Doris Schattschneider to determine if it truly 
was a new type, and indeed it was. 

That was my first contact with Doris and from that time on we corresponded 
concerning pentagon tilings. It was because of her interest and encouragement 
and the information which she sent me that I continued on in the search that 
eventually led to the discovery (over a two-year period) of three other new types 
that were named types 11, 12 and 13. (Although my first discovery was named 
type 9 because it was similar to the last three types of those reported by Gardner, 
a computer scientist from California had actually discovered the first new type, 
which was named type 10.) A detailed account of these discoveries is given in 
the chapter "In Praise of Amateurs," in The Mathematical Gardner [5], and more 
mathematical details of the whole pentagon tiling story are given in [6]. 

I should mention that all the new types of tiling pentagons that were 
discovered had the property that they can only tile the plane in a manner called 
non-tile-transitive, or non-isohedral. Essentially, that means that although all the 
tiles in such a tiling are congruent, it is possible to choose two tiles in the tiling 
for which every rigid motion that sends one chosen tile onto the other does not 
send every tile of the tiling onto another tile of the tiling (in other words, the 
tiling is not invariant under these motions). On the other hand, for each new 
type, there was a block of two tiles or a block of three tiles for which the tiling 
by the block was isohedral. Such tilings are called 2-block or 3-block transitive 
(or 2-isohedral or 3-isohedral). I set out to determine all possible 2-block and all 
3-block transitive tilings by congruent pentagons. 

During the search I came across many new tilings by pentagons. Usually 
they were produced by different ways of juxtaposing either types 1 or 2, the 
most common types. I would send them to Doris and she continued to send me 
helpful information on the subject, including manuscripts, booklets, and arti
cles from mathematical journals. Through her efforts some of my tilings were 
printed in articles about pentagonal tilings (see references). In 1993 she sent 
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(a) (b) 

Fig.1. (a) A symbolic diagram that shows how angles of copies of a pentagon come 
together in a tiling, and which sides are equal to each other. (b) A portion of the pentagon 
tiling determined by the conditions shown in (a) 

computer printouts from a program "Reptiles" by Daniel Huson which could 
be used to find combinatorial information on all of the possible kinds of 1-, 2-
and 3-isohedral edge-to-edge tilings by pentagons; there were 73 tilings in all, 
with just seven that were isohedral. The "Reptiles" program could not deter
mine when in a 2- or 3-isohedral pattern the pentagons in a block were forced to 
be noncongruent or if they could possibly all be congruent. That was what I set 
out to determine, using an exhaustive case-by-case search of all 66 possibilities. 
When I finished the search I was glad to find that while all of the 1- and 2-
block tilings were already in my collection, there was a new 3-block tiling by 
congruent pentagons to be added. 

The diagram that was my key to finding the different tilings is a small five
sided shape like the little houses children draw. Each corner represents an angle 
of the pentagon; they are labeled A, B, C, D and E, with A at the peak and running 
counterclockwise. Figure lea) is a typical diagram. Symbols connecting certain 
corners are drawn inside the diagram to indicate which corners meet in the tiling. 
One symbol is a tent-shape that stretches to three corners that come together in 
the tiling; those angles sum to 360°. A single line stretched to two corners means 
that those corners are joined in the tiling; their angles sum to 180°. If those two 
corners are each 90° angles, they are marked instead with a small v shape at each 
corner instead of by a line joining the two corners. A 120° angle at which three 
tiles will join at one point is indicated by two v's stuck together, and a 60° angle 
at which six tiles will join together at one point is indicated by the same sym
bol with a bar across the center. When two of one angle and a different angle 
come together in the pattern and sum to 360°, the two angles are joined by a "Y" 
symbol, with the fork in the corner of the repeated angle. Another symbol, 
a small v fastened to the top of the tent shape, indicates four angles coming 
together in the pattern; here, two same and two different angles sum to 360°. 

These symbolic diagrams give a signature for a possible tiling and allow 
one to quickly see the angle equations that must be satisfied. In a diagram 
for a 2-block tiling, every corner must be touched exactly twice (every angle 
in the pentagon is "used" exactly twice in the equations), and similarly, in 
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a 3-block tiling, each comer of the diagram is touched three times. For example, 
the diagram in Fig. 1 (a) gives the angle equations 3C = 360°, B + D + E = 3600 

(twice), 2A + B + D = 360°. An additional equation (true for every pentagon) is 
A + B + C + D + E = 540°. This, combined with the second equation, implies 
A + C = 180°, indicated by a dashed line. For this particular diagram, the list of 
all five equations completely determines the angles of the pentagon: A = 60° , 
B = 150°, C = 120°, D = 90°, E = 120°. 

The possible ways in which the angles come together also determines which 
edges must have equal length. In Fig. lea), for example, the condition that three 
copies of angle C come together requires that BC = CD, and other equations 
require that AB = DE = EA. The equal sides are marked on the symbolic 
diagram in the usual manner. Figure 1 (b) shows a portion of the tiling with this 
particular pentagon, satisfying all the conditions diagrammed in l(a). (It turns 
out that this particular pentagon, which is of type 1, can tile the plane in many 
other ways as well.) In 1999, the pentagon tiling in Fig. l(b) was rendered in 
glazed ceramic tile and installed by the Mathematical Association of America in 
the entrance foyer of their national headquarters building in Washington, D.C. 

A signature for a possible tiling may produce incompatible equations, or 
equations for which a convex pentagon cannot exist, or require conditions on 
sides that cannot be satisfied. Thus in considering all the theoretical possibili
ties, many are discarded as impossible for a tiling pentagon. This is especially 
true when blocks larger than two are considered. There are only a small number 
of three-block possibilities that are successful. 

From Pentagons to Escher-Like Patterns 

Those who are familiar with Escher's quest to understand and formulate rules to 
make shapes that interlock and fill the plane know that some of his early efforts 
were based on altering the outlines of polygons that tiled the plane in interest
ing ways. He would study the geometric relationships between a tile and those 
that surrounded it and then gradually tinker with the outline of the tile until it 
became a "recognizable" shape but retained the same geometric relationships to 
all the tiles that surrounded it [9]. This is a technique that I have applied to some 
interesting tilings of the plane by convex pentagons. 

There are many different shapes of pentagons that will tile the plane, but 
only certain ones have the qualities necessary to transform them into interlock
ing designs by recognizable shapes. It usually takes some experimenting to 
find ones that can be transformed. The pentagon tile is filled with one or more 
motifs (a flower, shells, fish, for instance) and as this is done, the edges of the tile 
must be reshaped inward and outward in such a way that the edges of neighbor
ing tiles fit according to exactly the same rules that govern the pentagon grid. The 
new tiles, which I call "picture tiles," will then fit together and meet at the same 
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Fig. 2. 

corner points as the original pentagons but the straight edges of the pentagons 
will have vanished. Various ideas are tried out to get the picture as I want it. 

Once I've chosen an adaptable pentagon tiling, I first make a version of the 
chosen pentagon in the size I wish it to be. It is then drawn on a piece of tracing 
paper as accurately as possible. By putting it on tracing paper it can be turned 
over to copy if reversed (mirror-image) tiles will also be used. On another sheet 
of tracing paper, I copy the original pentagon to make a block of four or more 
tiles in the correct orientations for the tiling. This block can then be used as 
a pattern to make the whole pentagon grid on good tracing paper; this underlying 
grid is the basis for the finished design. 

The picture tile is now drawn on tracing paper over the original pentagon. 
The penciled pentagon tiling is turned over and the picture design is traced onto 
each pentagon, then inked in. The tracing is turned over again and the underlying 
pentagons are erased. Colored pencils are used first on the back and then on the 
front to color the tessellations. When the coloring is finished, the pattern on trac
ing paper is backed by a sheet of white paper. The six patterns shown here were 
all made this way. All these patterns can be seen in full color on the CD Rom. 

The first four patterns were made more than 20 years ago, shortly after 
my discoveries of the new types of tiling pentagons. The last two were made 
especially for the Escher Centennial Congress in June 1998. 

Hibiscus (Fig. 2 and color plate 8) has an underlying grid of equilateral type 2 
pentagons; in each pentagon, the sum of the smallest angle with either of the an
gles not adjacent to it is 1800 • The tiling is 2-block transitive and the pentagons 
occur in eight different orientations. To highlight this, the hibiscus are colored in 
eight different colors, each according to its orientation in the pattern. 
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Fig. 3. 

Fig. 4. 

The pentagons in Fishes (Fig. 3) have four equal sides and also are type 2. 
The tiling is 2-block transitive. Three different fish occupy a single pentagon and 
the pentagons occur in four different orientations. Six colors are used - each of 
the three fish occurs in two colors, with each color appearing in two of the four 
orientations of the fish. 

Unlike the previous two tilings, the pentagons in the grid for Bees in Clover 
(Fig. 4) occur in mirror pairs. In the design, a mirrored pair of pentagons is 
occupied by a symmetric bee flanked by a clover flower on each side, amidst 
a bed of clover leaves. The pentagon is type 9, the first new type I discovered, 
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Fig. 5. 

Fig. 6. 

and the tiling is 2-block transitive with the bees occuring in four different 
orientations. 

Butteiflies (Fig. 5) is also based on a 2-block transitive tiling with mirror pairs 
of tiles that are type 13, the last new type I discovered. In this tiling, however, 
each pentagon has two right angles and at one of the right angles, four tiles join in 
a bow-tie block that is symmetrical in two directions. To preserve the geometric 
relationships among the tiles fused in this block, two of the five sides of each 
tile must remain as straight edges. To accomplish this, a single butterfly against 
a field of greens with a half-daisy occupies one mirror pair of tiles in a block, and 
its mirror image occupies the other half. This tiling also differs from the previous 
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Fig. 7. 

ones in that it is not edge-to-edge, that is, a short edge of one pentagon abuts 
a long edge of a neighboring tile. 

Roses (Fig. 6 and color plate 9) is based on the 3-block transitive tiling by 
a special type 1 pentagon (see Fig. I (b)) that has six of its 60° corners meet and 
three of its 120° corners meet in the tiling. Each pentagon is occupied by two 
roses of the same color, and six colors are used, one for each of the six different 
orientations of the tile. 

My last design, Sea Shells (Fig. 7), is another 3-block transitive tiling by 
a special equilateral type 2 pentagon. Each pentagon is filled with a collection 
of shells, with the pink scallops most prominent. Each distinct shell appears in 
six different orientations in the tiling. 

I hope in days to come to investigate my collection of pentagon tilings and 
find others upon which I can build designs. 
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Not the Tiles, but the Joints: A little Bridge 
Between M.e. Escher and Leonardo da Vinci 

RinDs Roelofs 

The regular division drawings of M.C. Escher are considered an important part 
of his artistic work. He made about 150 basic drawings of regular divisions, some 
of which were used later in his prints. In almost all of these drawings, it is the tile, 
the motif, that plays the leading role. However, there are a few exceptions. In his 
own definition of regular division of the plane, given in Regelmatige vlakverde
ling [1, p. 94] Escher says that the tiles should fit tightly together on all sides, so 
that there is no space between them. In other words, the joint, the grout, the layer 
of mortar used by bricklayers to cement each stone to an adjacent stone, separates 
them in practice, but can theoretically be reduced to nothing. Mathematicians 
would call these joints "edges" of the tiling; edges are never considered to have 
any width. 

We can say that this is the mathematical point of view. From an artistic point 
of view, the separating-lines between tiles will always be there; we can't ignore 
them. We can give these boundaries more attention and even go so far as to omit 
the tiles. What we have then is just a grid of joints, connected in some regu
lar way, or a latticework: a plane with a lot of carefully outlined holes. Chinese 
windows and screens often display such latticework; a nice collection of such 
designs can be found in reference [3]. 

In a few of Escher's sketches these lines that separate the tiles indeed seem to 
take over the leading role. For example, this can be seen in his regular division 
drawing number 11 (Baam '42) in his Abstract Motif Notebook [5, p. 87] and in 
his regular division drawing number 133 (Baam '67) [5, p. 226], which has been 
redrawn by computer in Fig. 6. At first glance, this focus on the space between 
the tiles may seem to be only a slight shift of attention, but it opens up a vast area 
of artistic possibilities for which Escher might not have had the time to investi
gate. If we use Escher's own metaphor about wandering in his beautiful garden 
of regular division, it's like discovering the gate to another garden adjoining it. 
And like a real garden, no description can substitute for seeing the blooms; these 
explorations are shared primarily through pictures. 

Tiling-Lattices 

When we start with a simple tiling consisting of large and small square tiles 
(Fig. I), we can construct the latticework of mortar-joints by just removing the 
tiles. We will call this the tiling-lattice. The first step to make the tiling-lattice 
visible is to thicken the joints (Fig. 2). We then notice that apart from study-
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ing the tiling-lattice as a whole, there are a few basic new configurations we can 
make from it. First, the lattice can be seen as a set of contour lines (Fig. 3). With 
this set we can, for example, make constructions by extending each contour and 
even interweave some contours. We can find an example of this in Escher's work: 
the entwined circular rings in his print Snakes (page 76). Another possibility 
is to dismantle the lattice into equal-length bars, where each bar is a straight 
segment that is made up of a connected set of joints. The bar grids you then 
get can be used in 3-dimensional constructions in which bars overlap (Fig. 4). 
Leonardo da Vinci was evidently interested in such bar constructions. In his 
work, I found drawings of three different regular bar grids [2, p.154-155], 
and Fig. 4 is one of them. We will discuss these and other possibilities of 
constructions with lattices at greater length in what follows. 

First Constructions with Tiling Lattices 

Since the tiling-lattice is the net that remains after the tiles are removed, instead 
of tiles there are now holes. This means that we can overlay and interweave 
tiling-lattices. For example, in Fig. 5, two copies of the lattice in Fig. 2 have been 
interwoven. We have already noticed that from the drawing of contours (as in 
Fig. 3), connected constructions also can be made by extending the contours. 

It is interesting to see how we can step from the first kind of construction 
to the second. In Fig. 6 we can see an interwoven tiling-lattice originally drawn 
by M.e. Escher. If each thick strand of the mesh of the two differently colored 
hexagonal tiling-lattices is split in two, and the resulting double strands are 
re-woven, we get the drawing of connected contours shown in Fig. 7. Extending 
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these contours and reweaving brings us to Fig. 8 and color plate 27a. (Notice 
that we need five colors for Fig. 8 to discern the separate connected strands.) 
In Figs. 9 and 10 we see interwoven lattice constructions in which three layers 
are used. The same step that took Fig. 6 to Fig. 7 is used to transform the tiling
lattices from Fig. 10 to the connected contours in Fig. II. Color plate 27b shows 
a four-layer interweaving. 

Three-Dimensional Constructions 

Some drawings of tiling-lattices or connected contours can easily be transformed 
to real three-dimensional constructions. Some tilings that occur frequently in 
Islamic decoration are a rich source for this exercise. It is not uncommon for 
these to appear as interwoven tiling-lattices. The hexagonal rings that are inter
woven in Fig. 12 can be viewed as projections of cubic elements. Figs. 13, 14, 
15, and color plate 27c show different examples of how the structural pattern 
of Fig. 12 can be worked out as a three-dimensional mesh of congruent linked 
three-dimensional forms whose edges trace out six edges of a cube. 

We can also begin with a two-dimensional tiling-lattice and tum it into an 
impossible three-dimensional construction. In Fig. 16 a tiling-lattice is shaded 
so it appears three-dimensional and forms an impossible structure: a scaffold 
of Penrose tribars. We can even make interwoven impossible structures: two of 
these are shown in Figs. 17 and 18. Beginning with the same two-dimensional 
interwoven lattice in Fig. 12, by a different shading we can also produce an 
impossible interwoven mesh of Penrose tribars, as in Fig. 19 and color plate 
27d. Although Fig. 20 looks very different, it begins with the same tiling-lattice 
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from which Fig. 19 was derived. It is interesting to compare the impossible 
three-dimensional mesh in Fig. 21 with the Islamic design in [1, p. 155]. 

More Layers, Different Layers 

Interwoven tiling-lattices can be constructed in several ways. The number of 
layers is one thing we can vary. The tiling-lattice with the large and small square 
holes (Fig. 2) can be interwoven with different numbers of copies: while Fig. 5 
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has two layers interwoven, Fig. 22 has four. Figs. 23 and 24 are constructed from 
the planar tiling-lattice that is the basis for Fig. 16, but there are three layers in 
Fig. 23 and seven in Fig. 24. 

Another technique, of which we will see more examples later on, is to use 
copies of the same tiling-lattice, with some at a different scale. In Fig. 25, there 
are four congruent layers of the tiling-lattice for the familiar Archimedean tiling 
by squares and octagons. In Fig. 26, three layers of the same tiling-lattice are 
used, but the grey layer is at a smaller scale. 

The most interesting interwoven tiling-lattices are made by combining more 
than one type of tiling-lattice. For example, Fig. 27 is a combination of the 
right-turning version and the left-turning version of the same lattice (see Fig. 2). 
In Fig. 28, the tiling-lattice in Fig. 2 is combined with the octagon-square 
tiling-lattice. In Figs. 29 and 30 you can see the black and white hexagonal tiling
lattices of Escher (Fig. 6) combined with lattices with square and octagonal 
holes. 
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Transformation of M.e. Escher's Periodic Drawings 

An unexpected consequence of combining different types of tiling-lattices is 
that we can use some of these methods to transform one of Escher's tilings 
to a different one in his collection. In our first example (Fig. 31) we start with 
Escher's tiling of Chinese men (regular division drawing number 4, [5, p. 118]). 
From this tiling a set of three interlocked tiles is carefully dissected into three 
equal pieces, following the tiling-lattice of another Escher drawing (Fig. 32). 
Now, after pulling apart the pieces (Fig. 33) and turning the pieces over (Fig. 34), 
we can reassemble them, and behold, the three Chinese men have changed into 
three lizards (Fig. 35), fitting exactly into Escher's regular division drawing 
number 25 (Fig. 36) (see page 427). An animation of this transformation can be 
seen on the CD Rom. 

When you want to make this kind of transformation, you first have to choose 
both tilings carefully. The tiling of Chinese men has three different kinds of 
3-fold rotation points: where three heads meet, where three left hands meet, and 
where three right hands meet. The lizard tiling also has three different kinds of 
3-fold rotation points. When we want to combine both tilings (in order to tum one 
into the other), it is important that in superimposing the tilings, these symmetry
points are matched exactly. This can be achieved in six different ways, one of 
which is shown in Fig. 37. 

The next step is to choose a cluster of three Chinese men that meet at a 3-fold 
rotation point and see whether we can use the outlines of the lizard-tiling as cut
ting lines from the center 3-fold point to the boundary ofthe cluster in such a way 
that the number of pieces after cutting is small. On each of the six possible super
imposed tilings, there are three different ways to choose such a cluster of three 
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Chinese men, yet only the one in Fig. 32 can be used for a dissection into no more 
than three pieces using the contour lines of the lizards. 

There are many tilings in Escher's collection that can be lIsed for this kind 
of transformation, and in some cases there is more than one possibility for 
successful overlay and cutting. From Escher's tiling with fish (regular division 
drawing number 20 (color plate 2) we can take a cluster of four fish centered 
at a 4-fold rotation point and divide the cluster into four congruent pieces, in 
order to transform the fish into four birds from Escher's regular division draw
ing number 23 [5, p. 133] (see Figs. 38--43). But, as you can see in Figs. 43-50, 
those four birds can also be cut in four pieces in such a way that we can make 

41 
~------------~ 

42 L-____________ ~ 



Not the Tiles, but the Joints: M.e. Escher and Leonardo da Vinci 259 

Table 1. The table entries are a2 + b2 

b 0 1 2 3 4 ••• 
a 

0 0 1 4 9 16 

1 1 2 5 10 17 

2 4 5 8 13 20 
3 9 10 13 18 25 
4 16 17 20 25 32 

eight fish (from the same Escher drawing 20) out of them! The trick here is to 
use combinations of tiling-lattices in different scales. We have seen this before 
in Fig. 26. 

The basic grid here is just a square grid. When we want to combine two 
square grids of different scales, what scale combinations can be made? To 
answer this, draw a big square on a square grid, so that the corner points of the 
big square are on grid points, as shown in Fig. 51. Now measure the area of 
the big square in small square units. By the Pythagorean Theorem, this area is 
a2 + b2. This means that we can divide any such big square into a2 + b2 small 
squares where a and b are non-negative integers. And this leads to the series of 
areas of large squares: 1, 2, 4, 5, 8, 9, 10, ... as you can read from Table 1. 

In our example of turning four birds into eight fish, we began by making 
a square grid on each tessellation by joining the rows of centers of 2-fold and 
four-fold rotations (see Figs. 38 and 43). Note that each square in these grids 
has area equal to exactly one motif (one bird or one fish), so each square can 
represent one motif. Consider the square grid of fish as the small squares in 
Fig. 51 and then enlarge the scale of the bird tessellation so that a cluster of four 
birds (four bird-squares) centered at a 4-fold rotation point fits the large square 
shown in Fig. 51, with a = b = 2. Then the larg~ square contains four birds 
and 22 + 22 = 8 fish. Also notice that 4-fold centers of the two tessellations are 
superimposed. 

Four birds can be changed into eight fish because the large square built on the 
hypotenuse of the 2 x 2 right triangle has the property that 4-fold centers of the 
large grid are superimposed on those of the small grid. Any pair of numbers m, 
n chosen from Table 1 which allow this kind of superposition may be used for 
tessellations with 4-fold rotations to turn m motifs into n motifs. 

So, how about scaling in 3-fold rotational systems, like the Chinese men and 
the lizards: can we make six lizards out of three Chinese men? First, remember 
that we need some kind of nice, regular connection between the symmetry points 
in both layers. The combination of two differently-scaled hexagonal lattices in 
Fig. 52 seems to give a solution, but exact calculation shows that the areas of the 
red hexagons and the black hexagons are in the proportion of 4 to 7. 
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44 

~--~--------~ 
46 48 

b 

49 ·0 
area(A) = a' + b' 51 

b b 

V ~ 
52 area(A) = Jab + (b - a)' = al + b' + ab 53 
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Table 2. The table entries are a2 + b2 + ab 

b 0 1 2 3 4 ... 

a 

0 0 1 4 9 16 
1 1 3 7 13 21 
2 4 7 12 19 28 

3 9 13 19 27 37 
4 16 21 28 37 48 
: . 

In general, using an isometric grid of equilateral triangles and following the 
reasoning for the square grids, we see that any equilateral triangle can be divided 
into a2 + b2 + ab small equilateral triangles (see Fig. 53), so we can only use 
combinations of numbers from the series (of areas) 1,3,4, 7, 9, 12, 13, 16, 19, 
21, ... that are shown in Table 2. 

And so there is no way to just double the number of lizards. (Note: We 
only allow the use of the separating lines of the tilings as cutting lines in the 
transformations. ) 

8arGrids 

There is another nice example in Escher's work where he uses the joints instead 
of the tiles. And this brings us to the third way of dealing with tiling-lattices: 
we can split up the tiling-lattice into a set of congruent bars in which each bar 
is composed of a connected set of joints. For several reasons, I divide this group 
into two categories: a) grids with crossing bars, and b) grids without crossing 
bars. 

Escher's print Belvedere (page 135) provides an example in the first category. 
If you look closely at the lower windows of the building, you see iron window
lattices that are constructed with bars: horizontal bars are threaded through holes 

±ttL 
_1 --L/_ 
~-LL-.l 

-+-I--C[ I I I ..... 1iiII 56 
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in vertical bars and vice versa (Fig. 54 shows a close-up of one window). In 
Rome, where Escher lived for several years, you can find many examples of 
this kind of barred window. This is nothing special, you might think. But all 
the barred windows I have seen in Rome could easily be disassembled by just 
sliding the bars off each other. Several different systems are used; the photo 
in Fig. 55 shows one. This can be dismantled by working around the center 
section, loosening the bars in each of the four directions until the mesh falls 
apart completely. Yet when we look at Escher's design (detail drawn in Fig. 56) 
it is obvious that this mesh will always stay in one piece. Escher made his own 
'impossible' variation on this theme. 

Leonardo da Vinci 

Now we come to the second category of bar grids: grids without crossing bars. 
Figure 4 shows an example of this kind of bar grid. Note that in this example 
all bars can be seen as combinations of three joints (three contiguous edges of 
the tiling). This seems to be an ideal number. With this extra limitation we can 
define a construction system as follows: three-bar grids are built up with bars of 
unit length 3, so we can define four connecting points on a bar: two endpoints 
and two middle-points. Bars should be connected in only one way: endpoint of 
one bar connected to middle-point of another bar. And every point on every bar 
should be connected to another point. 

With this definition, many different regular grids can be designed (Figs. 57-60 
show just a few examples). After working several months with this system 
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61 

Leonardo's sketches of bar grid systems 

(it turned out to be a perfect building system for domes, spheres, columns, 
etc.), I discovered the drawings of Leonardo da Vinci [2] in which you can see 
three examples of these bar grids (Fig. 61), probably meant to be used for roof 
constructions! 

With finite bar grid systems (in which the bars are necessarily bent 
so that they can be connected according to the rules), we can construct 
some of the regular and semi-regular polyhedra, a favorite subject of both 
M.e. Escher and Leonardo da Vinci. Polyhedra in which three faces meet at each 
vertex can be constructed with da Vinci's noncrossing-type bar grid. Figure 62 
shows a tetrahedron, Fig. 63 a dodecahedron, and Fig. 64 a truncated octahe
dron. Polyhedra in which four faces meet at each vertex can be constructed 
with Escher's crossing-type bar grids. In the figures that show some examples, 
a single closed loop of one bar is highlighted. Figure 65 shows an octahedron, 
Fig. 66 a cuboctahedron, Fig. 67 a rhombicuboctahedron, and color plate 27e 
and f a truncated dodecahedron and a rhombicosidodecahedron. 

Although the figures shown here are computer-generated, I have successfully 
constructed models of figures such as these from wood, from acrylic, and other 
materials. They require no glue or fasteners - the individual "bars" hold together 
merely by the structure of the interlaced construction. The CD Rom contains 
color versions of illustrations in this article as well as other related art work. 
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1. M.e. Escher, View of Atrani, drawing, 25 May 1931 

This drawing greeted those who visited the web site "M.C. Escher, 1898-1998: An interna
tional conference 24-28 June 1998, Roma, Ravello." Although recorded by Escher 60 years 
ago, the site has changed little. Compare with the cover photo by J.A.F. De Rijk, taken in 
1973 



2. M.e. Escher, symmetry drawing 20, March 1938. Pencil, ink, watercolor 

3. M.e. Escher, symmetry drawing 78, October 1950. Pencil, ink, watercolor 



4. M.e. Escher, Circle Limit Ill, 1959. Woodcut 

s. M.e. Escher, Three Intersectinx Planes, 1954. Woodcut 



6. Douglas Dunham. A hyperbolic pattern with 6-color symmetry, based on the fish motif of 
Escher's Circle Limit 1II and the {1O,3} tessellation 

7. Douglas Dunham. A hyperbolic pattern with 8-color symmetry, based on the butterfly 
motif of Escher's symmetry drawing 70 and the {7,3} tessellation 



8. Marjorie Rice, Hibiscus, 1978. Color pencil and ink 

9. Marjorie Rice, Roses, 1998. Color pencil and ink 



11. Makoto Nakamura, Wind and \¥tlve, 1993. Gouache 

10. Makoto Nakamura, 
Trick in the Grove, 1991. 
Gouache 



13. Eva Knoll, Aquatic S, 1993. Printed and 
hand colored 

12. Eva Knoll, Changing Tiles, 1993. Computer generated 
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14. Eva Knoll, Series XIII, 1992. Acrylic on canvas 



IS. Robert Fathauer, Non-periodic 
tiling based on the Penrose set PI 

16. Robert Fathauer, Fractal 
Serpents, 1994. Screen print 
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17. Victor Donnay. a Schwarz P-surface. b Sphere whose geodesic motion is chaotic. 
c Four copies of the Schwarz P-surface. d Torus whose geodesic motion is chaotic 

18. Two-holed torus made by Douglas Dunham, decorated with Escher's tessellation 

b 



19. Dick A. Termes, 
Fish Eye View, 1995. 
Silk screened on acrylic 
sphere 

20. Dick A. Termes, Notre Dame oj" Paris, 1995. Acrylics on polyethylene sphere 



21. los De Mey, A Window with 
an Outside and Inside View, 
for friends of Ars & Mathesis, 
1993-94. Acrylic on canvas 

22. los De Mey, A Windscreen in the Wide Warm Desert, 1996. Acrylic on canvas 



23. Victor Acevedo, Ectoplasmic Kitchen, 1987. Computer graphic 

24. Victor Acevedo, The Lacemaker, 1997. Computer graphic 



25. Teja Krasek. Quasicrystal World. 1996. Acrylic on canvas 

26. Teja Krasek. Quasicube V. 1997. Acrylic on canvas 
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27. Rinus Roelofs. a A 5-color weaving of hexagons. b Four interwoven layers of the 
octagon-square tiling. c A mesh of rings that are cube edges. d A mesh of impossible Penrose 
tribars. e A mesh truncated dodecahedron. f A mesh rhombicosidodecahedron 



28. Tamas F. Farkas, Celtic Vl/J, 
1996. Graphics on paper 

29. Tamas F. Farkas, Pyramid, 
1997. Oil on canvas 



30. S.J. Abas, Tu Kisti? (Who art thou?), 1996. Computer image 

31. SJ. Abas, The Islamic Ferric Wheel, 1995. Computer image 



Architecture, Perspective and Scenography 
in the Graphic Work of M.e. Escher: 
From Vredeman de Vries to Luca Ronconi 

Claudio Seccaroni and Marco Spesso 

Some Architectural Implications in Escher's Work 

The iconographic sources for Escher's graphic work have not been investigated 
in depth. In analyses of Escher's works, the links with mathematics and the 
sciences of perception and communication have been mostly preferred, while an 
exclusive historic-artistic reading has generally been neglected. This can be in 
part explained by Escher's eccentric position with respect to mainstream art in 
the 20th century. 

A considerable portion of Escher's large production of graphic work is 
devoted to architecture, sometimes depicting the structure of an urban scene 
and sometimes the details of a single autonomous building. The artist carefully 
studied and most often represented towns and monuments following the usual 
patterns of perception. However these views are not helpful for understanding 
Escher's real thoughts on architectonics (we use the technical term architectonics 
to mean a system of design and construction). 

In his work, a multiplicity of iconic references reveals Escher's wide-ranging 
and eclectic attraction to several different periods and types of work in art 
history. His woodcut Dream (Mantis religiosa) (1935) illustrates this very 
well (see page 66). A different relationship between the artist and architectural 

M. C. Escher, Relativity, 1953. 
Lithograph 
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representation emerged in the 1940s and 1950s, beginning with the first Meta
morphosis (1937). In this print, the aerial view of Atrani (1931) becomes 
a domain for experimentation, reducing buildings to mere sizes and mass 
through geometric highlighting of light and shadow and abstraction of layout. 
His lithographs Cycle (1938), Up and Down (1947), House (~f Stairs (1951), 
Relativity (1953) and his colored wood engraving (Two) Doric Columns (1945) 
confirm Escher's a-tectonic architectural design, (we use the term a-tectonic for 
the deficiency of structural coherence in buildings [4 D. 

During his career, Escher had various opportunities to execute commissioned 
decorative designs for new buildings. These include the wood marquetries in the 
Leiden Town Hall (1940-41), three pillars in the Neue Madchenschule in Den 
Haag (1959), the facade of a school in Den Haag (1960), a pillar in the Ministry 
of Transport in Haarlem (1962) and the enormous frieze of Metamorphosis for 
the central hall in the Post Office in Den Haag (1968). Pictures of these can be 
found in [10]. All these works display various flat tessellations and show typical 
features of the movement "De Stijl," which was very prevalent in Dutch archi
tectural design. This vanguard group was founded in Holland in 1917 by T. van 
Doesburg and P. Mondrian. These artists exalted Euclidean geometry as mere 
abstraction, without three-dimensional links to the real world [2]. 

Links Between Vredeman de Vries' and Escher's 
Architectural Vision 

The complexity and contradictions of architectural representation versus the real 
structural properties (tectonics) of buildings can be found by analysing the books 
and graphic works by the Dutch architect and theoretician Jan (or Hans) Vrede
man de Vries (Leeuwarden 1527 - Antwerp 16067). Escher must have known 
these by virtue of their immense influence in Holland ll, 6, 8,9,16]. 

The prolific de Vries issued during his lifetime 483 engravings, after his 
drawings, in 27 volumes [11-15]. He developed a leading role by establishing 
an autonomous and detailed canon for illusionistic architectonic representation. 
This new concept was freed from building theories and processes, expanding 
the expressive possibilities of the late-mannerist quadraturismo (i.e. architec
tural trompe l'oeil or feigned architecture), which progressively diverged from 
the traditional projection of a design on a plane. This overcame the unitary and 
universal vision of drawing and was the conquest of autonomy for many 
doctrines; among these was scenography (i.e. the design of a scene on the stage; 
it implies three-dimensional or painted volumes). This application in scenog
raphy involves either the refusal of three-dimensional representation or the 
representation of impossible buildings. 

Although Vredeman de Vries was an architect, he built very little. In fact 
only two buildings in Antwerp are ascribed to him: the roof-terrace of van 
Straalen house in Korte St. Annastraat (1565-67) and the rebuilding of the "Four 



Architecture, Perspective and Scenography 267 

Fig. 1. Vredeman de Vries: Perspective (1604), Plates 24, 28, Part I 

winds Palace" in Gildenkamerstraat. However, he produced endless architec
tonic drawings from about 1550 on. His best-selling collections were Perspective 
(1604) and Architectura (1606). 

In Perspective, Plates 7-10, 24 and 26 of Part I and Plates 1,3,4,6 and 7 of 
Part II display the pure aesthetic worth of de Vries' drawing procedure through 
his own structural layouts (see Fig. 1, top). Plate 28 Part I shows the intersection 
between perspective art and scenographic building, and is like a manifesto (see 
Fig. 1, bottom). 

In Part II it is also possible to find other immediate references for Escher's 
prints, such as Gallery (1946) and Another world (1947). The features of these 
works by Escher are directly related to de Vries' spectacular depiction of 
"worm's eye" views of stacked floors of colonnades (Part II, Plates 20 and 21) 
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Fig.2. Vredeman de Vries: Perspective (1604), Plates 20, 21, 22, 
Part II 
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Fig. 3. Vredeman de Vries: Perspective (1604), Plate 39, Part I 

and to the up-down perspective aberration of an attic of a palace populated by 
a thick mass of obelisks like objectes trouW?S (Part II, Plate 22). (See Fig. 2.) In 
Part I of Perspective, Plates 37, 38 and 39 show analogous situations; Plate 39, 
seen in Fig. 3, shows a bird's eye view of a many-storied colonnade. 

Stairs also became occasions for experimentation by de Vries about architec
tural incoherence and consequently received an absolute formal autonomy (Part 
I, Plates 31, 32, 35 and 36); see Fig. 4. Perspective shows an unusual inventory 
of depiction for its time. The book was full of consequences for drawing and was 
more or less heterodox. Links with Escher's works can be clearly seen. 

A further possible connection between these two Dutch artists could be given 
by Vredeman de Vries' presence, with his son Paul, in Prague at the court of 

Fig. 4. Vredeman de Vries: Per,lpective (1604), Plate 36, Part I 
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Rudolph II between 1594-98; platonic solids occur in the work of de Vries 
and (much later) Escher; this well agrees with the theosophical-mathematical 
preferences at the court of Rudolph II. 

Scenic Use of Vredeman de Vries' and Escher's Architectural 
Vision in Plays Produced by Luca Ronconi 

An unusual confirmation of the association between Vredeman de Vries and 
Escher is present in scenes for some plays produced by Luca Ronconi, in which 
excerpts from the prints of both these artists were not only direct, but were some
times very contextual. Luca Ronconi, born in 1933, is one of the most important 
European vanguard play directors. He has experimented with a personal lan
guage since his first production in 1963. His productions often show peculiar 
research in scenic space [5]. At the end of this article, we include brief remarks 
on the works produced by Ronconi that we discuss. 

The connections between Escher and Vredeman de Vries - both dependent 
and independent - and with Luca Ronconi force us to extend our observa
tion from an analysis of the polarity between architecture and perspective to 
a dialectic comparison in which scenography is inserted as a third pole. It might 
be considered that scenography is not connected with Escher's works, but we as
sert that is not true. There are many prints by Escher where the perspective box 
creates an ideal scene in which space is illusively represented (in a two
dimensional mode) on wings and background. His prints Serenade in Sienna 
(1932), some of the views of Nocturnal Rome (1934), but mainly Gallery (1946) 
and Other World (1947) are the most important examples. 

Architecture ....... Perspective 

~ 
Scenography 

The three poles of architecture, perspective and scenography obviously can
not be considered similar from a hierarchical point of view. Using the formalism 
of mathematical (Venn) diagrams we can visualise the situation as show below, 
in which Escher's work is seen as contained in the intersection of the three. 

Perspective 
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For these three artists we can represent as unions and intersections the fields of 
interest for each, limiting to architecture, perspective and scenography. 

Escher == Perspective n Scenography n Architecture 
Vredeman de Vries == Perspective U Architecture 

Ronconi == Perspective n Scenography 

For all three, the approach to architecture is very partial and strongly con
ditioned by perspective. This is particularly because they were interested in an 
interpretation that tends to renounce the expression of volumes. For Ronconi, 
the polarity between architecture, perspective and scenography is obviously 
connected with the need to define the scenic space of a theatrical event. Only 
extremely rarely did this play director totally refuse the absence of an artic
ulation and an organisation. Among these rare cases we note the absence of 
a visible scene for Al Pappagallo verde. Therefore from the point of view of 
scenography, Ronconi tends to prefer the common field with perspective. In con
trast, Vredeman de Vries focused his interest on perspective representation and 
architecture. 

We found the most explicit borrowing by Luca Ronconi from works by 
Escher and Vredeman de Vries in Lodoiska - an opera by Cherubini (see 
Figures 5, 6). Analogously, the mise en scene of another opera by Cherubini, 

Fig. 5. Cherubini: Lodoiska, 
Act III, Scene 1 (sketch) 

Fig. 6. Cherubini: Lodoiska, 
Act III, Scene 2 (sketch) 
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Fig. 7. Cherubini: Demophoon, Act III (sketch) 

Demophoon, showed implicit relations to Escher. The direct iconographic 
reference for the scenes was the French architect Claude-Nicolas Fran~ois 
Ledoux (1736-1806). However the upsetting of perspective that allowed the 
double view of a monument from Ledoux (front and upward sightlines) is 
a characteristic of Escher's work (see Fig. 7). In the works of C.-N. F. Ledoux 
there are other links to Ronconi and Escher. For example Escher's mezzotint Eye 
(1946) is reflective of Ledoux's famous project for the theatre of Besan~on where 
the pit and the loge of this theatre are reflected in an eye [7]. 

A ninety degrees upsetting of a part of the scenery and/or the simultaneous 
presence of two or more views from different vantage points for one and the same 
scenic element suggest rotating and/or translating the scene in the course of the 
presentation, in order to offer to the spectator manifold views of the same envi
ronment. Luca Ronconi employed these practises for a long time and he forced 
them to the extreme in performances like La Torre or, in a more radical way, 
the Orlando Furioso or the Gli Ultimi giorni dell'umanita. In these events each 
spectator can choose his own observation point. 

The importance that Luca Ronconi gives to the spectator's vision under
lines the assonance in the scenographies, in which strictly perspective views are 
selected. The role of changing or moving scenes also conditioned the language 
used by Luca Ronconi in his rare plays carried out expressively for televi
sion: Bettina and John Gabriel Borkman. In these plays the camera, which was 
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the spectator's viewpoint, moved in a continuous way in the same direction 
throughout the play without ever coming back, as in an infinite flight of mirrors. 

Conclusion 

Luca Ronconi forced his stage designers to search for inspiration in works by 
Escher and Vredeman de Vries. This fact is incontestably attested to by the 
performance's programs, in which the stage designs are presented along with en
gravings by the two Dutch artists. An ideal link between Escher and the Dutch 
mannerist artist resides essentially in focusing on architectural design in order 
to entice the viewer with unsettling strangeness yet wonderful and imaginative 
scenes. This aim is pursued through the illusory building of a world where the 
rules of physics do not rule. The same vision was recovered by the European 
vanguard theatre between the 1960s and 1980s. 

Appendix 

We list here some additional information on the plays produced by Luca Ronconi 
cited in this article. 

Operas: 
L. Cherubini (music), c.-F. Fillette-Loraux (libretto), Lodoiska, Milan, Teatro 
alIa Scala, 1991 [scene design by M. Palli]. 
L. Cherubini, (music), J.-F. Marmontel (libretto), Demophoon, Rome, Teatro 
dell'Opera, 1985 [scene design by G. Quaranta]. 

Plays: 
A. Schnitzler, Al Pappagallo Verde [At the Green Parrot], Genoa, Teatro di 
Genova, 1979. 
H. von Hoffmanstahl, La torre [The Tower], Prato, Teatro Fabbricone, 1978. 
L. Ariosto (adapted by E. Sanguineti): Orlando jurioso, Spoleto, Festival dei 
Due Mondi, 1969. 
K. Krauss, Gli ultimi giorni dell'umanita [The Last Days of the Humanity], 
Turin, Teatro Stabile, 1990. 

Television plays: 
C. Goldoni, Bettina, from La putta onorata [The Honoured Maid] and La buona 
moglie [The Good Wife], RAI (Radiotelevisione Italiana), 1976. 
H. Ibsen, John Gabriel Borkman, RAI (Radiotelevisione Italiana), 1982. 
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Hand with Reflective Sphere to Six-Point 
Perspective Sphere 

Richard A. Termes 

M.e. Escher was fascinated with the idea that a mirrored ball almost captures the 
full sweep of visual space in all directions. Many of Escher's works show his in
terest in reflected images in a mirrored ball: St. Bavo's Haarlem [2, p. 137], Still 
Life With Reflecting Sphere (page 180), Hand With Reflecting Sphere (Fig. 1), 
Still Life With Spherical Mirror [2, cat. no. 267], Three Spheres II (page 80), and 
Dewdrop (page 131). The mirrored ball probably also helped Escher to be aware 
of curved line perspective, seen in his prints Up and Down (page 29), and House 
of Stairs [2, cat. no. 375]. In this article, I will explain how my total environment 
"six point perspective" paintings on spheres (and polyhedra) are connected to 
Escher's interests. 

The Mirrored Ball 

The mirrored ball, I believe, gave Escher insight into the concept of infinity. One 
of the most important reasons he made studies with a mirrored ball was to figure 

Fig. 1. M.e. Escher, Hand With Reflecting 
Sphere, 1935. Lithograph 
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out a method to capture the total visual space around him. He desired to see the 
visual world as a whole. 

To experience what was possible for Escher to learn from Hand With Reflect
ing Sphere (Fig. 1), take a mirrored ball in your hand (a shiny Christmas ball will 
do) and look into it while you slowly revolve in a circle. What happens to the 
reflection of the surrounding room in the ball's surface? Now tie the mirrored ball 
onto the handle of a broom. Take a video camera in your other hand and focus on 
the mirrored ball. As you turn in a circle, move the ball up and down and study 
the changing image on the surface of the ball. Zoom in. This makes your own 
image much smaller and the environment more noticeable. Of course, Escher's 
mirrored-sphere studies came before the video camera but this is a great way to 
see what the mirrored ball can do (without a large human in the center of the 
image). When you get over the excitement of this effect, take time to carefully 
study what happens to the lines that frame the room around you. I think you will 
notice that an incredibly large area of the visual world outside the ball is found in 
the reflection. You will also notice the lines of a cubical room curve and converge 
in six directions towards their vanishing points. 

After Escher studied the mirrored ball, which is a spherical surface, he inter
preted this information on a flat surface. Rather than take the information back to 
the plane, I observed that if you could freeze the reflected image Escher viewed 
on the mirrored ball it would be similar to my six-point perspective "Terme
sphere" paintings. When I conveyed this thought to George Escher (when he 
visited my studio), he suggested that the structure of the mirrored ball and the 
structure of six-point perspective on the sphere were not the same. He said his 
father was interested in the mirrored ball because it gave him the total picture 
surrounding it - all on one side of the mirrored ball. The reflection on the mir
rored ball included everything that you could see all around the ball except for 
a narrow circle that was hidden right behind the ball. To prove his point, George 
Escher had me hold a reflective ball while he moved around with a flashlight in 
my dark studio. Even when the flashlight was behind the mirrored ball its beam 
showed up as a long stretched and distorted light along the outside edge. All of 
the image was there, right to mirrored ball's edge where the ball would eclipse 
the rest of the visual information. Very little visual information was missing, but 
yes, lots of it was very distorted. 

Are there other ways than the mirrored ball to gather all of this visual 
information around us into one picture, with no distortion? Would Renaissance 
perspective lead us to an answer? How about a crystal ball or the reflection on 
the inside of a spoon? Would spherical geometry have the answer? Can we learn 
from the map-makers and the Earth-globe makers with their various transfers 
from sphere to flat? 

David Greenhood wrote in his book Mapping [6], "Only a globe can give 
a valid picture of the earth as a whole. No other kind of map can represent the 
true forms of continents in the full. A globe does not need to simulate the spher
ical relations of the earth we live on: it has them. If a plane could be globular it 
wouldn't be a plane." [po 113] ... "We must accept the inevitable: that there is 
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no way of flattening out a global surface and keeping intact all the useful fea
tures we wish maps to have." [po 114] The various map projections that try to 
show what our spherical earth looks like on a flat surface, such as the Mercator 
projection, the polyconic projection, the Werner equal-area projection, the sinu
soidal equal-area projection, the bipolar oblique conic conformal projection, and 
even Bucky Fuller's icosahedron dymaxion map, all have one thing in common: 
distortion. The unmistakable fact is, the best way to show the earth is to show it 
on a globe. Spherical ideas are best expressed on the sphere. 

The total visual space around us is also a spherical concept. What do your 
hands do when you try to explain the totality of what surrounds you? They 
naturally sculpt a sphere in the air. Try to imagine a painting that can capture all 
of the visual information that is around you. What kind of surface would that 
painting have to be on? I have found that you can draw or paint these total visual 
worlds on any convex polyhedron but the sphere is the best surface because it 
has no edges or corners. The sphere is the perfectly smooth canvas - this is why 
I paint my "Termespheres." 

As a painter or printmaker, it is a major step to give yourself permission to 
paint on the sphere. We have learned to paint or print on the flat plane from great 
artists who have all painted and printed on the flat for thousands of years. Even 
when we realize we could capture it all with the sphere we still think the real 
question is: how do we get it back to the plane? Escher came close to accepting 
the sphere as a canvas with his tessellating patterns on wooden spheres, but as 
a printmaker, he worked in the flat plane. (In fact, some of his spherical carvings 
were derived from tessellations that he first produced in the plane - for these, he 
went from a flat to a spherical canvas.) Albert Flocon [1] and Fernando Casas [4] 
each used the sphere for their perspective but took that knowledge back to the flat 
plane for their finished work because they found exciting ideas that could still be 
presented on the flat surface. 

Earth-globe techniques could have been used to reproduce spherical images, 
but until recently globes were not of very high quality. In the late 1960s my early 
spheres were kids' rubber balls, old Earth globes and fiberglass spheres which 
I made on my own. Later I found a supply of globes made for light fixtures that 
were lexan plastic - tough and light so they could be hung from the ceiling. The 
problem of finding a sphere of good quality is probably the major reason artists 
did not play with spherical ideas on spheres. When I hit upon the idea in 1969 and 
painted a compete 3600 view of a room onto a sphere, I also took the information 
back to the plane for a couple of paintings but soon realized the most exciting 
thing was to see the image on the sphere. It was a spherical idea and it should be 
expressed on that surface. 
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The Termesphere and Six-Point Perspective 

What is a "Termesphere" and how does it relate to the mirrored ball and to 
capturing total visual space? How can we understand the geometry of visual 
space around us? One of the easiest ways to explain what a Termesphere does 
is to imagine you are inside a transparent sphere. You transport the sphere (and 
yourself inside it) inside a wonderful building such as St. Peter's Basilica in 
Rome and find the perfect spot to stand where you can observe the grandeur of 
the basilica surrounding you (Fig. 2). Fixing the sphere to that spot, with your 
viewpoint exactly in the center of the transparent sphere, you copy what you see 
outside the sphere onto the inside surface. When you have painted everything you 
see above, below, and all around you, you can then move outside of the sphere to 
view the painting that covers the sphere. You are now outside, looking in at the 
scene you observed from inside (Fig. 3). All my spherical paintings are easier to 
understand if you imagine you are inside the sphere when you view them. 

Fig.2. Dick A. Tennes, Inside St. Peter's 
Basilica in Rome, 1998. Sketch 

Fig. 3. Dick A. Termes, St. Peter's 
Sphere, 1996. Silk screened sphere 
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As George Escher observed, an image created this way will be different from 
the reflected image found on the mirrored ball. The spherical painting will spread 
the image of St. Peter's equally around the ball. From one side of the painted 
sphere only one half of what you see around you will show. The mirrored ball 
would show almost all of the Basilica on just one side of the ball, but much of 
its image would be foreshortened. When you look at the mirrored ball you are 
always shown on the ball in the center of the mirror (Fig. 1). The painted Terme
sphere gives you a choice: you can be in the picture, or only partly in the picture, 
or totally absent from the painted sphere. When you look at a Termesphere 
painting you should be mentally inside the ball. Thus the mirrored ball and the 
Termesphere put the observer into the center of their respective universes. 

There is very little distortion with the Termesphere but what distortion does 
exist is found at the furthest edges of the scene, as on the mirrored ball. Compare 
the distortion in Escher's Hand With Reflecting Sphere (Fig. 1) with my Escher 
to The Third Power (Fig. 4). 

You can understand that capturing the total visual space around you is 
a spherical idea. You can see from studying map-making that the globe is the 
only way to comprehend a spherical Earth. You can understand how you must 
imagine painting what you see from inside the transparent sphere and then move 
to the outside to see your result. But how do you organize this total space onto 
the outside of the sphere? My six-point perspective organization begins with 
six equidistant points (vanishing points) placed on the sphere; these points are 
the vertices of a regular octahedron. My spherical paintings hang from ceiling 
motors, so the top point is usually the hole where the suspending chain comes 
out. This point I think of as Up, and its polar opposite Down, with the other four 
on the equator as North, East, South, and West. This helps people to understand 
that the points are at equal distances from each other. Even though I paint the 
sphere on the outside, I still think of myself as being inside it. The convex surface 
on which I paint becomes concave in my mind. 

Fig. 4. Dick A. Tennes, 
Escher to the Third Power, 
1983. Acrylics on polyethy
lene sphere 
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Fig. 5. Cube in six-point perspective 

The rule in Renaissance perspective (for drawing on a flat plane) is that each 
family of parallel lines projects to a point on the horizon line or eye-level line. 
The rule in spherical six-point perspective is that each family of parallel lines 
projects to two opposite points on the sphere. On the sphere, if a line projects to 
the North point, it also projects to the South. If another projects to the East point 
it also projects to the West and one that projects to the Up point also projects to 
the Down. If you think about it, that is how things really are. The edges of a cube 
drawn on the sphere would project to six points on the sphere since a cube is 
composed of three sets of parallel lines (Fig. 5). And in this perspective system, 
all lines drawn on the sphere are greater circles. 

When I paint a real building or landscape, I don't want the image on the 
sphere surface to be reversed like the one in Escher's mirrored ball. It would be 
reversed if I really painted it on the inside of a transparent sphere and it was then 
viewed from the outside. So I reverse the image from what I would see from the 
inside of the sphere to read true from the outside. St. Peter's Basilica (Fig. 6) 
gives an example of this. This flattened silk-screened sphere shows everything 

Fig. 6. Flattened St. Peter's Sphere, Dick A. Termes, 1996. Acrylics on acrylic plastic 
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Fig. 7. M.e. Escher, St. Peter's 
Rome, 1935. Wood-engraving 

around you as if you were floating about twenty feet above the floor, to the side 
of the High Altar. Escher also drew the inside of St. Peter's Rome (Fig. 7) from 
a very high vantage point, using a three-point perspective system that allowed 
him to capture a large portion of that interior. 

My sphere of St. Peter's "in the round" was mass-produced, so I was able to 
print a few spheres with just the dark-colored part of the pattern on a transparent 
globe. As this version of the sphere hangs and rotates from its ceiling motor, the 
viewer can look through the front of the sphere to the back side. This causes 
a strange visual perception. Usually images that are closest to us are what we 
see first, and these grab our attention. But being able to look at the image on the 
concave side of the sphere seems more natural - we are more at home inside the 
sphere than viewing images around us painted on the outside of the sphere. 

Another illusion related to this concave/convex phenomenon occurs when 
the normal opaque Termespheres are viewed: most people who see the 
convex sphere seem to read it as concave. Indeed, when a close-up video of one 
of my rotating painted spheres is viewed, it is very difficult to imagine that what 
is being shown is actually on a convex surface. Also, as the sphere turns, the 
direction of its perceived concavity seems to reverse. Studies have shown this 
illusion works best with more realistically-painted spheres [3]. I would guess 
this is true because realism would make the observer more relaxed and at home 
with the subject and therefore want to see the scene in the most normal way, that 
is, concave. You can observe these effects in a video on the CD Rom. 

Other Spherical Ideas 

In the total visual environment of Termespheres, new concepts can be explored 
that are not able to be expressed on a flat surface. Some of these ideas are 
explored on several different Termespheres. Like Escher, many of these ideas 
reflect my interest in ideas of perception. 
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Fig. 8. Dick A. Termes, North is South, 1979. Acrylics on polyethylene sphere 

Reminiscent of Escher's Up and Down (page 29), the 24-inch sphere North 
is South (Fig. 8) repeats what you see in a room. What you see to the south is 
repeated to the north and everything that is on the room's east side is repeated on 
its west side. Observers of the painting find they must move to different locations 
within the room to make sense of what they see. 

Another Escher-like work on a similar theme is the 16-inch sphere Up is 
Down (Fig. 9). What if, when you looked above the horizon, instead of seeing 
the sky you expect, you saw land again that seems just like the land below the 
horizon? Now add some skyscrapers extending from the land on one side of the 
horizon to the land on the other side. Which side is up? I found that at both ends 
of a skyscraper it appeared as though you were looking down. So this city is 
without sky and without an "up." 

Fig. 9. Dick A. Termes, Up is Down, 
1982. Acrylics on polyethylene sphere 
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Fig. to. Dick A. Termes, Finishing an Escher, 1977. 
Acrylics on polyethylene sphere 
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The sphere Finishing an Escher (Fig. 10) grows from Escher's Cubic Space 
Filling With Curved Lines, a pencil and ink study for House of Stairs [5, p. 54], 
[8, pp. 120-121]. I call the grid system he used for this a continuous four-point 
perspective system. The transformation of this idea to six-point perspective on 
the sphere worked extremely well. 

In The Six Senses the six vanishing points are the focus of the painting 
(Fig. 11). This 16-inch-diameter sphere shows plants that sinuously transform 
to outline human parts, each one appearing at one of the six vanishing points on 
the sphere. Each human part represents one of the senses: the eye of a face is on 
one vanishing point, an ear at a second, a nose on another, a mouth with tongue 
on the forth point, a finger of a hand on another, and at the last a spiral into the 
top of the head indicating intuition, the sixth sense. 

The sphere Fish Eye View (color plate 19) is a play on the fish-eye lens 
which also gives an effect similar to the mirrored ball. Here the sphere represents 

Fig.n. Dick A. Termes, The Six Senses, 
1993. Silk screened on acrylic sphere 
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Fig. 12. Dick A. Termes, The Pantheon 
in Rome, 1998. Acrylics on polyethylene 
sphere 

a spherical bowl but you don't know if you are inside or outside. Once you study 
the piece you realize you are inside the bowl and are looking out, seeing what the 
fish would see around them, both inside and outside the bowl. With a little more 
study however, you realize that some of the fish you see have to be outside the 
bowl to be doing what they are doing! 

The 24-inch sphere Notre Dame of Paris (color plate 20) is an example 
of a very exciting total visual environment that is only possible to capture on 
a spherical canvas. It shows the complete inside scene of the cathedral from its 
center. All three rose windows can be seen from this spot, in which the viewer is 
floating and revolving some twenty feet above the floor. 

The geometry of the dome building that is The Pantheon in Rome (Fig. 12) is 
also captured on a sphere. It depicts the best view of this wonderful architecture 
from the very center of the building. I have also painted other interior architec
tural environments: the Sainte Chapelle and the Paris Opera in Paris, the Loretto 
Chapel in Santa Fe, New Mexico, the Adams House and Saloon Number Ten in 
Deadwood, South Dakota, the Capital Building in Pierre, South Dakota, and the 
Blue Mosque of Istanbul. 
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An Endless Source of Inspiration 

Many important ideas arise from studying the mirrored ball. Escher likely found 
insight into curved line perspective and visual expression of the concept of 
infinity from such studies. His challenge was to observe the information on the 
mirrored sphere and translate it back to a flat surface. The mirrored sphere and 
the complete sphere each hold some wonderful possibilities. My challenge is to 
interpret, with the use of my six-point perspective, what the mirrored ball shows, 
but spread over the total sphere. On the spherical surface "infinite" lines can 
actually close, and many paradoxes of perception can be explored. 
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Families of Escher Patterns 

Douglas Dunham 

Although M.e. Escher is best known for his repeating Euclidean patterns of 
interlocking motifs, he also designed patterns for the sphere and hyperbolic 
plane. In some cases it is evident that he modified the motif of one pattern 
to obtain a new pattern with different parameters, different color symmetry, or 
even a different geometry. For example, Escher transformed his planar "angels 
and devils" pattern (Fig. I) onto the sphere and the hyperbolic plane (Fig. 2), 
thus making use of each of the three classical geometries. H.S.M. Coxeter 
gives an interesting discussion of these three patterns and their symmetry 
groups [3, pp. 197-209]; a picture of the sphere is in [8, p. 92]. Figs. I and 2 are 
two examples from a doubly infinite family of angels and devils patterns parame
terized by p, the number of figures whose feet meet at a point, and q, the number 
of devil wing tips meeting at a rotation center. The values of p and q are 4 and 4 
for Fig. I, and 6 and 4 for Fig. 2. 

Escher is also known for his use of color symmetry. This adds another 
dimension to each family of patterns, since there are infinitely many ways to 
color a repeating pattern in a regular way. 

We start with a brief review of hyperbolic geometry and of regular tessel
lations, which form the basis for many of Escher's patterns. Then we discuss 
symmetries of patterns and color symmetry. Finally we show new examples from 

Fig. 1. M.e. Escher, symmetry drawing 
number 45, 1941 

Fig. 2. M.e. Escher, Circle Limit IV, 1960 
Woodcut 
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families of Escher patterns, and indicate future challenges to create more patterns 
and their colorings. 

Hyperbolic Geometry 

Among the classical geometries, the hyperbolic plane presents unique challenges 
to an artist working "by hand." Escher surmounted these difficulties in creat
ing four hyperbolic patterns: Circle Limit I (Fig. 3), Circle Limit II (Fig. 4), 
Circle Limit III (color plate 4 and Fig. 5), and Circle Limit IV (Fig. 2); also 
see [8, p. 180]). Also, the pattern of interlocking rings near the edge of his last 
woodcut, Snakes (see page 76), exhibits hyperbolic symmetry [9]. 

For these prints, Escher used the Poincare circle model of hyperbolic geom
etry, which has two useful properties: (1) it is conformal (that is, angles are 
measured as in Euclidean geometry), consequently a transformed object has 
roughly the same shape as the original object, and (2) it lies entirely within 
a circle in the Euclidean plane, so the viewer can see the whole hyperbolic pat
tern (unlike Euclidean patterns which are artificially cut off by the edges of the 
page). In this model, "points" are the interior points of the bounding circle and 
"lines" are interior circular arcs perpendicular to the bounding circle, including 
diameters. The backbones of the fish in Circle Limit I (Fig. 3) are hyperbolic 
lines. However, the backbone lines in Escher's Circle Limit III (Fig. 5) are not 
hyperbolic lines - they are not perpendicular to the bounding circle (see [2], [4], 
and Coxeter's article, p. 297). All the devils of Circle Limit IV (Fig. 2) are the 
same hyperbolic size, which shows that equal hyperbolic distances are repre
sented by ever smaller Euclidean distances as one approaches the bounding 
circle. 

Fig. 3. M.e. Escher, Circle Limit I, 1958 
Woodcut 

Fig. 4. M.e. Escher, Circle Limit II, 1959 
Woodcut 
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Fig.s. Computer rendition of Escher's 
Circle Limit 1Il with the hyperbolic 
tessellation {8, 3) superimposed 

Regular Tessellations 

Douglas Dunham 

Fig. 6. A hyperbolic pattern of triangles 
based on the {6, 4) tessellation with that 
tessellation superimposed 

Many of Escher's Euclidean patterns and all of his spherical and hyperbolic 
patterns are based on regular tessellations. The regular tessellation {p,qj is 
a repeating pattern whose basic subpattern is a regular p-sided polygon, or 
p-gon, q of which meet at a vertex. Figure 6 shows the {6, 4} tessellation 
superimposed on a pattern of hyperbolic triangles, and Fig. 5 shows the {8, 3} 
tessellation superimposed on Circle Limit III. We discuss this more fully later 
as well as how the angels and devils patterns are based on {p, q} tessellations 
where q must be even. 

Euclidean geometry, spherical geometry, and hyperbolic geometry are some
times called the classical geometries because they have constant zero, positive, 
and negative curvature respectively. The values of p and q determine the geom
etry in which the tessellation lies. The tessellation {p, q} is spherical, Euclidean, 
or hyperbolic according as (p - 2)(q - 2) is less than, equal to, or greater than 4. 
Table I summarizes the geometry of the tessellation {p, q}. Notice that most of 
the tessellations are hyperbolic; only three are Euclidean. 

In the spherical case, the tessellations {3, 3), {3, 4), {3, 5), {4, 3}, and 
{5, 3} correspond to versions of the Platonic solids (the regular tetrahedron, 
octahedron, icosahedron, cube, and dodecahedron respectively) that are "blown 
up" onto the surface of their circumscribing spheres. The tessellations {3, 6}, 
{4, 4 }, and {6, 3} are familiar Euclidean tessellations by equilateral triangles, 
squares, and regular hexagons, all of which Escher used extensively. Escher used 
the tessellations {4, 4} and {6, 4} as a basis for the "angels and devils" patterns 
of Figs. 1 and 2 respectively; he used {4, 3} for his related spherical pattern. 
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Table 1. The geometry of the tessellation {p, q} There are three Euclidean tessellations, an 
infinite family of spherical tessellations in which p = 2 or q = 2, five spherical tessellations 
for p > 2 and q > 2; all other tessellations are hyperbolic. 

11 0 * * * * * * * * * 
10 0 * * * * * * * * * 

9 0 * * * * * * * * * 
8 0 * * * * * * * * * 0 - Euclidean tessellations 
7 0 * * * * * * * * * 0 - "Platonic" spherical 

q 6 0 0 * * * * * * * * tessellations 

5 0 0 * * * * * * * * 0 - spherical tessellations 

4 0 0 0 * * * * * * * 
where p = 2 or q = 2 

* - hyperbolic tessellations 
3 0 0 0 0 0 * * * * * 
2 0 0 0 0 0 0 0 0 0 0 

1 

1 2 3 4 5 6 7 8 9 10 11 

P 

Symmetry and Color Symmetry 

A repeating pattern is made up of congruent copies of a basic subpattern or 
motif. A symmetry operation or simply a symmetry of a repeating pattern is 
a distance-preserving transformation that maps the pattern onto itself, superim
posing each motif exactly onto another motif. For example, hyperbolic reflec
tions across the fish backbones in Circle Limit I (Fig. 3) are symmetries. Other 
symmetries of that pattern include rotations by 1800 about the points where 
the trailing edges of fin tips meet, and translations by four fish lengths along 
backbone lines. 

One very striking feature of Escher's patterns is their color symmetry -
a coloring of the motifs in a regular way. If we want to be precise, we say that 
a pattern has n-color symmetry if each of its motifs is drawn with one of n 
colors, and each symmetry of the uncolored pattern maps all motifs of one color 
onto motifs of a single color. Escher also adhered to the map-coloring principle: 
copies of the motif that share part of a boundary must be different colors. 

Most patterns in this chapter exhibit color symmetry. Notice that Circle 
Limit I does not have 2-color symmetry since the black and white fish are not 
equivalent (the black fish have 60° noses and the white fish have 90° noses). 
However, the pattern of triangles in Fig. 6 is an example of 2-color symmetry. 
Circle Limit II (Fig. 4) has 3-color symmetry, and Circle Limit III (color plate 4) 
has 4-color symmetry. In fact, Escher did pioneering work in n-color symme
try (for n larger than 2) before the theory was developed by mathematicians and 
crystallographers. For more on color symmetry, see [7] and [12]. 
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Families of Patterns 

Escher was almost certainly aware that his patterns came in families , each based 
on a common motif; this is evident in his three "angels and devils" patterns 
mentioned above. Most of his spherical patterns seem to be derived from his 
Euclidean patterns. Why didn't he create more patterns in each family? The 
reason is almost certainly that it was too time-consuming - and he was proba
bly more interested in creating new motifs rather than refashioning old ones into 
new configurations. Also, it is impossible to construct hyperbolic tessellations 
{ p, q} by ruler and compass except for certain values of p and q. 

My students and I have written computer programs to solve the problems 
of tedious hand work in modifying patterns and of producing patterns that 
are impossible to construct with ruler and compass. One of the programs 
converts a hyperbolic motif from one tessellation {p, q ) to another { p' , q'}. This 
program is used in conjunction with a program that replicates the whole hyper
bolic pattern from a motif (see [5] and [6]). Such programs can theoretically 
generate a limitless number of patterns based on a single motif. But the results 
are not very satisfactory for large values of p or q with a "natural" motif such 
as a fish or lizard, since the motif will be highly distorted. Figure 7 shows 
a distorted fish pattern based on { 12,4} and Escher's symmetry drawing number 
20 (color plate 2). Escher would never have drawn anything like this; he specifi
cally ruled out designs where animal motifs must be very angular to have a great 
number of them meet at a point. Later we show a much less distorted fish pattern 
in this family (Fig. 14). However, one can sometimes obtain pleasing results by 
distorting abstract motifs such as the crosses of Circle Limit II. 

In the following sections, we first consider families of Escher patterns 
based on his hyperbolic patterns. Then we will look at some families based 

Fig. 7. A distorted hyperbolic pattern 
based on (12, 4) and Escher's 
symmetry drawing 20 

Fig. 8. A pattern of black and white 
angular fish based on the {6. 6} 
tessellation 
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on Euclidean Escher patterns for which Escher or others provided spherical 
examples. 

Patterns Based on Circle Limits 

In 1958 the mathematician H.S.M. Coxeter sent Escher a reprint of an article that 
Coxeter had written [1]. In that article, there was a figure that showed a pattern 
of hyperbolic triangles based on the (6, 4} tessellation. When Escher saw this 
triangle pattern it gave him "quite a shock" (Escher's words), since it solved his 
problem of showing a pattern "going to infinity" in a finite space. This was the 
inspiration for his Circle Limit patterns. Coxeter's triangle pattern is shown in 
Fig. 6 in gray, with its underlying (6, 4} tessellation superimposed. 

It is easy to see how the triangle pattern of Fig. 6 could be modified to 
obtain the angular fish of Escher's first hyperbolic pattern, Circle Limit I (Fig. 3). 
Escher was unsatisfied with Circle Limit I for at least two reasons: there is no 
"traffic flow" along the backbone lines - the fish alternate directions every two 
fish lengths, and there are fish of both colors along each backbone line. He 
resolved these problems in his Circle Limit III pattern. A different solution to the 
"traffic flow" problem, shown in Fig. 8, is to convert the Circle Limit I pattern 
to one based on the {6, 6} tessellation. The resulting pattern does have 2-color 
symmetry, unlike Circle Limit I. 

By using three colors for the pattern of Fig. 8, we can make the fish all 
the same color along a backbone line, thus solving Escher's second problem 
as well (Fig. 9). We can also re-center the pattern of Fig. 9 so that the 4-fold 
rotation point of trailing fin tips is at the center of the bounding circle (Fig. 10). 
The resulting patterns have 3-color symmetry. Figure 10 bears some resem
blance to Escher's Circle Limit III. However, the fish are symmetric in Fig. 10, 

Fig. 9. The fish pattern of Fig. 8 with 
3-color symmetry 

Fig. 10. The fish pattern of Fig. 9 with 
fins in the center 
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Fig. 11. A 5-armed cross pattern based 
on the motif of Circle Limit /I 

Douglas Dunham 

Fig. 12. A pattern based on the fish mo
tif of Circle Limit 11/ and the {IO, 3 } 
tessellation 

so that the backbone lines are true hyperbolic lines, unlike the asymmetric fish 
of Circle Limit III whose backbone lines are circular arcs making an angle of 
approximately 80 degrees with the bounding circle [2]. 

A gray-scale copy of Circle Limit II, based on {8, 3}, is shown in Fig. 4; 
Escher's original print was in black, white, and red (see [8, p. 180] for a color 
image). This pattern does not seem to be related to any other Escher work. In 
Fig. 11, we show a related pattern of 5-armed crosses based on the tessella
tion {IO, 3}. 

Figure 5 shows a gray-scale version of Escher's most beautiful and success
ful hyperbolic pattern, Circle Limit III (see color plate 4) and demonstrates 
how it is based on the {8, 3} tessellation. The octagon centers are the 4-fold 

Fig. 13. An "angels and devils" pattern 
based on the {5, 4} tessellation 

Fig. 14. A hyperbolic pattern with the 
fish motif of Escher's symmetry 
drawing 20 
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rotation points where right fins meet, and the octagon vertices are alternately 
left fin and nose 3-fold rotation points. Thus, the family of Circle Limit III 
patterns is more complicated than the other families considered in this paper. 
Circle Limit III is related to Escher's symmetry drawings 122 and 123 which are 
based on {4, 4} and {3, 6} respectively, and seem to be the only case in which 
Escher used the same motif for two different Euclidean patterns. It is also curi
ous that those drawings are dated after Circle Limit III. Figure 12 shows a new 
pattern with 6-color symmetry, using the fish motif of Circle Limit III and based 
on the tessellation {10, 3} (see also color plate 6). 

We have already discussed the "angels and devils" family of which Circle 
Limit VI (Fig. 2) is a member. Any member of this family is based on the tessel
lation {p, q} where there is a q-fold "wing tip" rotation center at each vertex of 
a p-gon. The lines of bilateral symmetry of the angels and devils pass through the 
centers of the p-gons and bisect the p-gon sides, so p must be even. Figure 13 
shows another member of this family based on the {4, 5} tessellation. 

This concludes our discussion of patterns based on the Circle Limits. Some 
distorted cross patterns related to Circle Limit II and color versions of other gray
scale figures in this section can be seen on the CD Rom. 

Patterns Based on Symmetry Drawings 

Escher collected and numbered his polished "Regular Division of the Plane" 
drawings in five folio notebooks [10]. For some of these, Escher or others 
produced related spherical patterns. Schattschneider and Walker wrapped his 
patterns around polyhedra in [11]. Such a polyhedral pattern can be "blown 
up" onto a surrounding sphere to obtain a spherical pattern. Escher carved 
a beechwood sphere with the fish motif of symmetry drawing 20 (color plate 2). 
Figure 14 shows a hyperbolic pattern based on this drawing. The patterns of 
the beechwood sphere, symmetry drawing 20, and Fig. 14 are based on the 
tessellations {3, 3 }, {4, 4}, and {5, 5} respectively. 

Although Escher did not create a spherical pattern with exactly the motif 
of his drawing number 42 shown in Fig. 15, he did design a pattern of starfish 
and shells on an icosahedral tin box. Also, Schattschneider and Walker 
covered a dodecahedron with the pattern of drawing 42. Figure 16 shows 
a related hyperbolic pattern based on the {4, 5} tessellation, while drawing 42 is 
based on {4, 4}. There is a subtlety in these patterns: the place where four orange 
and white scallop shells meet is only a 2-fold rotation point, since the openings of 
the brown snails touching those scallop shells point alternately toward and away 
from the scallops. 

Escher did not create a spherical pattern based on drawing number 56, 
shown in Fig. 17, but Schattschneider and Walker wrapped that pattern around 
a tetrahedron. Figure 18 shows a related hyperbolic pattern. The tetrahedron 
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Fig. 15. M.e. Escher, symmetry 
drawing number 42, 1941 

Fig. 17. M.e. Escher, symmetry drawing 
number 56, 1942 

Douglas Dunham 

Fig. 16. A hyperbolic pattern based on 
Escher's drawing 42 

Fig. 18. A hyperbolic pattern with the 
lizard motif of Escher's drawing 56 

pattern, Fig. 17, and Fig. 18 are based on the tessellations (3, 3}, (6, 3}, and 
(9, 3}, respectively. 

Again, Escher did not create a spherical pattern based on his drawing 
number 70 of butterflies [8, p. 60], but Schattschneider and Walker used this pat
tern to cover an icosahedron. Figs. 19 and 20 show related hyperbolic patterns 
with seven and eight butterflies, respectively, meeting at a left front wing tip. 
(See color plate 7 for a color version of Fig. 19.) In general, a pattern of butter
flies meeting p at a left front wing tip and 3 at a right rear wing tip can be given 
color symmetry by using p + I colors. However, if p is even, three colors are 
enough. 

Color versions of the hyperbolic patterns in this section and related patterns 
can be found on the CD Rom. 
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Fig. 19. A hyperbolic pattern with the 
butterfly motif of Escher's symmetry 
drawing 70, based on the {7, 3} tessellation 

Conclusions and Future Work 
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Fig. 20. A hyperbolic pattern with the 
butterfly motif of Escher's symmetry draw
ing 70, based on the (8, 3) tessellation 

We have looked at Escher's four hyperbolic Circle Limit patterns, and some of his 
patterns on spheres. This leads to the question: have we missed any interesting 
families of patterns? The answer is almost certainly "yes," considering Escher's 
many Euclidean symmetry drawings and other periodic designs [10]. We 
usually picked families for which there were at least two sample patterns. Escher 
himself chose particularly striking Euclidean patterns to convert to spherical or 
hyperbolic geometry. But there are other such patterns that he probably would 
have converted to other geometries if he had been able to do so easily - with 
computer programs, for instance. Escher was pleased with his spherical and 
hyperbolic works since the viewer could see an entire pattern without having it 
stop at the artificial edges of (theoretically infinite) Euclidean patterns. 

A second question is: why didn't we show more patterns from each 
family? One answer is aesthetics. Escher's motifs only remain pleasing to look 
at with small amounts of distortion, which means small values of p and q. There 
are just a few such combinations of p and q that satisfy the hyperbolic condition 
(p - 2)(q - 2) > 4. Figure 7 shows an extreme example of distortion, but even 
the moderately deformed devils of Fig. 13 seem too wide when compared to 
Escher's angels and devils patterns. Escher carefully chose motifs and values 
of p and q that were compatible. 

One remaining challenge is to automatically generate colorings of patterns. 
We have followed Escher's example and only used the minimum number of 
colors for a symmetric coloring while adhering to the map-coloring principle. 
But these colorings were determined "by hand" - it seems difficult to automate 
this process. 
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Another challenge is to handle Escher families that are more complicated 
than those based on the regular tessellations {p, q }. For example, one can 
certainly imagine a 3-parameter family of Circle Limit III patterns in which the 
right fins of the fish meet at a p-fold point, the left fins meet at a q-fold point, 
and r noses meet at a point. 

We have made progress in being able to easily view many hyperbolic 
members of Escher pattern families. However, there are certainly more unex
plored ways to create patterns from Escher families. Transforming and coloring 
Escher patterns via computer has become almost as much of an obsession 
with me as creating them was for Escher in the first place. I thank him for his 
extensive, inspiring legacy of beautiful patterns. 
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The Trigonometry of Escher's Woodcut 
Circle Limit III 

H.S.M. Coxeter 

Preface. During the 1954 International Congress of Mathematicians in Amsterdam, my 
wife Hendrina introduced me to M. C. Escher, with whom we became close friends. 
On one of the occasions when he was visiting his son George in Nova Scotia, he gave 
an illustrated lecture in the Art Gallery of Ontario and spent a few nights with us in 
our Toronto house. He gave us four original prints; including one of Circle Limit II/, 
which inspired this article, as well as an earlier one. In contrast to the other three 
Circle Limits (I, I/ and IV), this employs four colours in addition to black and white, 
and features arcs which are not orthogonal to the peripheral circle. In an earlier art
icle [1], I used hyperbolic trigonometry for my analysis, but several years later I took 
up the challenge of using Euclidean trigonometry instead. My former student J. Chris 
Fisher kindly helped by reducing my expressions for the measurements to calculated 
numbers that could be compared with the actual print on my staircases wall. At first one 
of the six measurements seemed to be wrong by a few millimetres. (The diameter of the 
peripheral circle is 41 cm.) Rather than blame Escher, I asked Chris to check his compu
tation again. When he admitted that the mistake was his, I realized that Escher's intuition 
was completely justified. I still find it almost incredible that he, with no knowledge of 
algebra or trigonometry obtained accurately the centres and radii (r], r2, r3) of the three 
different circles to which the three different axes belong. 

The Euclidean material was accepted by Chandler Davis for The Mathematical 
Intelligencer [2]. But neither he nor I was intelligent enough to notice the simplifying 
relation r]r2 = 2. When this and its neat consequences were pointed out to me by Jan 
van de Craats of Breda, I rearranged the material into a "streamlined" version which was 
accepted by Koji Miyazaki for publication in his mainly Japanese journal Hyper
Space [3]. It is that streamlined version that is republished here. 

In M. C. Escher's circular woodcuts, replicas of a fish (or cross, or angel, or 
devil), diminishing in size as they recede from the centre, fit together so as to 
fill and cover a disc. Circle Limits I, II, and IV (pages 286, 287) are based on 
Poincare's circular model of the hyperbolic plane, whose lines appear as arcs of 
circles orthogonal to the circular boundary (representing the points at infinity). 
Suitable sets of such arcs decompose the disc into a theoretically infinite num
ber of similar "triangles," representing congruent triangles filling the hyperbolic 
plane. Escher replaced these triangles by recognizable shapes. Circle Limit III 
(Fig. I and color plate 4) is likewise based on circular arcs, but in this case, in
stead of being orthogonal to the boundary circle, they meet it at equal angles of 
almost precisely 800 • (Instead of a straight line of the hyperbolic plane, each arc 
represents one of the two branches of an "equidistant curve.") Consequently, his 
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construction required an even more impressive display of his intuitive feeling for 
geometric perfection. The present article analyzes the structure, using the elem
ents of trigonometry and the arithmetic of the biquadratic field <Ql(.fi + J3): 
subjects of which he steadfastly claimed to be entirely ignorant. 

Concerning his four Circle Limit woodcuts, M. C. Escher wrote: 

Circle Limit I, being a first attempt, displays all sorts of shortcomings 
. .. and leaves much to be desired. . .. There is no continuity, no "traffic 
flow" nor unity of colour in each row .... In the coloured woodcut Circle 
Limit III, the shortcomings of Circle Limit I are largely eliminated. We 
now have none but "through traffic" series, and all the fish belonging to 
one series have the same colour and swim after each other head to tail 
along a circular route from edge to edge. ... Four colours are needed 
so that each row can be in complete contrast to its surroundings. As all 
these strings of fish shoot up like rockets. .. from the boundary and fall 
back again whence they came, not a single component reaches the edge. 
For beyond that there is "absolute nothingness." And yet this round world 
cannot exist without the emptiness around it . .. because it is out there in 
the "nothingness" that the centre points of the arcs that go to build up the 
framework are fixed with such geometric exactitude. [4], p. 109 

The purpose of the present article is to demonstrate this "geometric exacti
tude" (see Fig. 2) by finding the radii and centres of the first three sets of four 
congruent circles that trace the backs of the "strings of fish." I naturally assume 
that the relevant arcs of these circles cross one another at equal angles of 60° , 
decompose the interior of the "boundary" into alternate triangular and quad-

Fig.1. M. C. Escher, Circle Limit Ill, 
1959. Woodcut 
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Fig. 2. Escher's "framework" 

rangular regions, and all cut the boundary at the same pair of supplementary 
angles 

W, Jr -w. 

The acute angle W appears on the side of each arc where the regions are 
quadrangular. 

An earlier article ([1], p. 24) used hyperbolic trigonometry to prove that 

1 
cos w = sinh( 4 log 2) 

;::;;; sinh 0.1732868;::;;; 0.1741553. 

Since cos(79°58') ;::;;; 0.17424, w scarcely differs from the value 800 which can 
easily be measured in Escher's woodcut. Here I obtain this expression for w by 
a more elementary procedure. 

The Angle (JJ at the Boundary 

Figure 2 is a sketch of the middle part of Escher's "framework," showing the 
centres ov, at distances 

from the centre A of the bounding circle, of radius 1, and showing the radii 
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Fig. 3. Triangles with angles w at Xl and X3, Fig.4. The similar triangles OIAe and 
]f -(Vat X2 02AB 

From the triangle XI A 01, whose angle w at XI is opposite to the side A 01 = 
dl, as in Fig. 3, we have 

d2 2 
1 = 1 + r 1 - xrl , (1) 

where 

x =2cosw. (2) 

Similarly, the triangle X2A02, whose angle rr - w at X2 is opposite to d2, yields 

d2 2 
2 = 1 + r 2 + X r2 . (3) 

Because the angle between two intersecting circles equals the angle between 
their radii to a common point, the triangle 01 AC has angles 2rr/3, rr/4, and rr/12 
opposite to sides 

AOI=dl, COI=rl, CA=d2- r2, 

respectively, as in Fig. 4. Hence we have 

dl rl d2 -r2 ----- -----
sin(2rr/3) - sin(rr/4) - sin(rr/12) , 

that is, 

dl rl d2 -r2 

v'3 = -Ji = (v'3-I)/vIz· 
(4) 

The similar triangle 02AB, with angles 2rr/3 and rr/4 opposite to sides 

A02=d2, and B02=r2, 

respectively, yields 

d2 r2 AB 

v'3 = -Ji = (v'3-1)/vIz· 
(5) 
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Thus, 

3 
d~=2r~ (v=lor2) 

and expressions (1) and (3) for d~ yield quadratic equations for rv: 

rt + 2xrl - 2 = 0 , ri - 2xr2 - 2 = 0 . 

Solving these equations for the positive numbers r v , we find 

r, = -x+Jx2+2, r2 =x+Jx2+2. 

From (4) we have 

and from (7), 

It follows that 

rt = (J6-2)(vS+ 1), 

ri = (J6+2)(vS -1), 

4x2 = (r2 - rl)2 = rt + ri - 2rlr2 = 2v'2CJ2 - 1)2 

and 

x = TI/4(21/2 -1) = 21/4 - Tl/4 = 2 sinh(~ log 2). 

The First Two Circles 

Since Jx2 +2 = J21/ 2+2- 1/ 2 = 2- 1/ 4J3, (7) yields 

and, from (6), 

From (5) we have 

rl = rl/4(1_ v'2 + vS) ~ 1.1081646, 

r2 = Tl/4( v'2 - 1 + vS) ~ 1.8047860, 

dl =r3/4(vS-J6+3) ~ 1.3572189, 

d2 = r3/4(J6-vS+3) ~ 2.2104024. 

AB = ~(vS -1)r2 

= T 3/ 4 ( -1 + 2v'2 + vS - J6) ~ 0.6605975. 
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(6) 

(7) 

(8) 

(9) 
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The Biquadratic field Q(.J2 + J3) 

The numbers (a +b.J2 + c.J3 +d.../6)/q, where a, b, c and d are integers and q 
is a positive integer, are easily seen to constitute afield ([5], p. 230). This field is 
called <Q(.J2 + .J3) because it can be expressed as the set of all rational functions 
of the special number e = .J2 + .J3 in terms of which 

In this field, e is called an integer because it satisfies a monic equation, namely 

e4 - IOe2 + I = 0 . 

When we assert that "factorization is unique," we disregard, as factors, the units, 
which are divisors of 1; for if st = 1, any number 

n = nsf 

has the trivial factorization ns x t. 
Comparing (8) and (9), we obtain the apparently surprising identity 

(1- h+J3)2 = 2(J3 - h)(J3+ 1). 

This "factorization" loses its element of surprise when we face the obvious fact 
that .J3 - .J2 is a unit: 

The Third Circle 

Looking again at Fig. 3, we see that 

and, since the third circle passes through B, 
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Thus 

and 

l-xr3 l- xr3 
d3 + r3 = -----;;:B , 2r3 = AB - AB , 

(11 AB) - AB 1 - AB2 
r3 = 2+xIAB = 2AB+x 

1-2-3/ 208-1O.J2-IOJ3+6.J6) 

21/4( -1 + 2..;2+ J3 -.J6) + 2-1/4(.J2 - 1) 

-9 + 6..;2 + 5J3 - 3.J6 

21/4(3 - 2J3 +.J6) 

= r1/45 - 3..;2 - 3J3 +2.J6 

-2+..;2+J3 

= 2-1/4 ( -1 +2.J6 -3) 
-2+..;2+J3 

_T1/4 ( (-1 + 2.J6)(-2 + 5.J2+ 3J3 + 4.J6) -3) 
- (-2+..;2+J3)(-2+5..;2+3J3+4.J6) 

~ TI/4 (50+ 13v'2:~7,/3 - 8,/6 -3) 

~ Tlf4 (-19+ 13v'2~ 17,/3-8,/6) 

;:::::: 0.3375915 

d3 = r3 +AB = r3/43+27.J2:;J3 -6.J6 ;:::::: 0.998189. 

Since Escher's bounding circle has diameter 41 cm, our results 

r1 ;:::::: 1.10816, 

r2 ;:::::: 1.8048, 

r3 ;:::::: 0.3376, 

d1 ;:::::: 1.3572, 

d2 ;:::::: 2.2104, 

d3 ;:::::: 0.9982, 

should be multiplied by 20.5 to obtain the distances in centimetres: 

22.7, 27.8, 

37.0, 45.3, 

6.92 , 20.46. 
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These distances agree perfectly with actual measurements in the woodcut itself. 
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Escher in the Classroom 

Jill Britton 

What is mathematics? Most school children equate mathematics with its com
putational tools ("Things you can do with numbers.") and have little, if any, 
understanding of the true nature of the subject. 

To the ancient Greeks, mathematics was the study of patterns and embraced 
both music and astronomy. The computational tools of these early mathemati
cians were few, yet they used mathematics to explore the world in which 
they lived. In the ensuing centuries, as more and more analytical tools were 
developed, mathematics education focused on drill-and-practice exercises to 
the eventual virtual exclusion of any exploration of real-world phenomena. 
Math aversion and anxiety was the predicable result. Few would argue that the 
response would have been any different to a music curriculum that explored only 
scales, or a reading curriculum with spelling drills but no stories. 

Today we are in the midst of a mathematical renaissance. The introduction of 
calculators and computers into the curriculum has allowed mathematics teach
ers to adjust the emphasis placed on their computational drills. Mathematics 
educators are endeavoring to rediscover their subject and its connections to the 
real world. They are attempting to use their classic tools in a context, rather 
than as an end unto themselves. And what better material to use than the art of 
M.e. Escher, particularly his tessellations, to excite students about the power of 
geometry? In this article, I would like to share with you several Escher-based 
activities that I use with school children (ages 10 to 14) to promote mathematics 
as the study of patterns. 
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Fig. I. Top Left: Reflectional symmetry. 
Bottom left: Translational symmetry. 

Symmetry 

Jill Britton 

~r ~r ~r 
Top right: Rotational symmetry. 
Bottom right: Glide-reflectional symmetry 

A methodical analysis of Escher's tessellations requires a familiarity with the 
various kinds of symmetry they exhibit. To begin, students are exposed to reflec
tional and rotational symmetry through a set of exercises involving animals and 
insects, especially butterflies, letters of the alphabet, national flags, First Nations 
art, Pennsylvania Dutch hex signs, representative emblems such as the familiar 
recycling symbol, and commercial trademarks or logos (see Fig. 1 top). 

Translational and glide-reflectional symmetry will be far less familiar to 
most students than reflectional or rotational. An investigation of animal tracks 
is a good exploratory activity. The trail left by a biped hopping on one foot has 
translational symmetry while the one made by a biped with a human gait has 
glide-reflectional symmetry (Fig. 1, bottom). Exercises involving symmetrical 
strip patterns and classical friezes can be used to reinforce these ideas. 

Polygons and Tessellations 

A simple connect-the-dots exercise is used to introduce the concept of a polygon. 
The 50-sided polygon in Fig. 2 resembles a reptile similar to the one that appears 
in Escher's lithograph Reptiles (Fig. 4). This is but one of several identical lizards 
that interlock in a jigsaw puzzle configuration or tessellation in the drawing 
Escher depicts of his own notebook. A set of 15 soft foam lizards is available 
from the Imagination Project; a tessellating foam trio is shown in Fig. 3. 

Next, students are introduced to regular polygons. Each student is provided 
with a pair of identical plastic mirrors hinged together with cloth tape. When the 
assembly (referred to as a hinged-mirror kaleidoscope) is opened like a book, the 
mirrors will stand alone. The students are instructed to stand their kaleidoscope 
on the broken lines as shown in Fig. 5. Instantly they can view the equilateral 
triangle formed by the kaleidoscope. 
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Fig. 2. 

,,,' 120' " 

,--"'--'" 
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Fig. 3. Lizards from M. C. Escher 
SoftPuzzles 

.................. 

.................. 

Fig. 4. M.e. Escher, 
Reptiles, 1943. 
Lithograph 

Fig. 5. Hinged mirrors placed on the dashed lines produce an equilateral triangle 
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Fig. 6. The regular tessellations 

If the students move their mirrors towards one another so they always form 
an isosceles triangle with the base line, a square will eventually be formed by 
the kaleidoscope. If they continue to move their mirrors towards one another, 
they will see, in tum, a regular pentagon, a regular hexagon, a regular heptagon, 
a regular octagon, and so forth. Each time a regular polygon is formed by the 
kaleidoscope, the students are asked to determine the angle between the mirrors 
(and they discover it is 3600 In, where n is the number of sides of the regular 
polygon). 

After determining the measure of the interior angle of the first few regular 
polygons, the students discover that only three of these polygons will tessellate 
the plane - the equilateral triangle, the square, and the regular hexagon. The 
corresponding patterns, the regular tesselations, are shown in Fig. 6. 

Fig. 7. M.e. Escher, symmetry drawing 
no. 85, 1952, with an equilateral triangle 
that generates it 

Fig. 8. Jill Britton, Clowns. Tessel
lation, with an equilateral triangle 
that generates it 
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Fig.9. Left: M.e. Escher, symmetry drawing no. 105, 1959, with parent square outlined. 
Right: A single Pegasus translates to adjacent copies in the tessellation 

If a third mirror is added to the hinged-mirror kaleidoscope, the resulting 
60° -60° -60° prism kaleidoscope can be used to generate tessellating art with re
flectional symmetry. (The equilateral triangle configuration of three mirrors can 
be maintained with an elastic band.) Figure 7 shows a generating triangle for 
Escher's Lizard/ Fish/Bat tessellation. A similar generating triangle created by 
the author and the associated tessellation of clowns is in Fig. 8. 

Tessellating Templates, Stamps, and Sponges 

If you look closely at the drawing depicted in the lithograph Reptiles (Fig. 4), 
you can see a superimposed grid of hexagons. Escher's creatures are modifica
tions of simple tessellating polygons. Consider his tessellation of winged horses 
(Fig. 9), a pattern with translational symmetry alone. To find the parent poly
gon, the students are asked to go around a single complete tessellating shape 
(one Pegasus), looking for points at which more than two shapes meet. When 
all such points have been located, they are instructed to join them in cyclic order. 
In this case, a square will be outlined. 

If the students study a shaded Pegasus in its parent square, they will discover 
how Escher modified the square to obtain his imaginative creature. A "bump" on 
the upper side is compensated for by a congruent "hole" on the lower side, and 
vice-versa. The same is true of the left/right sides. (George Escher, the artist's 
eldest son, refers to the modifications as "pimples" and "dimples.") Since what is 
added to one side of the square is removed from the other side, the area of the par
ent square is maintained. Corresponding modifications are related by translation. 
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Fig. 10. Making a tessellation template 

Fig. 11. Interpretations of a single shape 

This can be verified by sliding translucent copies of the assembly to adjacent 
squares that surround one Pegasus (Fig. 9, right). 

To apply this modifying rule, each student is provided with a 2-inch card
board square imprinted with a grid of nine smaller squares. If distinct cutouts are 
removed with scissors from each of two adjacent sides (without interrupting the 
corners of the square), each modification can be translated to the side directly 
opposite by matching appropriate grid lines, and then taped in position. The 
result is a tessellating template (Fig. 10). Each student is asked to study the 
contour of his/her template and to try to give it an original interpretation. The 
student who designed this shape saw both an elephant and an elf (Fig. 11). 

Finally the students use their template to draw their tessellations. They align 
the residual square corners ofthe template with the dots on 2-inch dot paper and 
trace around the boundary of their template with a pencil. Since the template 
design was created by means of translation, they slide it to new locations 
repeating the same translations. Interpreting features can be added by hand 
(Fig. 12). 

Fig. 12. Producing the tessellation 
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Fig. 13. Left: A printed tessellation. Right: A group tessellation of sponge tiles 

Escher was a graphic artist, producing lithographs and woodcuts. If students 
don't try printing their tessellation, then they aren't mirroring Escher's craft. To 
create a tessellating rubber stamp, each student will need a transparent stamp 
mount and a piece of self-adhesive foam rubber. They trace around their template 
on the backing of the rubber, then cut out the shape. Once the adhesive surface 
is exposed by peeling away the backing, they can attach the rubber securely to 
the mount. 

Interpreting features can be added to the stamp by scoring its rubber surface 
with a ballpoint pen. Students then print their tessellations on large sheets of 
2-inch dot paper. They use stamp-pad ink to print in one color in a checkerboard 
pattern, aligning the residual square corners of the rubber shape with the dots on 
the paper. When done, they clean the stamp with water, dry it, then print in the 
uncolored spaces using a contrasting color (Fig. 13, left). 

A tessellating shape can form the basis of a jigsaw puzzle with only one 
shape in which the pieces will fit together in numerous ways. A medium that 
is fun to use is compressed or "pop-up" sponge. The material has the appear
ance and thickness of felt. Students can draw on it and cut it like cardboard. 
The border of the cut shapes can be outlined and interpreting features can be 
added with a waterproof marker. When immersed in water, the material expands 
to a 1 /2-inch thickness. Students squeeze out the excess moisture, then assemble 
their jigsaw puzzles. In a cooperative approach to the sponge activity, the teacher 
can furnish each student with the same tessellating shape. Choose a shape with 
lots of possibilities (like the elephant/elf used in this article). Each student adds 
his/her interpretation, "pops" his/her sponge, and the class gets to assemble 
the various pieces. In Rome, congress participants were invited to give their 
own interpretation to the elephant/elf shape. Selected submissions appear in the 
tessellating jigsaw puzzle in Fig. 13, right. 
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Fig. 14. Three worksheets based on Escher tessellations 

Investigating Escher's Tessellations 

Once students have some experience with creating tessellating art, they are 
ready to learn other ways to create these symmetrical patterns. To begin, they 
review the regular tessellations and discover other tessellating polygons such as 
rectangles, parallelograms, and quadrilateral kites. 

Next, the teacher presents several of Escher's tessellations, each generated 
by its own unique modifying rule or rules. Each student is provided with a set 
of corresponding worksheets, and instructed to outline the parent polygon as 
demonstrated earlier with the Pegasus tessellation. Three completed worksheets 
are shown in Fig. 14. 

Finally, students are provided with a translucent sheet imprinted with single 
shaded tessellating shapes and their parent polygons. Those that correspond to 
the tessellations in Fig. 14 are given in Fig. 15. The students study each assem
bly on the translucent sheet, looking for corresponding "bumps" and "holes," 
and for the transformations used to modify the parent polygon. (Although the 
actual and relative sizes of the graphics have not been preserved in this article, in 
actual practice, each assembly on the translucent sheet is congruent to the shaded 
tessellating shape and parent polygon on the corresponding worksheet.) 

In order to make the lizard in Fig. 15a, the top and bottom edges of the par
ent square were modified and then each was rotated 90° to an adjacent side. Each 
rotation was about a vertex of the square between the related sides. The parallelo
gram in Fig. l5b was transformed into a different lizard by translating the 

a b c 
Fig. 15. The tessellating shapes for the tessellations in Fig. 14 
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Fig. 16. An original tessellation of 
rabbits from a modified square 

modified top edge to the bottom edge and by rotating a curve about the midpoint 
of each of the other sides. To be more specific, curves modifying one half-side 
of each side were rotated 180° about the midpoint of that side to the adjacent 
half-side. The parallelogram in Fig. 15c was changed into a dog by translat
ing a modified left side to the right side and by performing a glide reflection 
between the other pair of modified sides. Specifically, a modification to one side 
was flipped (L/R) and then translated (vertically) to the equal and opposite side. 

The students verify each rule or set of rules by moving the translucent sheet 
on the appropriate worksheet until they obtain coincidence of congruent shapes. 
Then they are shown a similar example of original artwork. The tessellating 
shape in Fig. 16 was made in a manner similar to Escher's silhouetted lizard in 
Fig. 15a, although the 90° rotations are about the other pair of alternate vertices 
of the parent square. 

Fig. 17. Producing a tile and its tessellation with TesselMania! 
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Fig.1S. Polyhedra covered with tessellations made with TesselMania! 
Deluxe, and (for the dodecahedron) other software 

Jill Britton 

Explorations with TesselMania! and TesselMania! Deluxe 

Once they have used Escher's tessellations to investigate the transformations 
that can be used to create tessellating art, students are given the opportunity 
to create their own artwork on a computer with TesselMania! software. Within 
the program, they select a polygon and a modifying rule or rules (translation, 
rotation, and/or glide reflection). Whenever a "bump" or "hole" is added to 
a side, TesselMania! automatically removes or adds the corresponding "hole" 
or "bump" from/to the appropriate side according to the rule or rules selected. 
Classic paint tools, including stamps, are available for adding interior inter
preting features. When their tessellating shape is complete, students simply 
press a button, and the corresponding tessellation fills the drawing screen auto
matically (Fig. 17). Each student's original artwork can be printed on transfer 
material suitable for color bubblejet printers, and then ironed onto a T-shirt. The 
results are truly outstanding! 

Using reverse-engineering, teachers can reconstruct many of Escher's tessel
lations with the software. (Reverse-engineering is the process of analyzing an 
object to discover the details of its design in order to reconstruct it. For more on 
this, see Kevin Lee's article, page 393.) Students can use these files with Tessel
Mania!'s magic options to animate the generation of the tessellating shape from 
its parent polygon, to animate the creation of the tessellation through the repeated 
application of transformations to the tile, or to watch the artwork morph to/from 
the parent tessellation. 

With TesselMania! Deluxe, students can print their tessellations on the nets 
of four of the regular polyhedra (tetrahedron, octahedron, icosahedron, or cube) 
or on the net of a hexagonal box. The dodecahedron is missing from the set of 
regular polyhedra in TesselMania! Deluxe, but can be added to the classic set of 
3D models, as we have done, with other software (Fig. 18). 
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Fig. 19. Jill Britton, Clowning Around kaleidocycle 

Kaleidocycles 

Inspired by the kaleidoscopically-designed geometric forms covered with adap
tations of Escher's patterns in the collection M.e. Escher Kaleidocycles, I have 
created my own "Clowning Around" version (Fig. 19). (A kaleidocycle is 
a three-dimensional ring made from a chain of tetrahedra.) A color version of 
the pattern is printed on legal or even larger white card stock, then lightly scored 
with a blunt darning needle. (This pattern may be found on the CD Rom.) Each 
student cuts out his/her own copy, folds it on the scored lines in the usual way, 
then assembles the model with glue or transparent tape. As with the Escher 
versions, the kaleidocycle rotates to reveal its three distinct tessellating clown 
faces. 

Summary 

The symmetry actIvItIes described here introduce students to the motions 
of transformational geometry and teach them how to recognize and identify 
symmetrical characteristics of real world objects. The activities with polygonal 
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tessellations introduce the concepts of angle measure, polygons, angle relations 
in polygons, congruence, and space filling. The extensions to Escher-based activ
ities demonstrate the potential connections between mathematics and art, while 
developing and testing students' imagination and precision skills. In particular, 
the printing activities mirror Escher's craft. Further extensions to TesselMania! 
activities add a technological component to the math/art connection. Finally, the 
introduction of polyhedra and kaleidocycles adds a three-dimensional compon
ent and develops spatial visualization. 

In all activities, the inclusion of an artistic Escher connection makes the 
exercise interesting to the students. They can be further introduced to Escher's 
artwork and its far-reaching themes through the film/video Adventures in Per
ception which features a brief interview with the artist and shows him printing 
his last work, Snakes. This film can lead to investigations with Mobius bands, 
impossible figures, and other topological phenomena. The fact that the students 
literally "ask" to learn more is the most telling and desirable result. 

The content of this article is discussed in much more detail in my books 
Investigating Patterns: Symmetry and Tessellations and Investigating Patterns: 
Polyhedra Pastimes. Associated internet links to the activities in these publi
cations can be found in my web page. The materials referred to in this article 
(plastic mirrors, stamp mounts, foam rubber, and pop-up sponge) are available 
from Dale Seymour Publications. 
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Chaotic Geodesic Motion: An Extension 
of M.C. Escher's Circle Limit Designs 

Victor J. Donnay 

My parents, Gabrielle (Gai) and Joseph D.H. Donnay, were crystallographers. 
In June of 1959, while on sabbatical leave in France, they met and visited with 
M.e. Escher at his home in Holland. They were fascinated with his beautiful 
designs and the lovely way in which his work illustrated ideas of symmetry. Gai 
was then organizing a symposium on symmetry for the 1960 International Union 
of Crystallography meeting to be held in Cambridge, England and invited Escher 
to present his work at this meeting [1, p. 94]. His talk at the meeting was a great 
success and was the start of a wonderful collaboration between Escher and crys
tallographers. The family story was that Gai "discovered" Escher and made 
him famous (to the scientific community). I grew up in an Escher-rich environ
ment which no doubt contributed to my development as a visual and geometric 
mathematician. It was a great pleasure for me to participate in the centennial 
celebration of the birth of M.e. Escher. In honor of the role they played 
in the Escher story, I dedicate this article to the memory of Gai and 
J.D.H. Donnay (Fig. 1). 

In his Circle Limit (see pp. 286-287 and color plate 4) series of designs, 
M.C. Escher uses hyperbolic geometry to tessellate the hyperbolic plane. By 
taking a fundamental domain for this tessellation, one can produce an abstract 
mathematical surface. The hyperbolic geometry from the hyperbolic plane can 
be carried over to this surface, thereby producing a hyperbolic surface. If one 
walks along this surface following paths of shortest distance, one gets a chaotic 
motion in that the paths wind all over the surface. These paths of shortest distance 
are called geodesics. Thus Escher's Circle Limit designs can be interpreted as 

Fig. I. Gabrielle and 1.D.H. 
Donnay with sons Albert 
and Victor, Paris, France, 
September 1959 
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Fig. 2. Left: Schwarz P-surface. Right: Sphere whose geodesic motion is chaotic 

giving rise to chaotic geodesic motion. Unfortunately, the surfaces on which this 
chaotic motion occurs are abstract surfaces: they can be mathematically defined 
but they do not really exist in normal, three-dimensional space. 

Here we present the first examples of actual surfaces sitting in three
dimensional Euclidean space for which the geodesic motion is chaotic. These 
surfaces are made by attaching special "focusing caps" to the Schwarz P-surface 
(Fig. 2 and color plate 17). Along the way, we will discuss such notions as 
geodesic motion on surfaces, what it means for such motions to be chaotic, 
fundamental regions for tessellations on the Euclidean and hyperbolic plane, 
how tessellations give rise to abstract surfaces, the difference between abstract 
and physical surfaces, and the different types of geometry a surface can have. 

Geodesics and Chaotic Motion 

Given two points on a plane, the path of shortest distance between the points 
is a straight line. This well known result is one of the basic tenets of Euclidean 
geometry. Now suppose we take two points not on the plane, but on the surface 
of a sphere. What would be the path of shortest distance connecting these two 
points? We make the provision that this path must lie on the surface of the sphere; 
it is not allowed to pass through the inside of the sphere. 

On a sphere, the path of shortest distance between two points is an arc of 
the so-called great circle (i. e., a circle whose radius equals that of the sphere) 
that goes through these points (Fig. 3). Given more complicated surfaces which 
might, for example, contain hills and valleys, there will still be paths of shortest 
distance, but these paths will no longer be as simple as straight lines or circular 
arcs. The term for such a path of shortest distance is a geodesic. 

These geodesic paths give rise to a deterministic rule of motion on a surface. 
Place yourself at some point on the surface and point yourself in a direction. 
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Fig. 3. Geodesics on the sphere 
are great circles 

Victor 1. Donnay 
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Fig.4. Sensitive dependence on initial 
conditions 

Then start walking in what you think is a "straight line." The path you follow 
by going in this fashion will be a geodesic; it will be a path of shortest distance. 
To you, living on the surface, it appears to be straight. 

Note that to an outside observer looking down on the surface from above, the 
geodesic path may appear to curve due to the fact that the surface is curved. For 
example, on the sphere, what appears to the walker to be a straight path is seen 
by the outside observer as a circle. 

For the sphere, the geodesic motion is very simple. No matter at which 
point you start and no matter in which direction you aim yourself, the "straight 
line" path you follow will be a great circle. If you walk far enough, you will 
go all the way around the sphere and come back to your starting point. If you 
continue walking along the geodesic forever, you will continue to trace out the 
same circular path over and over again. 

We might wonder: Are there surfaces, perhaps ones that are not so perfectly 
round as the sphere, for which the geodesic motion is more complicated? For 
example, perhaps when you start walking along a geodesic path, you never return 
exactly to where you started. Instead, you wind "all over" the surface. In addition, 
as you wind all over the surface, you do so by moving through all possible 
directions. Such a geodesic path would be "chaotic." Thus we are led to ask, 

Question 1 Are there sUIj"aces for which the geodesic motion is chaotic? 
The theory of chaotic motions arising from deterministic rules, part of 

the field of mathematics called dynamical systems, has been a very popular 
scientific and mathematical topic during the past twenty years. The notion that 
a deterministic dynamical system can generate very complex motions can be 
traced back to the work of the famous French mathematician Henri Poincare 
in the latter part of the 19th century. Shortly after Poincare's ground-breaking 
work in this field, another French mathematician, J. Hadamard [10], applied 
these new ideas to geodesic motion. Hadamard found examples of surfaces for 
which the geodesic motion had a certain type of chaotic motion: sensitive depen
dence on initial conditions. Over the past century, examples of geodesic motion 
have served as motivation for the development of general theories of dynamical 
systems and as a testing ground for techniques that have been developed to 
analyze deterministic motions. 
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Mathematicians have developed a whole lexicon of terms with very precise 
meanings to describe exactly what is meant by chaotic motion. For our purposes, 
it will suffice to use the following slightly vague definition of chaos. 

Definition of Chaos. Geodesic motion is chaotic if it has sensitive depen
dence on initial conditions and if most geodesic paths wind all over the surface 
and move with all possible directions. 

A deterministic system has sensitive dependence on initial conditions if 
a small change in the starting point of the system leads very quickly to a large 
change in the future behavior of the system. We illustrate this notion in Fig. 4. 
Particles starting at points A, Band C will move to points A', B' and C', 
respectively, under the motion of the system. We see that a small change in the 
initial location of the point will lead to a very large change in the position of the 
point later on. There is always some uncertainty in measuring the initial pos
ition of a system. With sensitive dependence, this uncertainty will grow, making 
predictions of future positions increasingly uncertain. 

A slightly tongue-in-cheek application of sensitive dependence on initial 
conditions is the Butterfly Effect in weather prediction. We wish to study the 
weather and predict what the weather will be like two weeks from now. We have 
some uncertainty in the present weather conditions; for example we do not know 
if a butterfly on the coast of South America is sitting still or is flapping its wings. 
This small uncertainty in the initial situation of the weather could lead to a large 
change in the weather after two weeks. For example, no flapping could lead to 
a sunny day while flapping could lead to a hurricane. 

Mathematicians are interested in studying various systems and in determin
ing whether the systems are chaotic or not. A computer simulation may show 
that a system appears to behave chaotically. Such a simulation provides experi
mental evidence of chaos but is not the same as a rigorous mathematical proof 
that a system is chaotic. We are looking for surfaces for which we can rigorously 
prove that the geodesic motion is chaotic. 

Surfaces and Their Geometry 

We will be interested in surfaces that are finite and have no edges; they 
completely close up on themselves. (Technically, such surfaces are compact, 
complete orientable Riemannian surfaces.) It turns out that one can completely 
list all such surfaces. There is the sphere, the torus, the two-holed torus, the three
holed torus, and so forth (Fig. 5). We call the number of holes through the surface 
the genus. Thus a sphere has genus zero while a torus has genus one. We call 
a surface with g holes a g-holed torus. 

In the mathematical field of topology, one imagines that surfaces are made 
out of rubber and says that two surfaces are (topologically) the same if one can 
deform the first surface, by bending and stretching it, until it attains the same 
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Fig. 6. Non-standard spheres 

Victor 1. Donnay 

Fig.S. One-holed, two-holed, and three-holed 
tori 

Fig. 7. Saddle-shaped surface 

shape as the second surface. Thus for example, an egg-shaped surface (Fig. 6) is 
the same, from the point of view of topology, as the sphere since we can imagine 
stretching out the egg shape until it becomes perfectly round. Henceforth, when 
we use the term "sphere," we are referring to any surface which is topologically 
the same as the round sphere. When we want to refer specifically to the round 
sphere, we will use the term the "standard sphere." 

Even though two surfaces may be the same from the point of view of topol
ogy, they can be different from the point of view of geometry. There are three 
main classes of geometry: fiat, spherical and hyperbolic. The plane has fiat geom
etry, the standard sphere has spherical geometry and saddle-shaped surfaces have 
hyperbolic geometry (Fig. 7). We can also categorize the geometry of a surface 
by its (Gaussian) curvature. A fiat surface has zero curvature, a standard sphere 
has positive curvature and a saddle-shaped surface has negative curvature. A fiat 
surface (zero curvature) does not bend at all. Positive curvature, as on the 
standard sphere, means that the surface bends the same way in all directions. 
Negative curvature, as on a saddle, means that in some directions the surface 
bends up and in other directions it bends down. Brushing aside certain tech
nicalities, we will pretend that spherical geometry and positive curvature are 
equivalent, as are hyperbolic geometry and negative curvature. 

Circle Limit 11/ and Hyperbolic Geometry 

M.e. Escher's print Circle Limit III (color plate 4) shows a representation of the 
hyperbolic plane, using the so-called Poincare disk model of hyperbolic geom
etry (the same Poincare who pioneered the study of dynamical systems). Escher 
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learned about the hyperbolic plane from an illustration in a paper by the noted 
geometer H.S.M. Coxeter [1, p. 91]: 

I'm engrossed again in the study of an illustration which 
I came across in a publication of the Canadian professor 
H.S.M. Coxeter . .. I am trying to glean from it a method for 
reducing a plane-filling motif which goes from the center of 
a circle out to the edge, where the motifs will be infinitely close 
together. His hocus-pocus text is no use to me at all, but the pic
ture can probably help me to produce a division of the plane 
which promises to become an entirely new variation of my 
series of divisions of the plane. A circular regular division of 
the plane, logically bordered on all sides by the infinitesimal, 
is something truly beautiful . .. At the same time I get the feel
ing that I am moving farther and farther away from work that 
would be a "success" with the 'public,' but what can I do when 
this sort of problem fascinates me so much that I cannot leave 
it alone? 

In order to make regular divisions of the hyperbolic plane, Escher first had 
to come to grips with some surprising properties of hyperbolic geometry. One is 
the behavior of parallel lines. In Euclidean geometry, given a line and a point not 
on the line, there is one and only one line through the point that never meets the 
line. We say that there is one line through the point that is parallel to the given 
line. In hyperbolic geometry, there can be infinitely many lines through the point 
that never meet the initial line. 

What are the "lines" of hyperbolic geometry? Here "line" should be thought 
of as the path of shortest distance between two points. So we come again to the 
notion of geodesics. In the Poincare disk model of hyperbolic geometry, we can 
determine precisely the geodesics. They come in two types: (1) straight lines that 
pass through the center of the disk, and (2) arcs of circles that meet the edge of 
the disk at right angles. 

In Fig. 8, we draw one geodesic of type (1) and several geodesics of type 
(2). This figure shows several geodesics that all pass through the same point and 
yet never meet the geodesic through the center of the disk. Thus we see how in 

Fig. 8. Geodesics in the hyperbolic plane 
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hyperbolic geometry, there can be more than one line through a single point 
parallel to another line. 

The reason that we end up with circular arcs as paths of shortest distance 
is that the distance in the hyperbolic disk is measured in a strange way. Given 
a short line segment, its hyperbolic length is obtained by taking its Euclidean 
(or ordinary length) and then dividing by (l-r2 ), wherer is the Euclidean 
distance from the origin to the segment. The Poincare disk consists of all points 
in the plane whose Euclidean distance from the origin is less than one. When 
the segment is close to the center of the disk, then its distance r from the ori
gin is close to zero, so (1 - r2) is close to 1, and the hyperbolic and Euclidean 
distances agree. However, if the segment is close to the edge of the disk, then r 
is close to 1 and (1 - r2) is close to zero. Dividing by this factor which has value 
close to zero will cause a segment that has a short Euclidean length to have a very 
long hyperbolic length. 

In Escher's Circle Limit III, the fish are all moving in what they think are 
straight lines. Since the fish are living in a hyperbolic world, these straight paths 
are actually arcs of circles. (It turns out that the paths Escher drew are not 
exactly hyperbolic geodesics. They meet the sides of the disk with an angle closer 
to eighty degrees than to the required ninety degrees. The reasons for this are 
discussed in [5]; also see Coxeter's article here (p. 297). Although it does not 
look like it to our Euclidean eyes, the fish are all the same size when measured 
hyperbolically. 

Tessellations and Abstract Surfaces 

In the plane-filling designs that so engrossed Escher, one starts with a pattern on 
a single tile, takes (infinitely many) identical copies of the tile, places them next 
to one another (as if one were tiling a bathroom floor) and ends up with a design 
that completely fills up the Euclidean plane. The end result is a tessellation of 
the Euclidean plane. The individual tile is the basic building block; it is called 
a fundamental region of the tessellation. Escher made a comprehensive study 
of the various ways to tile the Euclidean plane. I illustrate these ideas with 
a very simple tessellation (Fig. 9). The fundamental region for this design is one 
rectangle that contains the letters A, B, C in the horizontal direction and A, D, E 
in the vertical direction. 

Inspired by Coxeter's paper, Escher began to make tessellations of the hyper
bolic plane. Again, one starts with a design on an individual tile and then tries 
to fill up the plane (but now the hyperbolic plane) with infinitely many identi
cal copies of the tile. Making tessellations of the hyperbolic plane is much more 
difficult than for the Euclidean plane because of the way in which hyperbolic 
geometry distorts distances. Specifically, two tiles that are identical from the 
point of view of hyperbolic geometry will look very different from the point of 
view of Euclidean geometry. 
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Fig. 9. A tessellation of the Euclidean plane 
and a geodesic 
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Fig. 10. A geodesic on the fundamental 
region with opposite sides identified 

We will see that the fundamental region of a tessellation gives rise to 
a mathematical surface. For example, Escher's tessellation of the hyperbolic 
plane in Circle Limit III will produce a surface of genus two (two-holed torus) 
with hyperbolic geometry (negative curvature). There will be a close relationship 
between the geodesics (i.e. paths of shortest distance) on surfaces coming from 
fundamental regions and the geodesics on the Euclidean or hyperbolic plane that 
the fundamental region tessellates. 

Our goal is to understand the surfaces produced by tessellations of the hyper
bolic plane and their geodesics. As a warm-up to this challenging problem, we 
first look at the simpler case of tessellations of the Euclidean plane. In my simple 
tessellation (Fig. 9), I have drawn a geodesic on the Euclidean plane. Since the 
Euclidean plane is fiat, the geodesic is just a straight line. Now imagine walking 
along this geodesic; you will see a succession of letters pass by. 

We could produce the same effect by taking one rectangular tile (i.e., 
one fundamental region of the tessellation), walking in a straight line on this 
rectangle, and connecting the opposite sides of the rectangle. Thus when the path 
goes off the right side of the region, it reappears on the left side. And when it goes 
off the top of the region, it reappears on the bottom (Fig. 10). These are the same 
rules that creatures living inside a video game often obey. We say that opposite 
sides of the region are "identified." 

When we walk in a straight line along the rectangle and use these rules of 
identifying edges, we see the same sequence of letters pass by as if we were 
moving on the plane. Thus by looking at the letters, we would not be able to 
distinguish if we were walking on the plane or on the fundamental region with 
opposite sides identified. 

If our rectangle were made out of rubber sheeting, we could physically 
connect the appropriate edges. When we bend the surface around and connect the 
top side with the bottom side, we produce a cylinder. If we now bend the cylinder 
around and connect the right side with the left side, we produce a torus (Fig. 11; 
see also the video on the CD Rom). Thus the rectangle with opposite sides 
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Fig. 11. Connecting opposite edges of a rectangle 
to produce a torus 

identified is a (topological) torus. So the creatures in a video game live in a torus 
world! 

We call the rectangle with opposite sides identified the flat torus. It is flat 
because it has the same geometry as the plane. As a result, the geodesics on the 
flat torus are straight lines. 

Note that the flat torus cannot physically exist as a closed surface in three
dimensional space. When we bend the surface to connect opposite sides and 
thereby physically realize the torus, we change the geometry and produce a torus 
that is not flat. We call the flat torus an abstract mathematical surface. The rules of 
identifying opposite edges permit us to understand that this surface is connected 
in the same way as a torus. And we can completely understand how the geodesic 
motion behaves. Having fixed a starting point and direction of motion, we move 
in a straight line along that direction and when we go off an edge, we reappear 
on a different edge. Thus the flat torus is a meaningful, well-defined object - it 
just cannot be physically realized in three-dimensional space. 

Henceforth, we will divide surfaces into two types: 
I. Physically realizable surfaces. These are surfaces that can actually exist in 

three-dimensional space. We will sometimes call them "physical surfaces." 
II. Abstract mathematical surfaces. These are surfaces that are defined by 

precise rules and for which the geodesic paths can be determined. But they are 
not presented as physically existing in three-dimensional space. 

The standard sphere is an example of type I and the flat torus is an example 
of type II. 

We now return to Escher's tiling of the hyperbolic plane with fish (color 
plate 4). One fundamental region for this tessellatiori is an eight-sided poly
gon [6, p. 29] (Fig. 12a). In the hyperbolic plane, we can follow a geodesic and 
see a pattern of fish passing by. Remember, in the disk model of hyperbolic 
geometry, the geodesics are either straight lines through the center of the disk 
or arcs of circles that meet the boundary of the disk perpendicularly. 

We can see the same pattern by taking the fundamental region and identify
ing edges. Here the identification rules are a bit more complicated than for the 
rectangle. We identify sides 1 and 1', 2 and 2' , 3 and 3' , and 4 and 4'. When the 
geodesic reaches one of the edges, it gets re-attached at the appropriate edge and 
continues (Fig. 12b). It can be a bit tricky to determine visually how to make the 
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Fig. 12. (a) An 8-sided fundamental region. (b) Geodesic gotten via identification of edges 

continuation since we typically need to find an arc of a circle going through the 
point on the new edge. But such a continuation of geodesics can be done. 

With these rules of identification, the eight-sided polygon turns out to be 
the same (topologically) as a two-holed torus. Unfortunately, this equivalence is 
harder to visualize than the one between the rectangle and the one-holed torus. 
A beautiful sculpture made by Douglas Dunham (color plate 18) can give us an 
idea what this fundamental region would look like when the sides are identified. 

Our eight-sided polygon lies inside the hyperbolic plane and hence has hy
perbolic geometry (negative curvature). When we identify sides as described 
above, we produce another abstract mathematical surface, this time a two-holed 
torus with hyperbolic geometry. If we were to physically connect the edges to 
produce the two-holed torus, rather than abstractly identify them, we would have 
to bend the surface in ways that would destroy the hyperbolic geometry. We 
would end up with a surface of mixed geometry; parts of it would be hyper
bolic with negative curvature but other parts (the outermost parts of the surface 
in color plate 17d) would have spherical geometry with positive curvature. Thus 
this hyperbolic two-holed torus is not physically realizable. 

Geodesic Motion on Abstract Surfaces 

Is the geodesic motion on our abstract surfaces, the flat torus and the hyperbolic 
two-holed torus, chaotic or regular? 

On the flat torus, for a typical choice of initial position and direction, the 
associated geodesic will start to fill up the whole rectangle (torus). However, as 
we move along this geodesic, we will always move in exactly the same direc
tion: parallel to the direction we started in. Since our definition of chaos requires 
that in addition to moving all over the surface, we also move with all possible 
directions, this motion is not chaotic; rather it is regular. 

On the hyperbolic two-holed torus, the geodesic flow is chaotic. Indeed, 
it was shown in the 1930s and 40s by G. Hedlund [11], E. Hopf [12], and 
M. Morse that 

Theorem The geodesic flow on any compact, complete, orientable surface 
with hyperbolic geometry is chaotic: such a system has sensitive dependence on 



328 Victor 1. Donnay 

Fig. 13. Geodesics on saddle-shaped surfaces 
diverge 

initial conditions and a typical geodesic will go all over the sulface and in all 
possible directions. 

To see why the geodesic flow has sensitive dependence, remember that hyper
bolic geometry on an abstract surface corresponds to a saddle-shaped surface 
sitting in three-dimensional space. Let us look at two geodesics on a saddle
shaped surface. Choose one geodesic so that it runs along the ridge of the saddle. 
Choose the second geodesic so that it starts near the ridge but points slightly 
downhill. This second geodesic will quickly veer away from the ridge and go 
down the hill. The geodesics are said to diverge from one another (Fig. 13). 
Thus we see that two nearby geodesics move quickly away from one another 
thereby producing sensitive dependence on initial conditions. It is harder to 
see why a typical trajectory goes all over the surface. Very roughly, the idea is 
that because nearby trajectories keep pushing away from one another (sensitive 
dependence), a typical geodesic will get pushed all over the surface. In Fig. 12b, 
we see that the direction of the geodesic on the hyperbolic two-holed torus 
continually changes and thus behaves quite differently than for the flat torus 
(Fig. 10). 

Thus the answer to our Question 1 is 
Answer 1 There exist abstract mathematical sulfaces whose geodesic 

motion is chaotic. Specifically, any surface with hyperbolic geometry or, more 
generally, with everywhere negative curvature will have a chaotic geodesic flow. 

Now that we have an initial answer to our question, we refine the question 
and ask 

Question 2 Do there exist sulfaces that are physically realizable in three
dimensional space whose geodesic motion is chaotic? 

In other words, can chaotic geodesic motion happen in the real world in which 
we live or does it only happen in abstract mathematical worlds? 

The first candidates to consider are the hyperbolic surfaces. Is there any way 
to physically realize these surfaces? We saw that for the hyperbolic two-holed 
torus, when we tried to physically construct it by identifying appropriate sides, 
the resulting surface had a mixture of positive and negative curvature. Hence it 
could not be physically realized as a surface with everywhere negative curva
ture. Perhaps there are other hyperbolic surfaces that can be physically realized, 
keeping negative curvature. 

It turns out to be impossible to have a physical surface that has every
where negative curvature. To see why, take a physical surface sitting in three-
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Fig. 14. A surface must have 
positive rather than negative 
curvature at the point farthest 
from the origin 

dimensional space and consider the distance from the origin to different points 
on the surface. There will be some point or points on the surface that are far
thest away from the origin. At any of these points, the surface must have positive 
curvature (spherical geometry). For if the surface had negative curvature (hyper
bolic geometry) there, then the saddle shape of the surface would imply that 
there were other points yet farther away from the origin. But we are already at 
the points that are farthest away (Fig. 14). So the surface can not have negative 
curvature at the points farthest from the origin. 

Thus none of the first candidates known to have chaotic geodesic flow, the 
hyperbolic surfaces, are physically realizable. So the question remains, can one 
have a physical surface whose geodesic flow is chaotic? 

As the above argument shows, any physical surface must have places at which 
the curvature is positive. The presence of positive curvature presents a very seri
ous barrier to producing a chaotic geodesic flow; in particular, it would seem to 
impede sensitive dependence on initial conditions. 

Consider the simplest example of a surface with positive curvature; the 
standard sphere. Take two geodesics that start at the north pole but are point
ing in slightly different directions (Fig. 15). These geodesics trace out great 
circles which, when they start at the north pole, correspond to lines of longitude. 
Initially, these geodesics move apart. They reach a maximum separation at the 
equator and then start coming back together again. When they reach the south 
pole, they meet again. Thus rather than diverging from one another, as would 
be the case with sensitive dependence, these geodesics come back together. This 
phenomenon of moving apart and then coming back together again is called 

Fig. 15. Positive curvature 
causes geodesics to focus 

Fig. 16. Flat torus with focusing cap 
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focusing. Thus at first glance, by producing focusing, positive curvature seems 
to prevent sensitive dependence and hence to prevent chaotic behavior. 

Over the past twenty years, mathematicians have learned how to overcome 
the problem of focusing and can now actually harness focusing to generate 
chaotic dynamics. The techniques for exploiting focusing were initiated by the 
Russian mathematician L.A. Bunimovich in his study of billiard systems [2] and 
then extended to geodesic flows. 

For geodesic flow, the key ingredient is the "focusing cap" [8]. We have 
seen that positive curvature (spherical geometry) causes nearby geodesics to first 
move apart but then to come back together again. A focusing cap has the special 
property that not only will a family of geodesics that is diverging when it enters 
the cap be made to come together (focus) but it will then continue past this 
focusing point and become diverging. 

In Fig. 16, we start with a flat torus, attach a volcano-shaped cone of negative 
curvature and then top off the cone with a focusing cap. Geodesics will initially 
diverge as they move on the saddle-shaped cone (curvature K < 0). When they 
go through the cap (curvature K> 0), they will come together, focus, and then 
start to diverge. They then return to negative curvature and continue to diverge. 
The net effect is that by going through the focusing cap, the geodesics end up 
diverging (Fig. 17). Hence this abstract surface, called "Flat torus with focusing 
cap" will have sensitive dependence on initial conditions and be chaotic [8], [9]. 

Using focusing caps and building on earlier works [4], [8], [9], [14] involving 
focusing caps on abstract surfaces, Keith Burns and the author [3] were able to 
answer Question 2. 

Answer 2 There exist physically realizable surfacesfor which the geodesic 
motion is chaotic. 

Furthermore, we can make such surfaces with arbitrary topology so that there 
are physical spheres, tori, two-holed tori, three-holed tori and so on, for which 
the geodesic motion is chaotic. 

We describe the construction in the case of a sphere. Start with a surface 
that is everywhere saddle-shaped, having negative curvature (Fig. 2, left). The 
surface has circular ends. To these ends attach focusing caps, thereby closing up 
the surface and making a non-standard sphere (Fig. 2, right). Its geodesic flow 
will be chaotic. 

K<O K> 0 Cap K<O 
Fig. 17. Focusing followed by 
defocusing 
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The negatively-curved surface we started with is called the Schwarz 
P-surface, after the French mathematician H.A. Schwarz [15] who discovered 
it in the 1880s in the context of minimal surfaces. Take a cube and on each face 
ofthe cube draw a (nearly) circular curve. Consider all surfaces whose boundary 
(or edges) consist of these six curves. The Schwarz surface is one such surface 
(color plate 17a). Roughly speaking, out of all surfaces with these fixed bound
ary curves, the Schwarz surface is the one that has the least area. Hence it is called 
a minimal surface. 

The Schwarz surface has many beautiful properties. It divides the cube into 
a part that is "inside" the surface and a part that is "outside" the surface. These 
two parts have equal volume. It also has a continuation property. Take several 
cubes, each of which contains a Schwarz surface. Stack these cubes together. 
The Schwarz surfaces will join together smoothly at the faces of the cubes to 
form a larger surface (color plate 17c). We can repeat this stacking infinitely 
often along all three coordinate directions. The resulting infinite minimal surface 
is triply periodic because it is made by taking a fundamental region consisting 
of a single Schwarz surface and repeating it under translations in three indepen
dent directions. This infinite surface divides three-dimensional space into two 
equivalent parts - a part that is "inside" the surface and a part that is "outside." 

Digressing from the topic of geodesics for a moment, we mention that triply
periodic minimal surfaces have been found in nature. The first such example was 
found by Gai Donnay and D. Pawson [7] who showed that the skeletal elem
ent of echinoderms had such a structure. Curiously, the interambulacral plates 
of the echinoderm, when viewed with an electron microscope, resemble our 
higher genus surfaces with caps [13]. In his lovely book The Self-Made Tapestry: 
Pattern Formation in Nature, Philip Ball discusses this and other examples of 
minimal surface shapes that appear in nature. 

We utilize the continuation property of the Schwarz surface to make higher 
genus surfaces. To make a non-standard torus, we join four Schwarz surfaces 
together (color plate 17 c) and attach focusing caps to the ends (color plate 17 d). 
The geodesic flow on this torus will be chaotic. We can make a surface of 
arbitrary genus by taking enough copies of the Schwarz surface, stacking them 
together and putting caps on the ends. 

In this way, we show that there do indeed exist physically realizable surfaces 
with chaotic geodesic flow. The construction we describe of starting with the 
Schwarz surface and attaching focusing caps to the ends, works equally well 
when we replace the Schwarz surface by other surfaces of negative curvature 
with ends. More details can be found in [3]. 

Future Work 

We now know that there do exist some physical surfaces with chaotic geodesic 
motion. However, in mathematics, the answer to one question usually leads to 



332 Victor J. Donnay 

several new questions. That is the case here, too. The physical surfaces we have 
found are all of a special type: they have negative curvature (hyperbolic geom
etry) in the middle and focusing caps on the end. Suppose we were to take 
some physical surface that was not of this special type. Would its geodesic flow 
be chaotic? More generally, if we were to look at the collection of all physi
cal surfaces, what percentage of them would have chaotic geodesic flow? At 
present, mathematicians are not able to answer these questions. More work and 
fun remains! 

As a parting Escherism, we wonder what interesting designs could one draw 
on the Schwarz surface? The Schwarz surface is highly symmetric, made up of 
eight identical curved hexagons, each of which is itself made up of six copies 
of a smaller, four-sided fundamental region. Let us try to make a design that 
incorporates these symmetries. Once we have chosen a design for our Schwarz 
surface, we can take mUltiple copies of the decorated surface and link them 
together to build up a triply-periodic surface. We would want a design that 
matches up smoothly at the edges where two adjacent Schwarz surfaces meet. 
The end result would be a periodic, three-dimensional Escher-like design. 
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Rotations and Notations 

Jane Eisenstein and Arthur L. Loeb 

M.C. Escher and A.L. Loeb first met just prior to the International Congress of 
Crystallography held in Cambridge, u.K. in 1960, at which Escher had been 
invited to give an address. [13], [14]. Escher's account of that meeting, in which 
his lecture was standing-room only, can be found in [1, p. 101]. At that congress, 
Loeb presented a paper which evoked from Elizabeth Wood, who headed the 
U.S. delegation, the following comment, "I had always wanted to give a paper 
called 'To Hell with the Unit Cell,' and now you have done it!" 

The paper presented at the Cambridge crystallography congress dealt not 
with the symmetry, but with the systematics of crystal structures. The great metal
lurgist and humanist Cyril S. Smith once expressed the opinion that symmetry is 
a snare and an illusion in developing an understanding of crystal structure [21]. 
Indeed, connectivities are a better parameter for classifying and understanding 
crystals, because a slight change in temperature or pressure may move a crystal 
into an entirely different symmetry class without substantially altering the 
connections between ions or atoms. However, as Niccol6 Machiavelli observed 
500 years ago [18], "There is nothing more perilous to take in hand, more 
perilous to conduct, or more uncertain in its success, than to take the lead in 
the introduction of a new order of things." With this warning in mind, Loeb and 
colleague LeCorbeiller decided rather than to reject symmetry out of hand, to 
re-examine the theory of planar symmetries, in particular, to determine whether 
rotational or reflection symmetries are more fundamental. They presented their 
view at the congress of the International Union of Crystallographers in Rome in 
1963 (see [12, 16]). 

An Alternate Notation for Symmetry Groups 

Since coexisting lines of reflection symmetries together imply translational 
or rotational symmetries, but rotational symmetry can exist without reflection 
symmetry, their conclusion was that rotational symmetry is the more fundamen
tal. Furthermore, their approach does not give as much significance to translation 
symmetry as does the unit-cell approach of the crystallographers, since transla
tional symmetry may be considered a special case of rotational symmetry. 

At the 1963 Rome congress, Carolina MacGillavry was commissioned by 
the Teaching Commission of the International Union of Crystallography to 
write a book on color symmetry, using M.e. Escher's symmetry drawings 
as examples for analysis [17]. Loeb and MacGillavry had been friends for 
several decades, and following the 1960 Cambridge congress Escher and Loeb 
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developed a friendship which lasted the rest of the artist's life. In 1964, Loeb vis
ited MacGillavry, then working on the commissioned book, and he noted that his 
approach to planar symmetry lent itself particularly well to analysis of Escher's 
work. 

Crystallographers have based their description of crystals on the unit cell be
cause of its link to translational symmetry: a primitive unit cell is the smallest 
region, typically a parallelogram, which when translated, can generate the 
entire pattern. A beam of X-rays has itselftranslational symmetry, with the result 
that X-ray analysis will disclose translational symmetry easily. However, for an 
understanding of the reasons why certain crystal structures are stable, or what the 
electrical and magnetic fields around ions or atoms in a crystal are, translational 
symmetry is not as important. 

The concept of a unit cell is related to that of a lattice: a lattice is a collection 
of all points in a repeating pattern that are images of a single point acted on 
by two independent translations that can generate the whole pattern. A unit cell 
contains at least one lattice point; if it contains more than a single lattice point, 
a unit cell is called multiple, or in special cases centered, whereas a unit cell 
that contains not more than a single lattice point is called primitive. Figure la 
shows a repeating pattern having centers of 3-fold rotational symmetry. The par
allelogram highlighted in Fig. Ibis a primitive unit cell, whereas the highlighted 
rectangle is a centered double unit cell. 

In Fig. Ic a smaller parallelogram (a rhombus) is highlighted. Its vertices are 
centers of 3-fold rotational symmetry; these points are also known as rotocen
ters. When the pattern is rotated 120° around any of these, it will look exactly 

Fig. 1a. A periodic pattern 
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Fig. lb. A parallelogram unit cell and 
a centered double unit cell for the pattern 

Jane Eisenstein and Arthur L. Loeb 

Fig. Ie. A rhombic fundamental region and 
(outlined) hexagonal unit cell for the pattern 

the same, and appear to be in its original position. This rhombus, like the unit 
cell in Fig. I b, will generate the entire pattern, but whereas the unit cell need 
only be translated, the rhombus in Fig. Ic, known as afundamental region, re
quires rotations as well. It may be rotated twice through 1200 around one of its 
obtuse vertices to generate a hexagon (outlined) which is a unit cell that can tile 
the plane by translations. In this example, the fundamental region has an area 
one-third that of the primitive unit cell, but still contains all the information 
needed to generate the entire pattern by repetition. 

The different approaches to the symmetry of planar periodic patterns require 
different notations by which the patterns can be easily enumerated and classified, 
and which give the essential information about their symmetries in as transparent 
a fashion as possible. We shall refer to the two approaches to symmetry theory as 
the unit-cell (or IUCr, for International Union of Crystallography) notation and 
the rotocenter notation. In the rotocenter notation, it is essential to distinguish 
between rotocenters having distinct contexts even though their symmetry value 
(3 in the example in Fig. Ic) is the same. To make this distinction, primes are 
used. The rotocenters in our example are denoted 3, 3' and 3/1 respectively. This 
distinction is not explicit in the unit-cell notation [20]. 

For artists and designers, the fundamental region has the attraction that all 
the information necessary to generate a repeating pattern needs to be presented 
only once, whereas a unit cell, if not primitive, contains that information more 
than once. It is not easy to represent that information several times identically; 
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to rotate the fundamental region instead of translating a unit cell does not present 
a problem to the artist or designer, 

The rotocenter approach is based on the following theorem [12, 16]: 
Theorem. The coexistence of an f -fold and a g-fold rotocenter in a planar 

pattern implies the existence of an h-fold rotocenter in the same planar pattern. 
The values of f, g and h must satisfy the diophantine equation 

1+1+1-1 f g h - . 

The only solutions are the following triples fgh: 

10000 , 2200 , 236, 244 and 333. 

Furthermore, more than three distinct rotocenters may coexist in a planar 
pattern only if they are all 2 -fold rotocenters, in which case there are four distinct 
rotocenters. 

Accordingly, the following combinations of rotational symmetry values may 
coexist in a plane: 

10000', 22'00, 236, 244', 33'3//, and 22'2//2//' . 

Figure 2a shows a repeating pattern of little airplanes, some flying to the 
right, others to the left. In Fig. 2b we show one plane in black; its white nearest 
neighbors all fly in the opposite direction. The horizontal and vertical white lines 
superimposed are mirror lines for the infinitely extended pattern, each dividing 
it into two halves that are each others' mirror image. (We note that the mirror 

Fig. 2. (a) A periodic pattern. (b) Mirror lines (white) intersect and glidelines (black) intersect 
in 2-fold rotocenters 
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symmetry is not perfectly exact, as is the case in most hand-made patterns.) At 
the intersections of these mirror lines are 2-fold rotocenters. These rotocenters 
are distinct since one is where the planes' noses meet, and the other is between 
their respective tails. Rotocenters located on mirrors are identified by underlin
ing their symmetry values (order of rotation), so these are denoted l: and t. The 
black lines superimposed on the pattern are glide lines; they divide the pattern 
into two halves which are displaced mirror images of each other with respect 
to these lines. The white arrow on the horizontal glide line is the glide vector; 
this indicates the distance the pattern below the line is displaced (translated) 
before it is reflected to its mirror image above the line. At the intersections of the 
glide lines there are also 2-fold rotocenters. Since these are where tips of plane 
wings almost touch, they are distinct from those labeled l: and t, but they are 
related to each other by a reflection, so both are labeled 2". Thus there are in 
the airplane pattern four different types of rotocenters, all of them 2-fold. The 
two rotocenters that have contexts which are each others' reflection are called 
enantiomorphically paired, which is denoted by the symbol /\. Thus the 
symmetry of the airplane pattern recorded in rotocenter notation is 22'2"2" /\. 

A collection of mutually equivalent rotocenters is called a rotocomplex. 
Where necessary, lines of reflection symmetry are explicitly indicated: 
m indicates a mirror line, g a glide line. A slash, / indicates that the lines are 
mutually perpendicular (m/m, mig, gig); without a slash the lines are parallel 
(mm, mg, gg). The unit-cell and rotocenter approaches to notation are to an 
extent mutually complementary. The principal differences are these: 
• The unit-cell approach is analytic, the rotocenter approach synthetic. The 

unit-cell approach finds a preferably rectangular or square unit cell which 
contains all the information regarding a repeating pattern. The rotocenter 
approach is synthetic in the sense that two symmetry elements are allowed to 
interact, and the repeating pattern is generated by logical implication. 

• The unit-cell approach aims for rectangular or even square unit-cells even if 
this means resorting to multiple cells. The rotocenter approach does not show 
preference for the right angle. 

• Unit-cell notation only refers to symmetry values of rotocenters, but does 
not distinguish between mutually distinct, enantiomorphic, or equivalent 
rotocomplexes. 

• In the rotocenter approach, all the planar symmetry groups are generated: 
one having no symmetry at all and one having a single mirror line only; 
infinitely many having a single n-fold rotocenter for n > 1, where these mayor 
may not have a mirror line passing through the rotocenter; the seven monope
riodic (ribbon or frieze) groups which repeat in one direction only; and the 
seventeen diperiodic (wallpaper) groups. 
Recently mathematician John H. Conway introduced a notation for the 

classification of symmetry groups in the Euclidean and hyperbolic planes as well 
as on the surface of a sphere [2]. This notation is based on the concept of orbifold 
by Bill Thurston. It, too recognizes the importance of rotocenters and distin
guishes between those that lie on mirrors (which he called called cone points 
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Table 1. 

Notation for Monoperiodic (Ribbon or Frieze) Groups 

Rotocenter Unit Cell (IVCr} Short Orbifold Reflections, Glide reflections 

pili II none 

oom plml 1m 00* mirror parallel to translation 

oomm' pmll ml *0000 alternating mirrors perpendicular to 
translation 

22'00 p1l2 m2 2200 none 

22'00 pmm2 mm *2200 all rotocenters at intersections of 
perpendicular mirrors 

22"00 pma2 mg 2*00 paired 2-fold rotocomplexes 

oog pial Ig 00 0 single glideline 

Notation for Diperiodic (Wallpaper) Groups 

Rotocenter Unit Cell (IVCr} ShortIVCr Orbifold Reflections, Glide reflections 

10000' pill pi 0 none 
]ooco'mm' plml pm ** parallel mirrors 

loooo'gg' plgl pg xx parallel glidelines 

loooo'mg elml cm * x parallel mirror and glidelines, 
alternating 

22'2"2'" p211 p2 2222 none 

22'2"2'" p2mm pmm *2222 mutually perpendicular mirrors 

22"2'2" c2mm cmm 2*22 alternating mutually perpendicuar 
mirrors and glide lines 

22"22'''m/g p2mg pmg 22* mirrors perpendicular to glidelines 

22"2'2'''g/g p2gg pgg 22x mutually perpendicular glidelines 

33'3" p311 p3 333 none 

33'3" p3ml p3ml *333 all rotocenters on mirrors 

}3'3'" p31m p31m 3*3 one rotocomplex on mirrors; two 
others enantiomorphically paired 

244' p411 p4 442 none 

244' p4mm p4m *442 all rotocenters on mirrors 

244" p4gm p4g 4*2 2-fold rotocenters on mirrors; two 
paired 4-fold rotocomplexes 

236 p611 p6 632 none 

236 p6mm p6m *632 all rotocenters on mirrors 

and those that do not (called gyration centers). For comparison we have tab
ulated in Table I the frieze and wallpaper groups according to the rotocenter 
notation, their unit-cell (IVCr) notation together with the common shortened no
tation, as well as John Conway's orbifold notation. The shortened notation for 
the frieze groups is due to Marjorie Senechal. Here, the first symbol notes if 
there is a mirror perpendicular to the translation direction: (m = yes, I = no). 
The second symbol asks if there is a mirror parallel to the translation direction: 
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m = yes; if no, then the second symbol is a g if there is a glide line, 2 if there 
is no glide-line but there is a 2-fold rotocenter, and 1 if there is no glide line or 
2-fold rotocenter. 

A Preferred Notation for a Textile Artist 

Jane Eisenstein, a textile artist, was introduced to the study of symmetry and 
the rotocenter notation in the fall of 1995, when she took Loeb's courses in the 
Harvard Extension School [3]. Most textile patterns contain repeats, and except 
at the lowest level of weave technology where individual threads are manipulated 
by hand, a weaver's loom limits the types of patterns that can be woven on it. 
With conventional hand looms it is easy to create textile patterns having certain 
symmetries, while it is difficult or impossible to incorporate other symmetries. 
Consequently, traditional handwoven textiles are generally limited to patterns 
having two-fold and fourfold rotational symmetry and reflection lines at angles 
of 45° or 90° to each other. 

Recently, more sophisticated hand looms and computer-aided design tools 
have made greater patterning capabilities available to hand weavers. With these 
new tools, many are looking for richer pattern possibilities. Symmetry has given 
Eisenstein a language for understanding existing patterns as well as for creat
ing new ones. Since art and design are primarily synthetic rather than analytic 
activities, the rotocenter approach seems appropriate. 

Eisenstein's introduction to the unit-cell notation was through Verda Elliot's 
articles [4]. This notation did not seem very useful until she consulted Washburn 
and Crowe's Symmetries of Culture [22], which uses the unit-cell notation as 
described in [20]. With this help, she began the process of learning how the 
unit cell works and how it corresponds with the rotocenter notation. She gener
ally prefers the rotocenter notation, because it usually carries more information 
about qualities inherent in the pattern, explicitly noting all the distinct symme
try elements and their relationships to each other. Nevertheless, both notations 
are useful in distinguishing particular pattern types: cmm is easier to remem
ber than 22/\2'2". On the other hand, the essential differences between 33'3" 
and .;!3'3'/\ are captured in the rotocenter notation in a way that the IVCr's p3ml 
and p31m do not accomplish. (Schattschneider's article [20] points out how, for 
years, even the most distinguished mathematicians have confused the IVCr nota
tion for these two groups.) Both LeCorbeiller and Loeb were particularly puzzled 
by this pair of unit-cell notations, and became convinced that an alternative 
notation was needed. 

In contrast with the unit-cell notation, the rotocenter notation does not require 
a "flow chart" of questions as in [22], or rote memorization for identification. 
Once a pattern's distinguishing symmetry elements are noted, the symmetry 
is named. The diophantine equation in the theorem guides and confirms this 
analysis. 
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A Parade of Patterns 

The Crystallography Congress in 1963, and the Escher Centennial Congress 
exactly thirty-five years later, both held in Rome, represent significant recogni
tions of the interaction between art and science. At both, Loeb was afforded the 
opportunity to exhibit original patterns. In 1963, congress organizers requested 
an impromptu exhibition of Loeb's slides illustrating the LeCorbeiller-Loeb the
ory. These slides were made available for teaching purposes, and were reportedly 
still in use as late as 1990. In 1966 Loeb designed collages to illustrate the pla
nar symmetry groups for a joint exhibition with Duncan Stuart entitled Symmetry 
and Transformations in the newly established Carpenter Center for the Visual 
Arts at Harvard. This exhibition in tum led to his courses on Visual Mathemat
ics and Design Science in the Department of Visual and Environmental Studies 
at Harvard. 

The collages eventually wore out, and in 1998 Loeb returned to Rome 
to present at the Escher Centennial Congress a symmetry sampler, originally 
designed for these courses, purporting to be the archive of an (as yet) fictional 
design firm named THURBER/ Lalo (THUR B E R L A LO being a permutation 
of ARTHUR L LO E B), each print illustrating one of the planar symmetry 
groups. Like Escher's creations which included many fictional animals, such as 
the wentelteefjes in his print Curl-up [1, cat. no. 374], THURBER/ Lalo's clients 
Cornelia Dermaete Cosmetics, the Belletterie Department Store, the Quellinck 
couple, the quaint town of Witches' Cove, of which everyone appears to have 
heard but which no one seems to be able to locate, and the Enzovoort dynasty 
are purely fictional, and any resemblance to living or even deceased persons is 
somewhat if not entirely unintentional. There are antiqued floor and wall tilings, 
textile designs, cosmetic firm logo and furniture designs, stained-glass win
dows, screens for hotels and yacht clubs, antiqued wall stencils, department store 
arcades and chapel windows, all accompanied by a brief text. This 'archive' is 
intended to illustrate the diversity of applicability of symmetry theory - whim
sically, and like any work of fiction, somewhat autobiographical. This symmetry 
sampler was shown as slides at the Escher Centennial Congress in Rome in 1998, 
and can be viewed on the CD Rom that accompanies this book. 
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Folding Rings of Eight Cubes 

George Escher 

My story begins in Japan, in 1981, where I received from the mathematician 
Naoki Yoshimoto a small puzzle consisting of eight cubes having white and 
black faces, stacked in the form of a larger cube, all white-colored faces on the 
outside. The cubes are attached by hinges to each other in such a way that they 
can be unfolded, then re-folded into a new configuration, which is now black on 
the outside. 

Next, in 1996, I saw the mathematician John Conway demonstrating another 
puzzle, also consisting of eight cubes connected by hinges. Like Yoshimoto's 
cube, it began with eight cubes stacked in 2 x 2 x 2 fashion, with eight hinges 
connecting two cubes each, so that it could be unfolded into a ring and then 
re-folded differently, to make new arrangements of 2 x 2 x 2 cubes (see Fig. 1). 

The significant difference between the constructions of Yoshimoto's and 
Conway's cubes was the location of the hinges. As illustrated in Fig. 1, which 
shows identical initial relative positions of the eight cubes, the difference in 
locations of hinges leads to different re-folded positions of the cubes. 

Musing aloud while showing his puzzle, John Conway said something like 
this: Are there any more objects ofthis kind, which begin as a ring of eight cubes 
joined by eight hinges and which can be manipulated into at least two different 
cubic packs of 2 x 2 x 2 cubes? I remember being taken aback by the thought 
that of all people, John Conway had not answered that question for himself. Why 
didn't he? 

At home I made eight cardboard cubes and tried to find hinge arrangements 
which would work as required. It did not take long to conclude that the problem 
was far from simple. I also realized that if John Conway had not found an elegant, 
reasoned way to answer his own question, I certainly need not attempt to find 

Yoshimoto 

Conway 

Fig.t. Yoshimoto's and Conway's 8-cube puzzles 
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one. But it struck me that there were only eight cubes and eight hinges, which 
did not seem a lot. I was retired and could dispose of a fair amount of free time. 
What if I tried answering John Conway's question the dumb, laborious way, by 
exploring every possibility? 

I visualized beginning with two cubes, recording their possible relative 
positions, then adding a third one, then a fourth, and so on until all combinations 
with eight cubes had been examined. I tried, and very soon was hooked. I went 
on and on for about a year, until I had the answer, which is given in the form of 
diagrams of hinge locations (at the end of this article). 

In the sections that follow, I give an outline of the method used in completing 
the task which is restated here as: 

Given eight cubes and eight hinges, the hinges to he placed 
along the cubes' edges. Find all possible ways to join the cubes 
into rings of eight cubes by using the eight hinges so that each 
ring can be freely folded into at least two different cubic stacks 
of 2 x 2 x 2 cubes. By "free folding" is meant that it is not 
permissible to subject the hinges to twisting, pushing, pulling or 
shearing. 

If you are wondering what all this has to do with M. C. Escher, take a peek 
at the last paragraph at the end of the article. 

The main tools used to perform the job were: 
• Pencil and paper for diagrams. 
• Eight sturdy cardboard cubes, with 4 cm edges. The surface was treated with 

lacquer to permit repeated application and peeling of masking tape hinges. 
• Masking tape for the hinges, applied on both sides of each pair of edges being 

joined. 
• A computer spreadsheet, for recording cube and hinge positions. 
The investigation took place in five main steps: 
1. Establish conventions for identification of cubes, hinge location and cube 

location. 
2. Describe all possible ring patterns. 
3. Find for each ring pattern which hinge positions allows the existence of 

two different 2 x 2 x 2 cubic stacks, regardless of whether one stack may be 
folded into the other. 

4. Among the ring patterns found above, determine in which ones the hinge 
positions allow free folding from one 2 x 2 x 2 stack into the other. 

5. Describe the results. 
An outline of the above steps is given in the following sections. A complete 
discussion is available in a ISO-page report, as noted at the end of this paper. 

Conventions 

Standard starting position and cube lettering is shown in Fig. 2. The position and 
orientation of cube A are fixed at the center of a cubic space formed by three sets 
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3 Fig. 2. Reference coordinates and cube lettering 

of mutually perpendicular coordinates which are used to define cube positions. In 
order to end up with 2 x 2 x 2 stacks all other cubes must be located somewhere 
inside that 3 x 3 x 3 cubic space. 

Rings 

While stacked in 2 x 2 x 2 form as in Fig. 2, cubes can be connected to each other 
in two distinct ways. For example, A can be connected to C only by using one 
hinge, along the two touching edges. I call this a "diagonal" connection, because 
the cubes being joined lie along one of the 12 face diagonals of the 2 x 2 x 2 
stack. Similar diagonal connections can be made between D and G, A and F and 
so on. 

On the other hand, A may be connected to B by placing a hinge along any 
one of the four pairs of adjacent edges of the two cubes. I call these "edgewise" 
connections, because the cubes being joined lie along the same edge of the 2 x 
2 x 2 stack. Similar edgewise connections can be made between G and F, D and 
C and so on. Note that the "diagonal" and "edgewise" descriptions only apply 
to the 2 x 2 x 2 stacked condition. Once the cubes are separated by unfolding, 
these terms lose their significance. 

A ring of eight cubes is formed by connecting pairs of cubes to each other 
by a single hinge. Each cube must have two and only two hinges, located on 
different edges. For the first stage of the study of rings it is sufficient to deal 
with connections only, disregarding which specific hinges make the connections. 

b 

d~C 

e~9 
h 

Fig.3. Typical diagram of a ring of 8 cubes with two diagonal 
connections 
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b 

A a~C 
e~g 

h Fig. 4. The only ring with 0 diagonal connections 

b b b Ba®c C a@CDd@rC 
e r 9 e 9 e 9 

b b 

• E aNpic • F a~c h 

e~g e~9 
h h 

Fig. 5. The five rings with 2 diagonal connections. Rings B, C, D and F have opposite-hand 
forms as well 

b b b 

G a~c Ha~c Ia~c 
e~9 b e~9 b e~g 

Ka~c h M a~c 
e ~9 e~g 

h h 

h h 

Fig.6. The five rings with 4 diagonal connections. They all have opposite-hand 
forms as well 

b 

o 
a~c 

e~g 
h 

Fig. 7. The only ring with 6 diagonal connections. It also has 
an opposite-hand form 

Only after the ring has been completely folded into a 2 x 2 x 2 stack can it be 
determined whether a particular hinge forms a diagonal or edgewise connection. 

The structure of a 2 x 2 x 2 stack may now be simplified by replacing each 
cube by a point in its center, and showing connections by straight lines between 
the points. An example of this is shown in the diagram of Fig. 3. The cube has 
six edgewise and two diagonal connections. The centers of cubes are identified 
by lower-case letters. 
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The next step was to determine the number and the geometry of all possible 
8-cube ring configurations which may be folded into 2 x 2 x 2 stacks. A total of 
twelve was found, not counting mirror images. They could be classed in four 
categories: those having zero, two, four and six diagonal connections. The results 
are shown in Figures 4,5,6 and 7. 

Hinges 

Once the ring geometries were established, the next step was to find where hinges 
may be placed to make the connections between cubes for each ring. This was 
done by systematic trial, using cardboard cubes and hinges of masking tape. For 
each ring the investigation proceeded as follows: 
• Select the ring to be investigated. 
• Consider cube A fixed in its standard position in the center of the coordinate 

space of Fig. 2. 
• Attach, in standard position, cube B to cube A by one hinge, record hinge 

position and the positions to which cube B may be rotated. Because I defined 
all rings to have an edgewise connection between A and B, there are four 
possible hinge locations and nine possible positions for B. 

• Attach, in standard position, the next cube in the ring to B, choose and 
record hinge position, then for each possible position of B record the possible 
positions of this following cube. 

• Continue in this way with the remaining cubes along the ring. At the end of 
this cycle a few sets of eight hinges will have been found which connect the 
eight cubes both in standard position and in new positions inside a 2 x 2 x 2 
stack. 
It should be understood that during this stage of the investigation I was only 

concerned with the static case of 2 x 2 x 2 stacks. Apart from manipulations of 
individual cubes as they were being added, I ignored any combined movements 
of the eight connected cubes which may be needed to transform the standard 
stack into the new-found 2 x 2 x 2 stack. That would become the concern in next 
stage, after all non-standard stacks for a ring had been discovered. 

Free Folding 

The last stage of the investigation consisted of assembling models of those rings 
which had been found to have a 2 x 2 x 2 stack configuration different from 
the standard configuration. Each would be tested carefully by hand and eye to 
discover whether any unfolding was possible, and next whether a complete free 
transformation from standard to alternative 2 x 2 x 2 stack was possible. The 
hinge locations (or at least the ones I found) which allow such a complete trans
formation were then recorded, using the conventions shown in Fig. 8. Figure 9 
shows these 17 different configurations; here are brief comments on each. 
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~ Hinge on top of cubes 

L...,.,J Hin bIb I ::: :,, :: I ge e ow cu es 

~ Hinge along any of the four pairs of adjacent edges 

-r F Hinge joining two vertical edoes 

~ Incomplete hinge on top of cubes 

Fig. 8. Conventions used in Fig. 9 

C~)FfFH BCRR 
Al A2 A3 

RFHH 
A4 A5 A6 

Fig.9. (continued on next page) The seventeen configurations of hinged cubes that allow 
a complete "free" folding and unfolding from the standard 2 x 2 x 2 configuration to an 
alternative 2 x 2 x 2 stack 

AI. A family in which four pairs of cubes may be joined face to face by any 
one of the four available hinges, without affecting the two end configu
rations. One combination of the hinges marked "any" provides one more 
configuration: A3. 

A2. Has a mirror image. A family in which two pairs of cubes may be joined 
face to face by anyone of the four available hinges, without affecting 
the two end configurations. One combination of the hinges marked "any" 
provides one more configuration (A3), another combination provides two 
more configurations (AS). 

A3. Has a mirror image. Three configurations, one belonging to the A I family, 
one to the A2 family, and one to both. 

A4. An interesting case of AI, showing misleading looseness. Notwithstand
ing an appearance of freedom, any folding leads to one of the two usual 
configurations. 

AS. Special case of A2, with four configurations. This is the hinge arrangement 
of John Conway, discussed at the beginning of this article. 



Folding Rings of Eight Cubes 349 

tE~EE~" [IJ[I] EEEB ITIIJ····· ....... . . ~~~~~.. . ...... . 

... 
A7 A8 A9 

EDED FffB BCEB 
AIO All A12 

Fl F2 
Fig. 9. (continued) 
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A6. A family in which two pairs of cubes may may be joined face to face 
by anyone of the four available hinges, without affecting the two end 
configurations. 

A 7. A family in which four pairs of cubes may may be joined face to face 
by anyone of the four available hinges, without affecting the two end 
configurations. 

AS. Two configurations. This is the hinge arrangement of Naoki Yoshimoto, 
discussed at the beginning of this article. 

A9. Two configurations. 
AIO. Four configurations. 
All. Has a mirror image. Two configurations. 
A12. Has a mirror image. Two configurations. 
A13. Has a mirror image. Two configurations. 
A14. Has a mirror image. Two configurations. 
A15. Has a mirror image. Two configurations. 
FI. Four configurations. 
F2. Has a mirror image. Two configurations. 

Results 

The investigation had the following results (refer to Figures 4, 5, 6, 7): 
• Ring 0, with six diagonal connections, is totally immobile. 
• Rings G, H, I, K and M, i.e. all those with four diagonal connections, 

have some alternative 2 x 2 x 2 configurations, none of which can be freely 
manipulated from standard to alternative. 

• Rings B, C, D, and E, with two diagonal connections, have many more alter
native 2 x 2 x 2 configurations than the previous group. They are also more 
mobile, but not a single one could be freely manipulated from standard to 
alternative configuration. 

• Ring F, also with two diagonal connections, was the first one to yield two 
transformations from standard to alternative 2 x 2 x 2 (FI and F2, Fig. 9a). It 
had taken six months, and recording of approximately 5000 cube positions to 
reach this stage. 

• Ring A, with only edgewise connections, has the largest number of alternative 
configurations of all. The ones that can be freely transformed from standard to 
alternative 2 x 2 x 2 stacks are shown as Al through Al5 in Fig. 9. It took an 
additional five months and recording of about 6000 cube positions to complete 
the investigation of this last ring. 
Diagrams in Figures Sand 9 give the information necessary for building 

models of the rings of eight cubes. I find it convenient to use hardwood 3/4 inch 
cubes, available at many craft stores, and join them with 3/4 inch masking tape. 
The rings are shown unfolded, flat on a table, with hinge positions explained in 
Fig. S. In the four cases A I, A 15, F I and F2 it is not possible to completely 
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unfold the eight cubes on a flat plane, therefore one hinge is shown disconnected, 
with arrows indicating which edges to join last, after raising and turning some of 
the cubes. 

Comments 

Theoretical foundation. At the very beginning of this project I decided to 
proceed by experimental, essentially non-mathematical methods, because I had 
no idea how to attack the problem in a more reasoned, mathematically elegant 
way. While working with models and masking tape, I would ponder every now 
and then whether I could see a less brainless way to find the answer I was seek
ing. I couldn't, and I still have no inkling of a usable theory that may provide 
a more direct way to an answer. 

Completeness. Although in principle the approach taken in this project should 
provide the complete set of possible answers to John Conway's initial question, 
some possible hinge configurations may have been missed, for two reasons: 
1. The search involved roughly 11, 000 steps, each of which required a visual, 

spatial judgement and the typing of an entry in the record. Errors must have 
occurred now and then. But because there were far more blind alleys than 
paths leading to a properly folding set of cubes, it is likely that few, if any, 
correct steps were missed. 

2. In the final stage, when it was a matter of manipulating 2 x 2 x 2 cubes 
to find out whether they would open up, everything depended on having 
a mechanically clean model and applying the right amount of force in 
the right direction. This kind of eye-and-hand mathematics is unreliable: 
I discovered accidentally one more folding hinge pattern (F2) after believing 
that I had found them all. 

Stress-free folding. It is clear that unfolding of most 2 x 2 x 2 stacks (AI, A4, 
A6, A 7, AS, A9, AlO, All, AI2) can occur in stress-free fashion. In this group 
every move may be executed by rotating blocks of cubes simultaneously about 
two hinges located on one line, thereby providing the specified stress-free move
ment. But for the remaining stacks (A2, A3, A5, A13, AI4, AI5, FI, F2) the 
unfolding pattern requires complex rotations and translations of cubes in space, 
with several hinges operating simultaneously in different directions. Although 
the folding seems stress-free, are we certain that we are not cheating? 

For F 1, a convincing demonstration of stress-free folding was devised 
by Brian Calvert of the mathematics department of Brock University in St. 
Catharines, Ontario. It requires the flat, square cardboard model shown in Fig. 10 
(left). If creased along the interior lines, it can be folded to emulate the move
ments of the cubes of Fl. Except perhaps for A2, and therefore also for A3 and 
A5, I have been unable to devise any demonstration of stress-free folding for the 
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Fig. 10. Left: Brian Calvert's model for Fl. Right: My model for A2 

remaining stacks. For A2 I designed the flat cardboard model of Fig. 10 (right). 
It consists of two pairs of identical pieces: two rectangles with sides of one and 
two units; and two pieces shaped by two squares which are turned an arbitrary but 
equal angle in relation to each other. The four pieces are joined by three hinges as 
shown. On some days handling this model convinces me that A2 folds in stress
free fashion, on other days I am not so sure. I leave it to the reader to decide for 
himlherself. 

An odd pair. In one respect A8 an F2 are opposites of each other. A8 is the only 
pattern which everts, i.e. all faces which are hidden in one configuration become 
the outside faces in the other configuration. F2 does the opposite. It is the only 
pattern where every face on the outside in one configuration remains on the out
side in the other configuration. Only the relative positions change, somewhat like 
on a Rubik's cube. 

Connections with M.C. Escher 

One may ask: what has all this to do with M.e. Escher and his work? Apart from 
the family connection - he was my father - I can see several features. Stacking 
eight cubes in accordance with a simple rule has much in common with working 
with a tessellation, but in space rather than on the flat plane. The methods used 
by my father and myself were very similar: a systematic, patient approach by 
successive trials, without help of formal mathematics, using the eye and hands 
to manipulate pencil, paper and models. What drove us both to such lengthy and 
often monotonous tasks was very similar: first curiosity about a geometric 
puzzle, growing into interest, finally becoming an addiction. 

Whenever I asked myself why I was engaged in such a silly activity, I could 
hear my father's genes speaking loud and clear: You do it because it's fun, 
because you are too interested in the problem to abandon it. 

Note. A 180-page report of this project is available. To receive one, send name, 
address and a money order for US $30.00 to the author (address at the back of 
this volume). 



Dethronement of the Symmetry Plane [1] 

Istvan Hargittai 

In memoriam Caroline H. MacGillavry [2] 

C.H. MacGillavry (1904-1993) 

There is a whole variety of Escher's works that I like looking at, thinking about, 
or discussing with friends. They include his drawings of wild flowers, Italian 
scenery, "impossible figures," and periodic drawings. My favorite is his wild 
flowers. They are as forceful as they are subtle. They stress the essential and 
ignore the rest, which is also the characteristic of good scientific models of 
nature. I anticipate, however, that Escher's periodic drawings will have the 
longest lasting impact of all his works. The present contribution probes into their 
appeal for scientists. 

When the notion of dethronement of the symmetry plane is introduced, it is 
implied that the symmetry plane had been enthroned. This is so, to the extent 
that reflection is the most common of symmetries. When we think of symme
try the first example that comes to mind is the bilateral symmetry of the human 
body, however approximate this symmetry is. The symmetry plane in this case 
bisects the human body. The symmetry plane is ubiquitous in nature as well as 
in human creations. However, it has extremely restricted utility wherever good 
space utilization is concerned. The message of the present communication is 
that whether it is Escher's periodic drawings, or crystal structures, or the inter
action of biological molecules, the symmetry plane is not a common symmetry 
element. 

Densest Packing and Complementarity 

Escher's periodic drawings provide a model of densest packing. They have been 
used extensively to demonstrate symmetry properties of patterns in two dimen
sions. Densest packing is achieved, in most cases, through complementarity in 
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the arrangement of the building elements. The symmetry operations generat
ing these patterns seldom include the symmetry plane. The symmetry plane 
can be involved only in extreme cases when the building elements themselves 
are of high symmetry. For an arbitrary shape, however, application of the sym
metry plane would exclude densest packing by leaving considerable chunks of 
the surface uncovered. Densest packing means the maximal utilization of the 
available space, be it a surface or a three-dimensional volume. Of course, in 
Escher's works as in most educational material of crystallography, the focus is 
the two-dimensional plane. 

The best utilization of the available space is the goal of densest packing. The 
empirical observation that nature abhors a vacuum has been stated repeatedly 
since Galileo, but has been seldom scrutinized. My assertion is that the ulti
mate goal in finding the best arrangements of building elements in nature is not 
governed by such a principle. Rather, there is an underlying principle at a deeper 
level, namely, that the arrangements sought should provide the greatest stabil
ity, that is, the lowest overall energy. This happens when the amount of possible 
interactions is maximized between the building elements, provided that they are 
of attractive nature. If this is the case, the amount of interactions is maximized 
when the interacting surface areas are maximized. This condition is provided by 
a complementary arrangement of two pieces of the same arbitrary shape. This 
would be far from maximized, in the general case, if the two were related by 
a symmetry plane. The utility of the complementarity concept will be illustrated 
here by invoking selected examples, from Lucretius to the latest discoveries in 
molecular biology. 

Saying It with Lucretius 

Escher's drawings are the most beautiful examples of densest packing in the 
plane. Cavities of one object are filled with the protrusions of the other. 

Lucretius (ca 96 - ca 55 B.C.E.) proclaimed the fundamental principle of best 
packing arrangements two thousand years ago. He came, in fact, to the principle 
of complementarity. Lucretius stated in his De rerum natura: [3] 

Things whose fabrics show opposites that match, 
one concave where the other is convex, 
and vice versa, will form the closest union. 

Valued Predictions 

Molecular crystals provide numerous examples of densest packing in nature. 
The great Russian crystallographer, Aleksandr I. Kitaigorodskii made a unique 
contribution to this area of science. [4] He predicted that among crystal 
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structures, three-dimensional space groups of lower symmetry are much more 
frequent than those of higher symmetry. This was a prediction at a time when 
few crystal structures had been determined experimentally. 

Kitaigorodskii used to say, "a first rate theory predicts, a second rate theory 
forbids, and a third rate theory explains after the facts." Even a third rate the
ory is important because even if we did not anticipate our findings, at least we 
would like to understand them afterwards. It is a whole different thing, however, 
when our findings can be predicted by a suitable theory or model. This happens 
only if we really understand the phenomenon under study. Thus Kitaigorodskii's 
successful prediction of the distribution of three-dimensional space groups 
implied the understanding of the underlying principles of molecular packing. 

Kitaigorodskii found that the packing of molecules is spatially complemen
tary. In order to achieve densest packing, the molecules of arbitrary shape 
complement each other in the best arrangement. Thus molecules having a shape 
with cavity and protrusion will not use the available space most efficiently if 
they tum to each other in such a way that the cavity of one molecule matches the 
cavity of the other. This would be the case if they would be related by reflection. 
On the contrary, the best arrangement is when the protrusion of one molecule fits 
the cavity of the other, and so on. This is yet another expression of the principle 
of complementarity appearing in so many ways in science because it does so in 
nature. 

Enter Molecular Biology 

The principle of spatial complementarity itself was, of course, not Kitai
gorodskii's invention. He "only" carried it to its extreme utility in finally arriving 
at the prediction of frequency distribution of the 230 three-dimensional space 
groups among crystal structures. 

An important contribution appeared in 1940 jointly by two future Nobel 
laureates, the structural chemist Linus Pauling and the physicist turned biologist 
Max Delbruck. They titled their note in Science "The Nature of the Intermolecu
lar Forces Operative in Biological Processes." [5] It was prepared in response to 
a series of papers by Pascal Jordan who had suggested that a quantum mechan
ical stabilizing interaction operates preferentially between identical or nearly 
identical molecules or parts of molecules. The suggestion came up in connec
tion with the process of biological molecular synthesis, leading to replicas of 
molecules present in the cell. Pauling and Delbruck suggested precedence for 
interaction between complementary parts, instead of the importance of interac
tion between identical parts. They argued that the intermolecular interactions of 
van der Waals attraction and repulsion, electrostatic interactions, hydrogen-bond 
formation, etc., give stability to a system of two molecules with complementary 
structures in juxtaposition, rather than two molecules with identical structures. 



356 Istvan Hargittai 

Accordingly, they argued that complementariness should be given primary 
consideration in discussing intermolecular interactions. 

The eventual discovery of the mechanism of the function of deoxyribonucleic 
acid (DNA) through the double helix is the best known illustration of comple
mentarity in molecular biology. The immediate key to the discovery was the base 
complementarity discovered by Erwin Chargaff. 

Lower Symmetry Packs Better 

The description of the nature of intermolecular forces by Pauling and Delbriick 
seems directly applicable to the packing of molecular crystals. For Kitai
gorodskii it took many years of painstaking measurements in addition to his 
brilliant conjecture before he could arrive at his findings whose validity have 
withstood the test of time. 

Early on in his scientific research program Kitaigorodskii decided to use 
identical but arbitrary shapes in his probing into the best possible arrangements 
in the plane. He established the symmetry of two-dimensional layers that allow 
a coordination number of six at an arbitrary tilt angle of the molecules with 
respect to the tilt axes of the layer unit cell. He found that such an arrangement 
would always be among those that have the densest packing. We quote here an 
example of the general case for molecules of arbitrary shape. Kitaigorodskii 
addressed himself to the task of selecting the two-dimensional space groups for 
which efficient packing for molecules of arbitrary shape is possible. This is an 
approach of great interest since the result will answer the question as to why there 
is a high occurrence of a few space groups among the crystals while many of the 
230 groups hardly ever occur. 

Kitaigorodskii first examined the problem of dense packing. For the plane 
group with the least amount of symmetry (translational symmetry only, pI) it is 
possible to achieve densest packing with any molecular form if the translation 
periods (tl and t2) and the angle between them are chosen appropriately. The 
same is true for the plane group generated by twofold rotations (p2) (Fig. 1). 
On the other hand, the plane groups with symmetry planes (pm and pmm) are 
not suitable for densest packing. Due to the symmetry planes in these arrange
ments the molecules are oriented in such a way that their convex parts face the 
convex parts of other molecules. This arrangement counteracts dense packing 
(Fig. 2). The plane groups with glide reflection (pg and pgg) may be suitable for 
6-coordination. This layer is not of maximum density and in a different orienta
tion of the molecules only 4-coordination is achieved (Fig. 3). For plane groups 
of higher symmetry, efficient space utilization is increasingly difficult. If the 
molecule itself has reflection symmetry, i.e., retains a symmetry plane, then it 
may have a better chance for denser packing even in symmetry groups with 
a high number of symmetry elements, with symmetry planes included. 
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p1 p2 

Fig. I. Densest packing with space groups pJ and p2, from Kitaigorodskii [4] 

pm 
pmm 

Fig.2. The symmetry planes in space groups pm and pmm prevent dense packing, from 
Kitaigorodskii [4] 

P99 

Fig. 3. Two forms of packing with pgg space groups: one is densest packing and the other is 
using a different orientation of the molecules that reduces the coordination number from six 
to four; from Kitaigorodskii [4] 

After considering plane groups for dense packing, the next step is to apply 
the geometrical model to the examination of the suitability of three-dimensional 
space groups for such packing. The task in this case is to select those space 
groups in which layers can be packed allowing the greatest possible coordina
tion number. Obviously, mirror planes would not be applicable for repeating the 
layers. 

Low-symmetry crystal classes are typical for organic compounds. Densest 
packing of the layers may be achieved either by translation at an arbitrary angle 
formed with the layer plane, or by inversion, glide plane, or by screw-axis 
rotation. In rare cases closest packing may also be achieved by two-fold rotation. 
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Kitaigorodskii has analyzed all 230 three-dimensional space groups from the 
point of view of densest packing, and found only six space groups to be avail
able for the densest packing of molecules of arbitrary form (pI, P21, P2J/c, 
Pea, Pna, P212121). For molecules with symmetry centers, there are even fewer 
suitable three-dimensional space groups (PI, P21/C, C2/c, Pbca). In these 
cases all mutual orientations of the molecules are possible without losing the six 
coordination. 

One of the low-symmetry space groups (P21 / c) occupies a strikingly special 
position among organic crystals. It is the unique feature of this space group that 
it allows the formation of layers of densest packing in all three coordinate planes 
of the unit cell. There are two other space groups (P2[ and P2121 21) among 
those providing densest packing. According to statistical examinations, these 
three groups are the first three in frequency of occurrence. For chiral molecules, 
these possibilities are valid only for either the left-handed or right -handed forms. 

Kitaigorodskii's pioneering work on the distribution of molecular organic 
compounds over the space groups stands out not only as an important source of 
scientific information but also as a model of scientific research. 

Copying DNA 

The mechanism of action of DNA molecules is characterized by complementar
ity, although on a different scale of complexity. Kary Mullis, the discoverer of 
the Polymerase Chain Reaction, describes it in the following way: [6] 

DNA has the remarkable property that there are two forms of 
any particular sequence of the purine and pyrimidine bases 
that you can string together. You can make one chain and you 
can make another chain that goes backwards in sequence; it is 
the complement, and they are held very tightly. It's a beautiful 
helix but it also has kinks causing a lot of excitements. How
ever, the two helices are clamped so tightly that you have to boil 
DNA to get them apart. This can also be done by an enzyme, 
burning a lot of ATP [adenosine 51-triphosphate}. This DNA can 
reproduce itself. Clay also does this, if you consider its layered 
structure, each layer binding the complementary layer to the 
previous one. DNA has this ability. 

If you make a short piece of one string of a DNA, like 
20 bases, this piece will have a tremendous affinity for the 
complementary sequence. You put this 20 base long sequence 
in a mixture which has one out of a billion, or even trillion 
(10 12 ) d!fferent pieces, and it will find the sequence exactly 
complementary to it in about 30 seconds. 
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Lord Kelvin's Geometry 

Kitaigorodskii's principal contributions focused on the geometrical properties of 
crystal structures rather than their physical properties. One of his predecessors in 
this quest was Lord Kelvin. In 1904, Lord Kelvin published his celebrated Balti
more Lectures on Molecular Dynamics and the Wave Theory of Light, originally 
delivered in 1884. [7] The twenty Baltimore lectures are appended by twelve 
more lectures on allied subjects in this volume. Appendix H is "On the Molecu
lar Tactics of a Crystal," which discusses the geometry of the arrangement of the 
molecules in the constitution of a crystal. This was The Robert Boyle Lecture by 
Lord Kelvin, delivered before the Oxford University Junior Scientific Club, on 
May 16, 1893. 

This lecture shows a tremendous prescience by Lord Kelvin. He makes this 
suggestion, for example, to future crystallographers, "I advise any of you who 
wish to study crystallography to contract with a wood-turner, or a maker of beads 
for furniture tassels or for rosaries, for a thousand wooden balls of about half an 
inch diameter each. Holes through them will do no harm, and may even be useful; 
but make sure that the balls are as nearly equal to one another, and each as nearly 
spherical as possible." 

The two patterns by Kelvin differ in that in one the molecules are all oriented 
in the same way, while in the other the rows of molecules are alternately 
oriented in two different ways (Fig. 4). The boundary of each molecule presented 
a great puzzle to Kelvin, and he considered it a purely geometrical problem. 
This is the point where his successors introduced considerations for intermo
lecular interactions, and for Kitaigorodskii this culminated in what he expressed 
metaphorically that he "dressed the molecules in the fur-coat of van der Waals 
domains." Kelvin's plane tessellation was ahead of P61ya and Escher, but then 
the Islamic and Moorish decorators had been doing this for hundreds of years 
before him. 

As Lord Kelvin was looking for a more efficient, that is, closer packing in the 
plane, he moved around the planar motifs that represented identical molecules 

Fig. 4. Two arrangements of molecular shapes by Lord Kelvin [7] 
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of arbitrary shape and arrived at a much more efficient packing indeed. He was 
trying to use shapes as nearly rectilinear as possible for partitioning the plane 
and he did not let his molecules quite touch one another. Otherwise, he created 
a modem representation of molecular packing in the plane. 

Although Lord Kelvin did recognize the importance of complementarity in 
molecular packing, this property has not become associated with his name. One 
reason may have been that he was so well known for other works. Another reason 
may have been that this was described in an Appendix only. Yet another reason 
may have been that the world of science was not ready for this discovery at the 
time of his Oxford lecture, in 1893, or at the time of the publication of these 
lectures, in 1904. 

Escher Patterns 

The best known presentation of the 17 two-dimensional space groups is 
by George P61ya [8] because he illustrated the 17 groups with patterns that 
completely fill the surface without gaps or overlaps. Today we would call them 
Escher-like patterns. In fact, there was an important connection between P61ya 
and Escher that has been described by Doris Schattschneider. [9] 

Planar patterns that fill the plane without gaps or overlaps are popular among 
crystallographers because crystal structures have no gaps or overlaps either. Thus 
the planar patterns are excellent tools for teaching crystal symmetries. The Azer
baijani crystallographer Khudu Mamedov's drawings are intriguing examples 
relating their geometries with motifs of the past. Mamedov and his colleagues 
had made a conscious effort to collect and record their findings in the inter
est of the preservation of their culture. In this they felt that crystallography 
greatly aided their anthropological explorations. The close relationship between 
Mamedov and Escher can be symbolized by two simple yet powerful pat
terns of antisymmetry. Antisymmetry is the symmetry of opposites and occurs 

Fig. 5. Six "Ali" in kufic script. 
The Palace of Shirvanshahs, Baku, 
Azerbaijan, 15th century; after 
Mamedov, 1986 

Fig.6. M.e. Escher, Plane-filling motif 
with Reptiles, 1941. Woodcut 
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when a symmetry operation is accompanied by a property reversal. Mamedov 
discovered [10] an architectural medallion in the Shirvanshahs Palace of the 15th 
century in Baku, Azerbaijan. The medallion, carved in relief in stone, repeats the 
word "Ali" six times (Fig. 5). Three of the six are written in the shape of hollows 
in the stone and the other three on the juts between the hollows. Escher's Plane
filling motif with Reptiles of 1941 (Fig. 6) shows a close relationship to this 
architectural medallion. Khudu Mamedov had great respect for M.e. Escher's 
art. 

Escher's periodic drawings are, of course, the most famous. Let me quote 
Doris Schattschneider's comments about their significance: [11] 

When I taught the course "Mathematics and Decorative Art," 
I came across Carolina MacGillavry's book that had the Escher 
designs. It had 40 plates in it, most of them black and white 
but afew in color and we analyzed a lot of them. Her intro
ductory essay had the tantalizing information that Escher had 
made notebooks. She was the person who introduced Escher to 
the crystallographic world. She visited him in his studio after 
she had seen an exhibit of his in the late '50's and found out 
a little about his symmetry drawings. She saw in his studio what 
a huge amount he had already done. By the mid-fifties he had 
already done well over a hundred symmetry drawings. He also 
showed her his personal notebooks that have his theory he had 
developed between 1938 and 1941 on his own. That is what 
Carolina referred to in her Preface. So I was aware that he had 
produced notebooks and that he had developed what he called 
a layman's theory. From that point on I wanted to know: What 
did Escher do? And how did he do it? 

Carolina was interested in using Escher's periodic designs 
as a teaching device - to teach beginning students of crys
tallography about crystallographic analysis of two-color and 
multicolor patterns. In the late fifties when she visited him in his 
studio that's when she got the idea to have him make an exhibit 
at the 1960 Cambridge (England) meeting of the International 
Union of Crystallography. He gave a lecture and got a standing 
ovation at the end of his presentation. After that meeting she 
got the idea to produce the book using his drawings and got 
the International Union to sponsor it. She actually worked with 
Escher. She went through all his periodic drawings and chose 
those that would illustrate the particular color symmetry groups 
that she wanted to illustrate. That's when she discovered that 
one of the simplest groups was missing and she requested him 
to prepare a drawing to illustrate that one, which he did. It was 
the p2 group withjust two colors. [See Fig. 7.] He also redrew or 
fixed up some of the other drawings. Incidentally, the p2 group 
is not very common in Islamic decorations either, if not totally 
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Fig. 7. M.C. Escher. symmetry draw
ing no. 115. This drawing was made 
by Escher at the request of Caroline 
MacGillavry for her 1965 book [2] 

mlsszng. It is nowhere in the Alhambra unless you take into 
account the under-and-over weaving of some designs. If you 
look for just point symmetry designs in the Alhambra, you don't 
see the all-over p2 designs. 

I. Hargittai: "Escher seems not to have liked reflection symmetry either." 
I think it's because of his wanting to have recognizable shapes, 
completely recognizable in silhouette. He also wanted the crea
tures to be not symmetrical. If you have birds flying and reptiles 
squirming, they are not symmetrical. ffyou line them up and pin 
them down, like you do with a butterfly to display it, there is sym
metry, but in nature and in action that symmetry is gone. He has 
a few patterns where he has reflection symmetry and they seem 
quite static; he really liked the idea of movement. In his own 
classification system he doesn't talk about reflection, he only 
talks about glide reflection. Reflection symmetry in an overall 
pattern is only introduced when the motif is symmetric - that's 
how he was looking at it. Thus his own classification system 
only uses rotations, translations, and glide-reflections. When he 
happened to have a symmetric motif, he would add a little 
asterisk to the classification symbol to say this one has reflection 
as well. In that sense it was only induced reflection symmetry. 
He never thought of global reflection symmetry at all, only local 
reflection which sometimes, of course, induces global reflection. 
An example is the pattern of a bird, bat, butterfly, and bee which 
was designed for a ceiling for an exhibit room of the Phillips 
Company at the time. The silhouette of these shapes was cut 
out of wood panels about one square meter and a thin film 
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was placed over the hole and the motif was painted on. The 
ceiling was back-lit and there were the shapes of these flying 
things. Quite a fantastic sight. Some parts of this ceiling were 
just recently rescued from a storage room. 

Less Symmetry Is Better 

363 

Is dethronement of the symmetry plane the equivalent of advocating the mer
its of asymmetry? Not at all. Repetition is also symmetry and Nature operates 
with a rather limited number of recurring patterns, giving us the hope to learn 
more and more about it. As it happens with the most frequent crystal struc
tures, Escher's periodic drawings are full of rotational symmetry, inversion, and 
glide-reflection, along with translation. However, reflection scarcely appears in 
them. Asymmetry would be the complete absence of symmetry. As it turns out, 
Escher's periodic drawings, just as crystal structures, are characterized with "less 
symmetry," i.e., with less than the maximum possible amount of symmetry. 

I would like to mention two instructive examples to illustrate the "less 
symmetry is better" thesis. When Linus Pauling was looking for a model of the 
alpha-keratin protein structure, he broke through by realizing that the key is 
in making a helical arrangement of non-symmetrical motifs, that is, the amino 
acids. [121 He even disregarded part of the experimental observations when he 
found it not compatible with his model. He could be that bold, of course, only 
because he had accumulated a tremendous amount of observed data on chemical 
structures and their regularities. 

My other example is the importance of less perfect structures versus more 
perfect ones in the quest for understanding the chemical basis of life. J. Desmond 
Bernal, one of the founders of molecular biology wrote: [131 

I should say here that the distinction between the fully and the 
partially crystalline structures was fully recognized in practice 
between Astbury and myself. I took the crystalline substances 
and he the amorphous or messy ones. At first it seemed that 
I must have the best of it but it was to prove otherwise. My 
name does not appear, and rightly, in the double helix story. 
Actually the distinction is a vital one. The picture of a helical 
structure contains far fewer spots than does that of a regular 
three-dimensional crystalline structure and thus far less 
detailed information on atomic positions, but it is easier to 
interpret roughly and therefore gives a good clue to the whole. 
No nucleic acid structure has been worked out to atomic scale 
though the general structure is well known. It may be para
doxical that the more information-carrying methods should be 
deemed the less useful to examine a really complex molecule but 
this is so as a matter of analytical strategy rather than accuracy. 
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A strategic mistake may be as bad as a factual error. So it 
turned out to be with me. Faithful to my gentleman's agreement 
with Astbury, I turned from the study of the amorphous nucleic 
acids to their crystalline components, the nucleosides. 

This is an extraordinary insight into the thinking of one of the most original 
scientists of the twentieth century. 

With some oversimplification, the message of this contribution is the 
following: getting innoculated with Escher's periodic drawings may assist us 
in avoiding strategic mistakes in research and help us in understanding the 
complexity of the world around us. 
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Computer Games Based on Escher's Spatial 
Illusions 

Scott Kim 

I have always loved the way Escher invites me to participate in his worlds. In 
Ascending and Descending, Escher invites me to join a procession of monks as 
they walk around an endless staircase. In Convex and Concave he asks me to 
compare objects on the left with their inverted counterparts on the right. His 
tessellations challenge me to trace the dual logic of the curves that outline the 
tiles. 

Escher once said that if he had a second lifetime he might have become an 
animator. Perhaps in a third lifetime he might have designed games. 

Many artists have found that games let viewers experience their work in 
a deeper way. The Italian sculptor Miguel Berrocal makes intricate metal sculp
tures that come apart into many pieces. The Japanese artist Toshio Iwai made 
a computer game called SimTunes that invites players to experiment with pat
terns of color and sound. When I play with a Berrocal sculpture or an Iwai game, 
I gain an active understanding of how pieces relate to one another that is very 
different than if I merely viewed them passively. "I hear and I forget, I see and I 
remember, I do and I understand." 

Fig. I. Screen shot from Escher Interactive 
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Escher Interactive 

I got my chance to design an Escher game in 1994, when author Joost Elfers 
invited me to contribute to a CD-ROM called Escher Interactive. Over the next 
year I worked with programmer David Oster in California, and Mike Chanowski 
and Henk Alles at Eyeware Interactive in the Netherlands where the disk was 
being produced, to create a collection of sixteen "Impossible Puzzles". They are 
called impossible not because they are impossible to solve, but because they are 
based on impossible figures and other spatial illusions from Escher's work. 

Escher Interactive is the first major software project based on Escher's work. 
Published in 1996, the disk includes an art gallery, timeline, interviews with 
experts, animations of Escher works, three games, and a drawing program for 
creating tessellations (see Fig. 1). 

Impossible Puzzles 

The player's goal in each Impossible Puzzle is to assemble a collection of pieces 
into a given shape. Often the final shape is a visual illusion. Each piece is made of 
cubes seen in flat isometric projection. Pieces may be overlapped, but not rotated. 

N C ~ -The Letter M The LetterC The letter E The letter 5 

• DB , ft. 
The LetterC The Letter H The Letter E The Letter R 

~ A , 
Impossible Triangle Relativity Dragon Columns 

• 0 10 • Convex Concave Ascendinq Waterfall Belvedere 

Fig. 2. The sixteen puzzles in Escher Interactive, based on Escher's work 
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The first eight puzzles are the eight letters of the name M.e. ESCHER. The 
last eight are based on specific Escher prints. Each puzzle has a unique solution, 
in order to make the puzzles harder, as well as to make the answers easier for the 
computer to verify. The sixteen puzzles are illustrated in Fig. 2. 

The idea for the Impossible Puzzles first appeared in my earlier game Heaven 
& Earth [10]. I designed over six hundred puzzles on the theme of Illusions for 
Heaven & Earth, working with lead game designer Michael Feinberg, producer 
Brad Fregger, programmers Ian Gilman and Michael Sandige, artist Mark Ferrari 
and musician Richard Marriott. 

M.e. 

The first two puzzles, M, C, are shown in Fig. 3. The goal is to overlap the 
small pieces to make a copy of the big shape. Pieces cannot be rotated; they must 
stay in their original orientation. Of course you could play this game with cut
out paper pieces, but on the computer, pieces are easier to manipulate. Pieces 
automatically snap into place, and pop to the front layer when you click on them. 
The computer also automatically enforces the rule that pieces cannot be rotated. 

As in most computer games, the first few puzzles are easy and then the puz
zles gradually get harder. The main purpose of the first two puzzles is to teach 
the rules of the game. Fig. 4 shows their solutions; notice how pieces overlap. 

Fig. 3. The puzzles M and C 

Fig. 4. Solutions to the puzzles M and C 
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Fig. 5. The puzzles E and S 

Fig. 6. The solution to the puzzle E 

ES 

The puzzles E, S are shown in Fig. 5. Although pieces appear to be solid, the 
player must think of them as flat shapes cut out of paper - pieces sometimes 
overlap in ways that make no sense in three-dimensional space. For instance, the 
solution sequence for E is shown in Fig. 6. 

CH 

The puzzles C, H are shown in Fig. 7. Notice that the way you perceive the 
shapes in three dimensions shifts while you are putting the pieces together. For 
instance, in the solution sequence for C, cubes that appear to be in the same plane 
at one stage shift into different planes at a later stage because other pieces have 
been added. 

1 have seen other illusions in which your perception of a situation changes 
when you add or remove a piece, but 1 do not know whether anyone has given 
this type of illusion a name. 1 like to call them "interactive illusions." Because 
interactive illusions are under your control, the effect is particularly startling. 
(I have included interactive illusions in several of my computer games. For 
example, Heaven & Earth includes interactive illusions based on figure/ground 
ambiguity.) 
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Fig. 7. The puzzles C and H 

H introduces concave/convex ambiguity, which appears in Escher's print 
Convex and Concave (see page 132). Assembling this puzzle is a disorienting 
experience: pieces often overlap along faces with contradictory interpretations. 
It was particularly difficult for me to find a way to break this shape into pieces 
so the solution was unique. 

ER 

The last two puzzles, which complete Escher's name, are in Fig. 8. The second 
E is an "improbable figure" - it appears to be an E only when seen from certain 
angles. Notice that the shape is composed entirely of L tetrominoes in various 
orientations. To keep the solution unique, no two pieces are identical. 

R is an impossible figure, similar to the impossible triangle that appears in 
Escher's print Wateifall (see page 65). To make it more challenging for the player 
I made the initial arrangement of pieces appear to be close to the solution. In fact 
most pieces are not where they should be in the solution. 

Fig. 8. The puzzles E and R 
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Fig. 9. M.e. Escher, vignette 4 Graphic 
Artists, 1952. Woodcut 

Escher himself occasionally played visual tricks with letterforms. Fig. 9 
shows a print he made to announce a four-person art exhibition. Notice how the 
same letters can be perceived differently depending on their orientation: the E 
also serves as an M, the H as an I, the U as a C, and so on. A similar crossword 
design appears at the beginning and end of his epic scroll Metamorphose (see 
page 147). 

A similar design on the name "M.e. Escher" appears in my book of illusion
ary lettering designs Inversions. An animation of this design appears in Escher 
Interactive; you can also find it on the CD-ROM accompanying this book. 

Triangles 

The Impossible Triangle, also called the Penrose tribar, was invented by 
British psychologist L. S. Penrose and physicist son Roger Penrose in 1958. 
(Dutch artist Oskar Reutersvard discovered the shape much earlier, but did not 
publish his work until later.) Their original article [9], which they sent to 
Escher, included drawings of both the impossible triangle and an endlessly rising 
staircase. 

The puzzles "Impossible Triangle" and "Relativity" are shown in Fig. 10. Try 
playing the demo version of the impossible triangle puzzle on the CD-ROM that 
accompanies this book. As you join one bar to the next you will find that the loop 
always closes with one bar in front of another where it should really be behind. 
Use the two extra parallelograms to patch up this defect. 
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Fig. to. The puzzles "Impossible Triangle" and "Relativity" 

Escher's print Relativity also involves a triangle, but not an impossible one 
(see page 265). Instead, it plays on the ambiguity of which way is up. The corre
sponding puzzle simplifies the triangle of stairs in Escher's print, and adds a new 
twist: pieces that reverse the sense of convex and concave, similar to Escher's 
Convex and Concave (see page 132). 

Flat and Solid 

In his prints Dragon (Fig. 11) and Two Doric Columns (see page 9), Escher 
questions whether the image you are seeing is flat or solid. To turn these works 
into puzzles I had to figure out a way to simplify the images into parallelograms. 
For each, I made different compromises (see Fig. 12). 

Fig.n. M.e. Escher, Dragon, 1952. Wood 
engraving 
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Fig. 12. The puzzles "Dragon" and "Columns" 

The puzzle "Dragon" retains the pattern of folded slits in a flat surface, but 
discards the dragon itself. The puzzle "Columns" uses a different illusion from 
the one in the original work. Instead of exploiting flat versus solid, the puzzle ex
ploits concave versus convex. Nonetheless it retains the form of two colums, each 
resting on the opposite side ofthe other's tail. This illusion is strikingly captured 
in drawings by Sandro Del Prete and paintings by Jos de Mey (see pp. 125-141). 

Notice that Escher's depiction of the columns, as well as mine, is completely 
symmetrical. One of the pairs of pieces in the "Columns" puzzle, however, is not 
symmetrical. 

Staircases 

Escher's Convex and Concave (see page 132) contains the classic ambiguous 
staircase illusion, broken into a symmetrical arrangement of pieces. The corre
sponding puzzle also has pairs of matching pieces (Fig. 13). Escher's Ascending 
and Descending (see page 6) contains the impossible endlessly rising staircase. 
The corresponding puzzle reduces the staircase to just one step on each leg. If we 
reduce the staircase even further, we get the impossible staircase with the fewest 
number of steps that can be composed of cubes (Fig. 14). 

Fig. 13. The puzzles "Convex and Concave" and "Ascending and Descending" 
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Fig. 14. The smallest staircase 

Of course the endlessly rising staircase is impossible only if we assume that 
what seem to be straight lines, right angles, and connected cubes actually are as 
they appear. If we allow the cubes to be slightly distorted into wavy surfaces, 
then we can make a three-dimensional model that looks just like this figure when 
viewed from a particular angle. 

Note that in both the original Escher work and my puzzle the left two legs 
of the stairs' circuit are shorter than the right two legs. The asymmetry is 
aesthetically unappealing, but unavoidable. In my study of four-dimensional 
impossible figures - three-dimensional "drawings" that appear impossible to 
a four-dimensional person - I found that the four-dimensional analog of the 
impossible staircase has no such asymmetry. 

Impossible Figures 

The final two puzzles involve impossible figures. The mill race in Escher's 
Wateifall (see page 65) is constructed from three impossible triangles. The 
corresponding puzzle abstracts this impossible geometry (Fig. 15). Notice that 
the ends of the puzzle pieces are all shaved slightly differently. 

Fig. IS. The puzzles "Waterfall" and "Belvedere" 
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Fig. 16. M.e. Escher, vignette Man with 
Cuboid, 1958. Wood engraving 

Fig. 17. Solution to "Belvedere" puzzle 

The man seated in Escher's vignette Man with Cuboid (Fig. 16) is similar to 
the one sitting at the base of the stairs in the print Belvedere (see page 135). He 
holds a small model similar to the one in my puzzle "Belvedere" (Fig. 15). Since 
the exact model that he is holding had already appeared in Heaven & Earth, 
I twisted it differently for this Escher Interactive puzzle. 

Notice that in the "cube" there are two points where one bar crosses in front 
of another. Because the seams of the cubes are visible, the back bar can be seen as 
merging into the front bar at these points. I exploit this ambiguity in the solution 
(Fig. 17). 

Try It Yourself 

Here is a version of the Impossible Puzzles you can play without a computer. 
It originally appeared in Games Magazine. Photocopy Fig. 18 onto heavy paper 
and cut out the pieces. Assemble the pieces to make the various configurations 
in Fig. 19. You can rotate or overlap pieces, but you can't fold or cut them. Each 
puzzle tells you how many pieces you may use. Answers appear on page 448. 
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Fig. 18. A puzzle for you to cut out and play with 
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1. Two pieces 2. Three pieces 3. Four pieces 

6. Seven pieces 

4. Six pieces S. Six pieces 

7. Four pieces 8. Seven Pieces 9. Seven Pieces 

Fig. 19. Assemble these shapes. Solutions on page 448 
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Escher's World: Structure, Symmetry, Sense 

Vladimir A. Koptsik 

In 1959 I heard for the first time about the interesting and original artist Maurits 
Comelis Escher. My scientific supervisor A.Y. Shubnikov showed me Escher's 
book Grafiek en Tekeningen, which was sent to him from Sweden by the well 
known crystallographer P. Terpstra. Shubnikov also told me about the letter 
which he sent to Sweden; the letter gave high praise for the artist's drawing skill. 
Only recently did I have the chance to read Terpstra's account of Shubnikov's 
letter and Escher's reaction to it. Here is this letter [1, p. 99]: 

Groningen, 1 February 1960: 
Dear Mr. Escher, I sent a copy of your Graphiek en Tekeningen 

to the Academician A. V. Shubnikov in Moscow (one of the top 
authorities in the field of crystallography). Today I received a letter 
from him in which he says, "I find Escher's prints extremely inter
esting, because they are an excellent illustration of the theory of 
antisymmtery. The picture on the cover of the book, for example, 
shows that antisymmetry rotation points of the second order exist 
in the given two-dimensional symmetry group." 

The print Day and Night made a great impression on me. It 
can be considered as the imaginary antisymmetrical operation 
of transformation of our light, left world infto] the right, dark 
counter - world of Dirac. 

I presume you will be pleased to hear this. 
Yours sincerely, P. Terpstra. 

Many other commentators had opinions similar to Shubnikov's about this 
woodcut. M.e. Escher agreed with the possibility of other interpretations of 
the woodcut different from the his. But he remarked that in the course of 
creation of the picture he didn't have in mind anything similar to that concept. 
His plan was to create the "dynamical equilibrium" of the parts in the composi
tion of Day and Night (Fig. 1) that is, to provide the characters of his "story in 
pictures" (he called them "speaking figures" [1, p. 162]) with dynamical equiva
lence. In the remarkable 1958 essay which reveals his creative method, he wrote 
the following [1, p. 169-170]: 

The dynamic equilibrium between the motifs 
This most fascinating aspect of the division of the plane, already 
described above, has led to the creation of numerous prints. It is 
here that the representation of opposites of all kinds arises. For is 
not one led naturally to a subject such as Day and Night by the 
double function of the black and white motifs? It is night when the 
white, as an object, shows up against the black as the background, 
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and day when the black figures show up against the white. Like
wise, the idea of a duality such as air and water can be expressed 
in a picture by startingfrom a plane-filling design of birds andfish; 
the birds are "water" for the fish, and the fish are "air" for the 
birds. Heaven and Hell can be symbolized by an interplay of angels 
and devils. There are many other possible pairs of dynamic sub
jects - at least in theory, for in most cases their realization meets 
insuperable difficulties. 

We shall discuss below in detail the means used by M.e. Escher to embody 
his creative ideas. We first note the fact that the variety of interpretations of an 
artistic text is connected in general with the polysemantics of the works of art, 
with its conventional nature, and with the mixed personal-social character of 
interaction between the artistic text and the reader, spectators or listeners, the 
essence of which is co-creation. The other central problem of art is the very 
process of artistic creation that transforms the author's ideas into an artistic text. 

In the broad sense of the term, an artistic text is a semiotic system that is 
the organic unity of the plan of expression and the plan of content (sense), the 
conventional sign and its meaning, the material and the ideal. In the narrow sense 
of the word, we consider the text as its material component only, that is, the coded 
materialization of the flow of ideas connected with the author's plan, its embod
iment and the artistic work itself. At the same time there is no strict equality 
between the sense of an artistic work and what the artist wished to express. In 
general, an artist succeeds in embodying his creative plan in material only partly 
and the text created by him proves to be loaded with other meanings (senses) not 
expected by him. 

Fig. 1. M.e. Escher, Day and Night, 1938. Woodcut 
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Let us denote the author's understanding of his own work (artistic text) by the 
symbol A or 10. Let I I, h h ... be the interpretations of different readers, spec
tators or listeners, arising as a result of their contacts with the text. Then what 
we are talking about can be drawn in a set-theoretical diagram (Fig. 2), which 
we called in [2] and [3] the "Lotman flower" in honor of Yu.M. Lotman, the 
Russian researcher of artistic literary texts, who is a semiotician, structurologist, 
and historian of verbal art and culture. 

We select Day and Night to illustrate our analysis, and denote by I I, 
h h 14, 15, ... , In the interpretations belonging to H.S.M. Coxeter
II (1972) [23], R. Penrose-12 (1986) [5], A.y. Shubnikov-13 (letter, 1959-60), 
C. MacGillavry-14 (1965,1976) [6], D. Hofstadter-15 (1979) [7], ... , and the 
author of the present paper-In (1974, 1997) [3, 10]. The interpretations 10 and 13 
were quoted earlier. We shall speak below about 15 which is close to our point 
of view. In every case, the interpreter h contacting the text (the shaded circle 
in Fig. 2) and trying to reveal its sense in the course of decoding the text can 
reveal the author's plan (idea) only partly. At the same time he can add to it his 
own understanding of the work of art connected with his own experience with 
art, the richness of his own life (private world), his own preferences, artistic 
traditions and outlook (philosophy). The spectator's interpretations h (except 
In) are shown by dotted lines in Fig. 2. These ellipsoidal petals of the flower 
intersect with 10 only partially. 

The question arises: Which h manages to get maximally close to lo? Or 
a yet more general question: Is it possible to establish the theme (or the main 
idea) of the work of art according to its text without knowing the author's 
interpretation lo? The answer is affirmative: It is possible with some degree of 
approximation, because the author strives to be understandable if he creates not 
only for himself. For instance, knowing about possible different interpretations 
of black and white, Escher must have used these to serve as prompts to the specta
tor and must have tried to remove motifs that might lead the spectator in another 
direction. Even so it is impossible to get rid of conventionality, polysemanticity, 

Fig. 2. The infonnational-semiotic structure of the 
work of art: the "Yu. M. Lotman's flower" 
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ambivalence and fuzziness in the interpretation of representation, idea and plot 
of the picture. 

The first prompt to the spectator is the title which governs the representative 
plan of the picture and determines the setting of perception. Indeed, a first glance 
at the picture shows that it depicts some concrete manifestations of day and night 
simultaneously in static and dynamic aspects. At the same time, the semantic 
neutrality of the title does not allow us to fix a single interpretation of a frozen 
instant or a transition between the states. A more detailed analysis is necessary. 

The main striking structural peculiarity of the composition Day and Night is 
its vertical mirror (anti)symmetry; it is not strict in geometrical details, but has 
an ideal balance in color and composition for each separate figure - town, river, 
part of the field, road - there corresponds a mirror-equivalent figure. The mirror 
reflection of the composition was more often connected by the spectators accord
ing to their own experience with the stability of reality. In the picture plane which 
represents the earth there is no sign of struggle. The idea of a peaceful life of the 
city-dwellers is supported by the geometrical equivalence of the sailing convoys 
of ships, the early passers-by going to their fields on the bridge, and by their 
absence on the other bridge (the workers have returned to the black city, but the 
windows are still lit: people are preparing for the night). Everything witnesses 
that both towns are inhabited by peaceful people and the only difference is that 
in one town it is daytime while in the other it is night. But as time goes by, night 
will fall in the white town, and day will come in the black one. After the natu
ral change of states both towns will preserve their quality of being peaceful and 
quiet. The idea of dynamical equivalence, 10, wins! 

At first glance this peace is disturbed only by slight disharmony. The layout 
of fields between the two towns is such that parallel lines of roads and bound
aries going from the black town converge (in perspective) in the southeast while 
those going from the white town converge in the southwest. But this difference 
of perspectives is canceled by the layout of fields situated on the other sides of 
the rivers according to the same chessboard plan as between the towns. Here the 
infinitely far points of both perspectives coincide for both towns and in no way 
may serve as evidence of the different outlooks of city dwellers. The very princi
ple of the chessboard planning of fields which gives to both towns plots of equal 
fertility, area and topographic characteristics speaks in favor of their friendliness. 
It is unlikely that the chessboard field coloring was defined by the regularity of 
sowing two different crops. White and black serve there as a conventional sign of 
the white fields belonging to the white town and the black ones to the black town. 
The bends of the rivers at the horizon allow us to suppose that they flow into the 
same sea. Therefore the two rivers are equal and differ only by illumination. 

The elements of confrontation are seen only in the upper part of the picture 
- in the sky. It is necessary for the two flocks of white and black geese to 
literally force their way through each other because of the dense packing and the 
absence of free space in the sky. But one may see the situation also in a different 
way: the separation in color of white birds against the black background may 
be understood as the flocks of birds flying at different levels without disturbing 
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each other. But what do they represent in the picture? What semantic part do they 
play? It cannot be excluded that the unlikely event of two flocks of birds meeting 
at the same time and place at the break of day or night is just a symbol of rays of 
dawn going to the black town and night going to the white town. 

This structural analysis reveals a greater number of arguments in favor of 
Escher's interpretation 10 of peaceful coexistence of towns as compared with 
Shubnikov's interpretation 13 of their confrontation. But let's not be in a hUrry. 
Escher's picture is not a real situation but a fairy tale. The artistic space and time by 
no means coincide with the real ones, and utterly improbable events may happen 
there. The confrontation of the good and dark forces which ends in a victory for the 
forces of good is a typical theme of fairy tales. The same semantic roles of black 
and white occur in Western mythology and Christian religion. If one adds to this 
that the woodcut Day and Night was created in 1938 at the end of the Spanish Civil 
War and on the eve of the Second World War it may not be denied that Escher's 
troubled mood was unconsciously reflected in his composition. Shubnikov's 
interpretation of Escher's picture becomes quite natural and legitimate for people 
who experienced all the horror and deprivation of World War II. 

Is it possible under such conditions to speak about some general sense of 
Escher's picture shared by a wide category of either experts or ordinary spec
tators? One can attempt to reveal it, though the polysemantic field of a true work 
of art can hardly be squeezed into the bed of Procrustes of "general sense" with
out losing some of its artistic merit. Art as the self-consciousness of culture [8] is 
a social institution, the form of social artistic knowledge (cognition), and some
times fantastic (imaginary) modeling of reality (the "second reality"). At the 
same time it is a process and a result of creation and co-creation (a dialogue 
between the semantic field connected with the work of art and the mentality of 
the observer). The highest sense of art (as the sense of life itself) is in its rich 
conceptual being. The abstract concept of "opposition of antipodes" will be the 
metasense, the invariant ofthe transformation II ---+ 13, lJ ---+ I]. 

To sum up our results on Escher's woodcut Day and Night, it is certain 
that reduction to the artist's understanding 10 or to individual interpretations h, 
or to the union of their conceivable intersections (the common subset of both 
sets Ii and h) is impossible. Cognitive-aesthetic information in art studies is 
not reduced either to the sum of concrete investigations or to the sum of their 
commonplaces (intersections), but includes in itself some system effect. Then 
the best approximation to the artistic sense of the work will be striving for 
an extension of the quality of understanding the union of all individual senses 
(petals h of the "Lotman' s flower") multiplied by some factor which extends the 
informational system and takes into account the system effect. At the same time it 
will be a shared understanding of works of art by a large category of interpreters 
which will increase together with the number of individual senses that constitute 
a semantic field of the woodcut. 

All these considerations are reflected in our diagram (Fig. 2), where 14 
represents the "crystallographic" reading of some of Escher's texts, I] and h are 
readings of well-known mathematicians who presented to M.e. Escher the idea 
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of self-similarity tending into infinity and the idea of "strange loops" and who 
admired their artistic realization. D. Hofstadter's interpretation 15 [7] established 
a structural correspondence ("translation") of a number of Bach's canons and 
inventions with some of Escher's compositions. Hofstadter's interpretation of 
Godel's theorem and its application to works of art is of special importance as 
it demands from art studies the informational completeness found in the vari
ety of their languages of description. The same claim was repeatedly declared 
by Yu.M. Lotman [9] who defined the very sense of a work of art as a mental in
variant (verbal and/or visual) preserved under the translation Tj -+ T2 from one 
language to another language, and mapped into itself by the inverse translation 
T2 -+ Tj. 

Finally, we should mention the interpretation In. Instead of an ellipsoidal dot
ted petal in the "Lotman flower" there is a dotted circle enveloping 10 and inter
acting in the form of a dialogue not only with the author's sense 10, but also with 
all significant (for the author of this report) interpretations Ik in the intersection. 
It goes without saying that upon the increase in the number of Ik (along with self
education of the interpreter), the sense In will grow to 10 when n goes to infinity. 

It is known that from prehistoric times ornament has performed ethnic and 
heraldic functions to distinguish between tribes, their chiefs, and estates. Later 
on the aesthetic function of decoration of clothes, habitats, tools and weapons 
emerged. Ornamental semantics became richer in content in connection with 
the function of performing religious ceremonies and the development of folk 
art: plays, songs and dances. The principles of ornamental composition gradu
ally found applications in ornamental music, poetry, and in decorated rhetorical 
prose. It has long been held that the function of repetition of artistic motifs is one 
of the most important components of beauty in music, poetry and architecture. 
The principle of varying repetition of topics, of their interweaving, compari
son, opposition, and dialogue has become the leading method of composition in 
temporal forms of art. It is interesting to note that in the Moorish ornaments of the 
12th-14th centuries (and much earlier in Egypt) all two-dimensional groups of 
symmetry were discovered empirically [16], and the principle of varying (color) 
repetition in music appeared before the modern theory of antisymmetry and color 
symmetry with their positional Wp- and Wq variants that take into account local 
violation of symmetry [10, 17, 18]. 

Escher has enriched ornamental semantics and poetics in the framework 
of the principle of varying repetition of figures as well as produced a new 
genre of ornamental cognitive drawing. Escher's world is exceptionally rich: 
it is a multidimensional, polyfunctional and polysemantic world full of hidden 
metaphors and allegories. It is a world of fairy tales, full of paradoxes, where 
the impossible turns out to be possible, where infinite movement and improbable 
transformations are realized, and where new possibilities of artistic geometrical 
modeling open up. 

In the theory of art it is useful to define the concept of symmetry as a set of 
artistic transformations of the plan of expression and content, which preserves 
the sense of a work of art (or of the set of works of art); this is equivalent to sym-
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metry in the generalized sense [2,3,10,12]. Depending on the definition of what 
substructure or a set of substructures of a work (or works) of art will be invariant, 
one will get a hierarchy of different symmetries distinguished by the concrete 
expressive sense and/or structure of art transformations. From this point we can 
go to a symmetry analysis of Escher's compositions. 

Let us denote by I' the operator of color inversion: white into black and vice 
versa. It is obvious that this transformation of anti symmetry does not belong to 
the complete symmetry of the original composition which preserves both the 
plan of expression and sense of the picture Day and Night. The action of this 
transformation on the initial composition gives another composition Night and 
Day, that is, the left white town becomes the left black one and also the right 
black town changes into white while preserving its position and chirality. At the 
same time this new composition continues to express Escher's idea of dynamical 
equivalence of the two states. The same result, Night and Day, is obtained un
der the action of mirror-reflection in a vertical plane in the middle of the print: 
this operator m (for mirror) transforms the position and chirality of the figures 
(interchanging left and right), but preserves the colors. 

Now let us introduce the combined operator, the plane of anti symmetry m' 
which consists of two operators, I' and m acting simultaneously: I' on color 
and m on the position of the figures (that is, on the coordinates of its material 
points). Then such an operator m' expresses the complete sign-sense symmetry 
of the original picture Day and Night because under the action m' the right black 
town goes into the left white town and vice versa. We may thus conclude that 
in performing a symmetry analysis of the art composition, one must distinguish 
between complete sign-sense symmetry and partial sense symmetry because 
one and the same sense may be expressed in different languages. l And because 
an art composition is always polysemantic, its generalized symmetry reveals 
itself more completely in the set of generalized transformations that preserve the 
"Lotman's flower" (Fig. 2) corresponding to this composition. The invariants of 
symmetry transformations in the plan of expression will be the artist's style in 
the given period of his creative work. 

Naturally, the inner world of the artist is indirectly influenced by the histor
ical epoch in which he lives, and the cultural and artistic tradition which may 
define directly or indirectly appropriate subjects and impose limits on his artistic 
language. It may force him to create by "laws of beauty," by laws of genre and 
style, by laws of "reflection" or correspondence to the "truth of life" and/or 
correspondence to the internal world of the artist. The artist is also limited by 
the laws of the language of art at his disposal, by the material specific for the 
given form of art, and the "alphabet," the "vocabulary," the "grammar," the logic, 

I Let us note a correlation of our terms with the terms of connotative and denotative 
"semiotics" used in the semiology. They have relation to separated and formalized 
systems of signals that have only a plan of content (sense) of the primary level or 
a united and indivisible expression - content of the second (higher) level correspond
ingly (see [26], p. 387 of the Russian edition or the items 1.2 and 1.3 of the section D 
"Borders of Semiology" in the original Italian edition). 



386 

I 
I 
I 
I 
1 
I 

........... __ !?_-_ .. " 

Vladimir A. Koptsik 

Fig. 3. The philosophical hierarchy of substruc
tures of reality - the external and internal 
worlds of the artist. 
O-the semiosphere [9]. 
1,2,3 the steps (stages) of the external worlds: 
I-nature, 2-society (community), 3-man,who 
is the product and the creator of his own cul
ture [8] (material components of the culture are 
shown by the solid circle, mental components 
belong to the semiosphere 0 are not shown. 
4-art as the totality of all its texts. 
5-the creative works of a given artist. 
6-the internal world of the artist as the mental 
field of all his texts. 
7-the text of a given work of art. 
8-the mental (substantial) field (content) of the 
given work of art 

and the ways of combination of an artistic sign with its senses which may be 
developed by the artist himself [2, 3, 10-12, 16,20,26]. Let us embrace all those 
factors by the term "external world" and draw on the oversimplified diagram 
(Fig. 3) the multi-level structure of the creative work of the given artist, which 
must be taken into account by a modem researcher who seeks to penetrate into the 
mystery of the personality of the artist and his art by all the texts bearing a relation 
to the text under investigation (its "dialogues" and "verbal exchanges"). 

Let us give a more concrete expression to the diagram in Fig. 3 in conformity 
with Escher's work during his second (crystallographic) period (1937-1969). 
The semioticians still argue on the question, "is art a semiotic system?" [20,26] 
Taking a sufficiently developed natural language for the standard of the semiotic 
system, many of them deny art this quality, while others consider the semiotics 
of art as an incomplete (imperfect) system. We disagree: the semiotics of fine 
arts (graphic art being among them) cannot be considered as an underdeveloped 
system. The system is qualitatively different. Although it lacks the cognitive
analytical (verbal) qualities of the natural linguistic systems, it exceeds (or rather 
supplements) them in its specific and concrete imagery, its emotionally saturated 
and integral1anguage. 

Let us consider specific characteristics of black-white graphic art as 
a semiotic system characterized by increased fuzziness. 

Its alphabet consists of material points, distinguishable by the eye - segments 
of straight and curved lines and spots, colored homogeneously - in black against 
a gray or white background or in white against a black background. These 
generalized geometrical images serve as analogs of letters: if allowable trans
formations of the letters preserve their "meaning" (sound), then the allowable 
scaling transformations, transformations of curvature and color, as well as 
changes in saturation of lines leave the visual images invariant. The very being 
of the thing in the real world, corresponding to the sign, then becomes its only 
sense. The typology of visual images then corresponds to the combinations of 
the finite number of letters in the alphabet. 
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The vocabulary of the black-white tone drawings consists of the "words" 
created by the artist; that is, of the signs consisting of the intersections, associ
ations and intertwinings of the lines, points and spots. As in the case of words 
in a natural language, the only sense of a geometrical configuration may tum 
out to be its own existence, sometimes combined with functions of the back
ground and the context of the drawing. But creation of understandable images 
("speaking figures" according to M.e. Escher) is the aim of the artist. Recogniz
able images that occur in the real world (or in the inner world of the artist) can be 
recognized by the contour (outline), silhouette or the surrounding context. The 
sense of these "words" has been established in the course of centuries-old art 
tradition, in dialogues and exchanges of the texts in the repeatedly renewed pro
cess of creation by artists and co-creation by interpreters who vary and enlarge 
the word supply of "drawing vocabulary" of mankind. Its difference from verbal 
(explanatory) and etymological dictionaries lies in the fact that the thousand-year 
experience of analytical cognition of humanity is reflected in the dictionaries of 
natural languages. At the same time, modem graphic artists create the language 
and sty Ie of their own work, as well as the form of writing at a given moment, but 
in correspondence to and opposition with cultural and artistic traditions limiting 
their freedom. There are also limitations on the part of material: the drawing's 
"words" and "idioms" must be separated from the background; it reminds one 
of prosody (vowel interchange, alternation of the strong and weak syllables) in 
natural spoken language. 

The grammar of drawing, that is, the rules of composition for phrases and 
idioms of drawing and composition rules is very arbitrary. It is reduced in prin
ciple to the single demand of emotional response and comprehensibility of 
images in the drawing, as well as senses associated with them in the context of 
the nearest surrounding of the drawing, the individual blocks of the picture as 
a whole. 

Although it is possible in many cases to retell with words the content of 
a work of fine art (with the loss or impoverishment of the visual layer of inform a
tion), it is impossible to replace such work of art by the verbal retelling. With all 
its specific language, art is competent and developed in its own semiotic system! 
See [2,3,8-15, 19,20,26] for details. 

The senses of M.e. Escher's work, revealed by himself and others in 
[1, 4-7, 21-25], gradually shifted from typical works of landscape-architectural 
and portrait-still life genres toward the artistic exploration of some problems 
on the border between science and art, which became systematic in the second 
period of his creative work (1937-1969). The list of these problems is known [1]: 
the problem of regular division of the plane by relatively equal (symmetrical, 
anti symmetrical, and color-symmetrical) figures; providing these figures with 
the art semantics traditional for painting (and specific for M.e. Escher's seman
tics of a fairy tale); investigation of paradoxes of visual thinking - the existence 
in the picture plane of compositions impossible for ordinary perception 
("improbable figures"), where figures escape from the plane into the space of 
a higher dimensionality; the problem of fractal filling of the plane with self-
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Fig. 4. Left: M.e. Escher, The Scapegoat, 1921. Woodcut. The group of functional (trans
fonnational) antisymmetry of the playing card consists of the two-fold axis of positional 
antisymmetry supplemented by appropriate metaphoric transformations of the horizontal 
metamorphic symmetry plane and of the vertical metamorphic antisymmetry plane. The anti
symmetry transformation I' of re-coloring gives a formally equivalent expression of the card, 
but with a different content provided by the Christian religious tradition. 
Right: The yin-yang symbol is presented here in two forms connected by the antisymme
try recoloring operator I'. It also expresses (in abstract philosophical form) the principle of 
dynamical equivalence of the two anti symmetrical states as in the woodcuts Day and Night 
and The Scapegoat 

similar figures; and the problems of continuity and discreteness, the finite and 
infinite, order and chaos, "strange" movement repeated in cycles, metaphoric 
transformations from mythology and fairy tale. 

The artistic manifestation of opposition (coexistence or struggle) of anti
podes; anti symmetry (or color symmetry) of the phenomena of life understood 
as a generalized symmetry is a common topic (strange attractor) where all lines 
of narrative come together. As early as the beginning of his creative work, 
in the period of search for an individual style in the series of drawings cre
ated in 1921, young Escher discovered for himself the idea of black-white 
antisymmetry2 and positional metaphoric equivalence of the "speaking figures" 
in the woodcut The Scapegoat, correlating with the well-known Eastern ying
yang symbol (Fig. 4). In the rosette Beautiful [ I, cat. no 82] Escher admires 
the kaleidoscopic beauty of the dazzling bright diamond pattern on the black 
background, beautiful in the geometrical regularity without ordinary "speaking" 
semantics of figures, but having geometrical (symmetry) metasemantics. And in 
two related woodcuts [I, cat. nos. 85, 86] he varied the degree of recognizabil-

2lt is curious that the idea of black-white anti symmetry was introduced at the same time 
(1929-1930) in publications of German geometricians Alexander, Heesch and Weber. 
It was then developed and generalized by A.V. Shubnikov and other researchers. 
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ity of the female nude model as if to solve the question of the choice of style 
(realistic or abstract-symbolic). 

Let us consider briefly through some examples what concrete artistic and 
scientific tools were used by the mature master to express the idea of opposi
tion of antipodes. As we can see, the idea of dynamical equivalence of black 
and white in the print Day and Night was realized in the four-dimensional world 
of states, split into the three-dimensional geometrical world R3 and the one
dimensional world of time R I. The illusion of three-dimensionality was created 
by ordinary drawing tools (chiaroscuro), and the idea of movement is stressed 
by the "speaking figures," by the contrast of black and white, and by the title of 
the picture. 

The illusory equivalence of Ascending and Descending (page 6) was created 
by splitting the three-dimensional space into two mutually orthogonal indepen
dent subspaces Rl and R2. Movement of the two columns of people in two 
opposite directions was actually carried out in the ordinary way in the two
dimensional plane R2, and the illusion of ascending and descending was realized 
by the stepped outer walls and people's steps characteristic of ascending and 
descending the staircase in three-dimensional space R3 (see the diagram of the 
woodcut in Fig. 5). The same idea is realized in the woodcut Wateifall (page 65). 
As a matter of fact, water flows in the picture plane R2 through the plane gut
ters, driven by the wheel of the mill, and the illusion of slope is created by the 
architecture, angled turns of the gutters, and by the same wheel in R3. 

A cyclic movement with the periodical departure of drawing hands from 
two-dimensional into three-dimensional space was realized in Escher's wood
cut Drawing Hands [I, cat. no. 355] by transition from the contour outline of the 
cuffs into the ciaroscuro representation of the hands. A representation of a closed 
loop may also be seen by the spectator in the woodcut Print Gallery (page 80). 
There the apparent reality (the series of drawings in the gallery and a young man 

(a) (b) 

Fig. 5. A schematic explanation of the illusion of ascending and descending in M.e. Escher's 
print of the same name (see page 6). (a) The plan of the roof of the building (the top view) 
consists of the internal plane square path (road) and the external step-like walls. (b) The 
profile of the front external wall shows the sawtooth steps on the wall with the saw 
lengthening in the horizontal direction 
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viewing one of them) turns into the imagined (but also expressed) town where the 
young man lived. This method of co-existence of two planes of reality (a picture 
in picture, a novel in novel) is often used in art. 

The existence of three worlds can be mentally reconstructed for the appropri
ate woodcut [1, cat. no. 405] by the projections of the three-dimensional over
and underwater worlds onto the two- dimensional plane. This effect is created 
by the recognizability of "speaking figures" existing on both sides of the divid
ing surface (the mirror surface of the water). Finally, it is possible to consider 
the imperfections of the architectural composition of Belvedere (page 135) as 
a projection of a summer house which is regularly constructed in imaginary 
multidimensional space, into the three-dimensional world, quite analogous to 
the case of projections of multidimensional regular crystal patterns into three
dimensional space. The properties of regular periodicity and crystallographic 
symmetry are lost in such projections, corresponding to the "improbable" yet 
existing patterns in so-called quasicrystals [17, 18]. 

To conclude this essay, I would like to return to its beginning. I often show 
Escher's drawings to students to illustrate the ideas of anti symmetry, color 
symmetry, and metaphoric positional transformations. But on August 18, 1960 
my distant acquaintance with M.e. Escher became a personal one. At the Inter
national Crystallographic Congress at Cambridge, England I was introduced to 
M.C. Escher. After his brilliant lecture on regular divisions of the plane by the 
"speaking figures" he stood in the corner of the lecture room surrounded by 
admiring people and smiled confusedly in the zenith of his crystallographic and 
artistic glory. Such an image of him has remained in my memory in the haze of 
years passing by. 
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Adapting Escher's Rules for "Regular Division 
of the Plane" to Create TesselManiafID 

Kevin Lee 

M.e. Escher's fascination with "regular division of the plane" is well 
documented both by his artistic works and numerous texts and articles. In his 
own words, 

A plane, which should be considered limitless on all sides, can 
be filled with or divided into similar geometric figures that 
border on each other on all sides with leaving any "empty 
spaces." This can be carried on to infinity according to a limited 
number of systems. ([I, p. 156]; also see [3, p. 15]) 

Mathematicians now call a "regular division of the plane" a tessellation (or 
tiling) and making such tessellations has become a wonderful activity for school 
children and teachers connecting mathematics and art. Jill Britton and Dale Sey
mour in their book Introductions to Tessellations [2] have introduced thousands 
of students and teachers to Escher's work and the joy of creating a tessellation. 
Unfortunately, due to time limitations in the classroom and the difficulty of cre
ating tessellations by hand, students are able to experiment with just a few rudi
mentary tile types. A tile type is described by the specific geometric rules of how 
it is constructed and repeated to cover the plane without any gaps or overlaps. 

The computer program, TesseIMania!, was designed to let students easily 
create tessellations, therefore enabling them to explore many different tile types. 
The program was inspired by Escher's pioneering work on "regular division." In 
describing his study, he wrote: 

At first I had no idea at all of the possibility of systematically 
building up my figures. I did now know any of the 'ground 
rules' and tried, almost without knowing what I was doing, to 
fit together congruent shapes that I attempted to give the form 
of animals. Gradually, designing new motifs became easier as 
a result of my study of the literature on the subject, asfar as this 
was possible for some untrained in mathematics, and especially 
as a result of my putting forward my own layman's theory . .. It 
remains an extremely absorbing activity, a real mania to which 
I have become addicted. .. [1, p. 164] 

In creating the computer programs TesselMania! and TesselMania! Deluxe 
I experienced much of this same mania. 

Escher's investigations of the geometry behind regular division is well 
documented by Doris Schattschneider in her excellent book: M. C. Escher Vi
sions of Symmetry [7]. She chronicles Escher's initial introduction to the problem 
of regular division through his many years of investigations and discoveries. 
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He recorded his "layman's theory" in a notebook that was completed in 1942. 
This notebook was not published and relatively unknown until the first Escher 
Congress in 1986 when Schattschneider made it the subject of her talk and then 
wrote an article for the proceedings [3, pp. 82-96]. She expanded on it further in 
her book. 

Escher's Initial Discoveries 

Escher realized that when he started with a single tile (motif) there were only 
certain types of geometric moves, or motions, to apply that would not change the 
size or shape of the tile. These moves are known as isometries and math students 
learn that there are exactly four types: translation, rotation, reflection, and glide
reflection. In his lectures on regular division Escher would explain: 

Anyone who wishes to achieve symmetry on a flat surface 
must take account of three fundamental principles of crystal
lography: repeated shifting (translation); turning about axes 
(rotation) and gliding mirror image (reflexion). [4, p. 8] 

Note that Escher states three fundamental principles, not four! He is clearly 
talking about translation, rotation, and glide reflection. But what about reflec
tion? Escher certainly knew about reflection, but for creating tiles it is not 
a useful operation. If a side of a tile was used as a reflection line then that side 
is forced to be a straight line - not very helpful if you dream of creating tiles in 
the shape of lizards, fishes, or other creatures! For a further explanation, see [7, 
p. 33]. Interestingly, he did create some tiles with bilateral reflection symmetry 
(see [7, p. 118] for an example). 

Escher initially did what every good mathematician does (although he 
claimed he was not a mathematician!) - he placed restrictions on his problem. 
When he set about to classify his tiles and tilings he initially limited himself to 
asymmetric tiles whose congruent copies produced tilings in which each tile was 
surrounded in the same way (hence the name "regular division of the plane"). An 
asymmetric tile is one that by itself has no symmetry. Moreover, he also required 
that in his tilings, no two tiles that shared a common border were the same color, 
and in achieving this, a minimum number of colors should be used. In Escher's 
view, tiling and coloring were inseparable problems. He actually did research 
in a field, eventually called color symmetry, that would not be fully explored by 
crystallographers until years later [7, p. 39]. He didn't really set out to classify 
tiles and tilings, but rather he set out to explore all the ways he could generate 
tiles. 

The Idea for a Computer Program 

The idea for a educational computer program to create Escher-like tessella
tions originated with Craig Solomonson and Shari Zehm at MECC (Minnesota 
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Educational Computing Corporation). They had noticed the popularity of ses
sions on tessellations at math teacher conferences. They attended several 
sessions on creating "Escher-like" tessellations in the classroom, including one 
by Jill Britton, and they were hooked. These workshops were teaching some of 
the geometric rules that Escher had discovered. 

Craig and Shari quickly realized the advantage a computer program could 
bring to the process of creating tessellations. Craig then suggested the idea to me 
and used a computer paint program to illustrate how to create a few simple tiles. 
It didn't take long to figure out why Escher had found creating tessellations such 
an interesting problem and I, too, was caught up in the mania of trying figure out 
the geometric rules with the additional task of writing a computer program that 
applied the rules. Fortunately, Escher had already figured out the theory; I just 
had to be able to understand it and apply it in designing a computer program. 

A Simple Quadrilateral System 

The prototype for TesselMania! started with simple tile systems from Britton 
and Seymour's Introduction to Tessellations. By analyzing Escher's symme
try drawings, they managed to rediscover the 'ground rules' behind some of 
Escher's drawings. They describe geometric systems for creating Escher-like 
tessellations using their own graphic notation. As Escher discovered, the key to 
creating a tessellation is to start with a polygon that tessellates, and then alter the 
edges in such a way that the tessellating property is preserved. An edge of a tile 
connects two vertices. A vertex of a tile is defined as any point on the tile where 
more than two tiles in the tessellation meet. In Fig. 1 each tile has four vertices 
and four edges. 

The first tile type implemented in TesselMania! was based on a parallelogram 
and used only translations. The initial parallelogram tiles the plane, forming 
the underlying grid of the tessellation. To transform the tessellation at the left 
in Fig. 1 to that on the right, two adjacent edges are altered and translated to 
opposite edges: the top edge is altered then translated to the bottom edge and 
the left edge is changed and translated to the right. The original vertex points do 
not change position and, in fact, form an underlying grid of parallelograms. 

Fig. 1. Tessellation based on Translation 
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This strict application of the geometric rules guarantees that as a tile is copied 
and moved to the spot below it, the top edge of the copy will match exactly with 
the bottom edge of the original, or conversely, if the tile is moved to the position 
above it the bottom edge of the copy will match the top edge of the original. The 
same is true for moving the tile to the left or right. 

Creating Escher-Like Tessellations 

The tile-making process taught in many tessellation workshops for teachers uses 
an index card to create a tessellating polygon, usually starting with a square or 
a rectangle. A piece is carefully cut off one edge and taped to a corresponding 
edge according to the geometric rules for the tile type. This technique is 
discussed in more detail in the article by Jill Britton (page 305). 

TesselMania! set out to mimic this process of transforming a polygon into an 
interesting tessellating shape, but adapted it to take advantage of the power of 
the computer. Students start by selecting a tile type (the geometric rules for the 
tile). Instead of cutting and taping a cardboard tile, they shape a virtual tile on 
the computer screen by using a tack tool that allows them to bump the sides of 
the initial polygon. As they introduce bumps on one side of the tile, correspond
ing bumps are automatically introduced on the related side. Unlike the index 
card method, students can re-shape their tile's edges at any time. As a further 
advantage, students see corresponding sides of the tile being formed simultane
ously. Once they have completed the outline of their tile, computer paint tools 
can be used to add features to the interior of the tile. By clicking the "tessellate" 
button they see their tile repeated to cover the screen, complete with all the 
interior details. 

The following illustration gives more details of this procedure. Here the tile 
type selected is a parallelogram with parallel sides related by translation (the 
same type of tile used in Fig. 1). Three tools are provided to manipulate the 
border of the tile: an arrow, a tack, and a scissors. The arrow is used to drag exist
ing points on the tile, the tack is used to introduce and drag points on the border 
of the tile, and the scissors is used delete existing points. The tile outline is kept 
track of by the computer as a series of points that can be manipulated at any time. 
Figure 2 illustrates how the tile border tools are used to produce a tessellating 
tile. At every step in the construction the tile retains the ability to tessellate. 

The last two stages show features added to the interior of the tile using the 
paint tools. The tools include a stamp tool with many pre-designed features like 
eyes, ears, noses, mouths, and hats to allow students to quickly add new features 
to their designs and to help the unfortunate student, who like me, cannot draw 
very well. 

Figure 3 illustrates part of the plane (the computer screen) tessellated with 
the fish. Coloring is a key part of Escher's tessellations; he used color to make 
it easier to recognize individual tiles. In a tiling such as in Fig. 3, TesselMania! 
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Fig. 2. Example of creating a tile using TesselMania! 

Fig. 3. A portion of the tessellated computer 
screen 

places colors in contrasting pairs. Thus if a student paints inside the master tile, 
the surrounding tiles are automatically painted a contrasting color. This scheme 
is extended to triples of colors for tessellations that require a minimum of three 
colors for recognizability of tiles. 

Tile Types and TesselMania! 

The prototype for TesselMania! was created using the information about tile 
types from [2]. When I discovered Visions of Symmetry, I started to adopt 
Escher's numbering for his quadrilateral systems (Part I of his 1941--42 note
book) for some of the tile types. The remaining tile types were contained in his 
transition systems (Part II of the notebook) and his triangle systems (Part IV 
of the notebook). These two additional systems were harder to understand and 
I did not relish trying to explain the systems to school children. Eventually I 
switched to a system invented by the mathematician Heinrich Heesch. Heesch's 
classification system is very similar to Escher's system but mathematically more 
elegant and complete. Heesch proved there are 28 different ways (using combi
nations of translations, rotations or glide-reflections) to tile the plane in a regular 
way with an asymmetric tile. Each of the 28 ways determines a tile "type," since 
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the geometric motions that fit copies snugly next to each other naturally deter
mine certain relationships among the edges of a tile. Escher's work shows that 
he, working independently of Heesch, discovered 27 of the 28 tile types. 

Escher's Quadrilateral Systems (Part I of his notebook) 

Part I of Escher's notebook describes his two-colored quadrilateral systems. 
These are systems that begin with an underlying grid of some type of parallelo
gram. He identified ten systems using a Roman numeral to indicate the system 
and further specified the type of quadrilateral by using a letter (A, B, C, D, or E). 
Each tile system is classified by the motions needed to move the original tile to 
the tiles adjacent to it. In a quadrilateral system, for each tile, there are eight sur
rounding tiles, four that share an edge with the center tile and four that share just 
a vertex. This property assures that the tiling can be colored using a minimum of 
two colors with no two tiles that share an edge having the same color. In fact, the 
coloring is just that of a checkerboard (see [7], p. 59). 

Escher identified the relationships of tiles that surrounded a given tile by 
using transversal and diagonal directions. In the fish tessellation of Fig. 3, the 
central tile translates in both transversal directions (up-down and left-right) and 
translates in both diagonal directions; this is the signature of his quadrilateral 
system I. In some quadrilateral systems, it is possible for a tile to be related to an 
adjacent tile by a glide-reflection or by a rotation of 180° (2-fold rotation) or 90° 
(4-fold rotation). The centers (axes) about which a tile rotates to an adjacent tile 
must be located at midpoints of the sides of the parallelogram or at its vertices. 
In his notebook, Escher published a summary table for his quadrilateral systems; 
it is reproduced in [7, p. 61]. 

Escher's classification scheme is a local classification system in which he 
specified the moves needed to generate a tiling from a single tile. (This is in 
contrast to the "global" view of crystallographers, who classify using symme
try groups. They look at the entire pattern rather than only a patch surrounding 
one tile, and collect (in the symmetry group) all symmetries of the entire pat
tern.) An advantage of Escher's local system is that it also tells how to construct 
the tile. Essentially, he determined the geometric relationships among the edges 
of a tile and therefore determined how edges could be modified yet keep the tile's 
ability to fill the plane. 

Heesch's System 

Before exploring more of Escher's systems it will be useful to know how 
Heesch's system works. In fact I will use Heesch's notation to explain Escher's 
transition and triangle systems. J had implemented about eleven of Escher's tile 
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types in the software when Doris Schattschneider suggested I look at Heesch's 
system. She had mentioned Heesch in her book and included his table of 28 
types of asymmetric tiles that can fill the plane in a regular manner without using 
reflections [7, p. 326 Table 2]. 

Heinrich Heesch was a German mathematician who in 1932 investigated and 
classified the possible asymmetric shapes that could tile the plane in a regular 
manner, not allowing reflections!. Unfortunately for Escher, this work was not 
published until 1963. Apparently, in 1963 they briefly corresponded [7, p. 44]. 

Heesch's table proved to be a computer scientist's dream, at least for 
a computer scientist who dreamed of creating a tessellations program. Not only 
does it classify all possible ways to create the tiles, but the notation system 
contains the algorithm that describes how each tile is made! Heesch's system 
is very similar to Escher's in that it uses local information about how the tile 
is constructed to classify the tile. He used a letter code, with subscripts when 
needed, to denote the geometric properties of the tile construction. For each 
edge of the tile there is a letter (and possibly a subscript) that indicates how it 
is constructed in relation to another edge in the tile. The number of letters equals 
the number of edges. He used the letter T to denote translation, G to denote glide
reflection, and C for rotation. For the letter T a subscript is never needed since 
it is clear that a translated side is matched with the opposite, parallel side of the 
tile. In the case of G, subscripts were used, if necessary, to denote correspond
ing sides. For rotation a subscript was used to indicate the amount of rotation: the 
letter C without a subscript represents 180° rotation (2-fold), C3 represents 120° 
rotation (3-fold), C4 represents 90° (4-fold) rotation, and C6 represents 60° 
rotation (6-fold). Since the tilings produced with these tiles are periodic two
dimensional patterns, no other angle possibilities exist. 

Figure 4 gives a stepwise explanation of the Heesch type for the tile in Fig. 2. 
In Fig. 4a the top and bottom edges are related by translation so they are each 
labeled with T. Similarly, the right and the left edges are related by translation 
(Fig. 4b). All the labels are shown in Fig. 4c and the Heesch type is found by 
proceeding (counterclockwise) around the tile, recording the letters: TTTT. 

T T 
Fig. 4. Explanation of Heesch Type TTTT 

The next example illustrates the use of subscripts to identify a tile type that 
uses a glide-reflection. It also involves reverse-engineering a tessellation, which 

I A complete classification of isohedral tiles without the asymmetric restriction was done 
by Branko Griibaum and G. C. Shephard in their book Tilings and Patterns [6]. 
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a b 

c d e 

Fig. 5. Finding the Heesch type of a tile 

is an activity students seem to enjoy, especially if the tessellation was created 
by Escher. Figure 5a shows a tessellation of ducks. The first step is to pick one 
duck and find its vertices by going around the boundary of the duck and finding 
points where more than two tiles meet. In this case there are four vertices of the 
tile, which also means there are also four edges. In Fig. 5b a single duck is high
lighted and the four vertices have been connected by line segments to show the 
initial polygon for this tile. 

The next task is to figure out the relationships between the four edges of 
a single tile. In Fig. 5c the top right edge is related to the bottom right edge 
by a glide-reflection along a vertical axis . The two edges each are labeled with 
the letter G. The top left edge and bottom left edge are also related by a glide
reflection along a different vertical axis of the tiling so in Fig. 5d these two edges 
are also labeled with the letter G. But now there is a dilemma: it is possible to 
have glide reflections relate adjacent sides (as is the case here) or opposite sides. 
Heesch used subscripts (as shown in Fig. 5e) to resolve the possible ambiguity. 
The Heesch type for this particular tile is G] G] G2G2. TesselMania! has a feature 
to animate the creation of any tile to make it easier for the student to visualize 
the geometric relationships between pairs of edges. 

For each of the 28 tile types, Heesch's notation system generates a descriptive 
label that contains the geometric information necessary to understand the tile 
type. If! were to use Escher's labeling system, I would need to include a separate 
explanation for each tile type. There is a fair amount of work involved in 
understanding Escher's three separate systems for the types of tiles I wished to 
implement. So I decided to drop Escher's numbering system in the software and 
replace it with Heesch's labels. 

The relationship between Escher's ten quadrilateral systems and Heesch's 
system is shown in Table 1. Even though the TesselMania! software uses 
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Table 1. Comparison of Escher's ten quadrilateral systems and Heesch's system. 

Escher's Quadrilateral 
System 

II 

III 

IV 

V 

VI 

vn 

VIII 

IX 

X 

Heesch System 

TTTT 

TCTC 

CCCC (InA) 
CCC (InC) 

GIGIG2G2 

TGTG 

CCGG 
CGG 

CGCG 

GIG2GIG2 

C4C4C4C4 

CC4C4 

401 

Heesch's system it will be useful to examine Escher's transition and triangle 
systems and correlate them to Heesch types in order to count the total number 
of Heesch tile types Escher discovered. Table 1 accounts for 12 Heesch types. 

Escher's Transition Systems (Part II of his notebook) 

In the second part of his notebook, Escher explained how his quadrilateral 
systems that require only two colors can be modified to require three colors for 

b 

c 

Fig. 6. Escher's Transition system IA_IA 



402 Kevin Lee 

Table 2. Comparison of Escher's Transition systems and Heesch's system. 

Escher's Transition 
System 

IlA_IIl A 

VC_IVB 

VIlC-VIB 

VIIlc-VIc 

VIIlc-VIl c 

Heesch System 

TTTTTT 

TCCTCC 
TCTCC 

TG]G2 TG2G] 

TCCTGG 

CG] CG2G2G] 
CG]G2G2G] 

recognizability of tiles; this formed the basis of his "transitional" systems. I will 
illustrate one transitional system here, Escher's label for it is IA_IA. Later I will 
use a similar procedure to investigate a Heesch tile type Escher missed. (See 
Escher's notebook along with Schattschneider's comments in [7] for a complete 
description of all his transitional systems). 

Step 1. (Figure 6a) Start with quadrilateral system IA. Mark vertices Band D 
of one edge; mark any point C on edge BD and mark any point A on the adjacent 
edge with endpoint B as shown. (Heesch System TTTT.) 

Step 2. (Figure 6b) Remove the portion of the edge from A to B and connect 
A to C. Do this to every tile in the tessellation. This new tessellation, in which 
each tile has 6 edges, requires a minimum of 3 colors. Escher denoted this as 
transition system IA_IA. (Heesch System TTTTTT.) 

Step 3. (Figure 6c) The transition process can be continued. Now remove the 
portion of the edge from A to C and connect A to D. Do this to every tile in 
the tessellation. This returns us to a (different) two-color quadrilateral system IA. 
(Heesch System TTTT) 
Table 2 shows that Escher's transition systems account for nine more Heesch 
types. 

Escher's Triangle Systems (Part IV of his notebook)2 

Tilings that had 3-fold and 6-fold rotations were classified by Escher as trian
gle systems since they were based on an underlying grid of equilateral triangles. 
Heesch's tablei [7] shows there are only six tile types that include a C3 or C6 

2 The astute reader will notice that I skipped from part II of Escher's notebook to part IV. 
Part III is about a technique of splitting a single tile into two motifs so as to produce 
tessellations with two distinct interlocked shapes. 
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Table 3. Escher's Triangle systems and Heesch's systems. 

Escher System Heesch System 

Tr I A3 type J C3C3C3C3C3C3 
Tr I A3 type 2 C3C3C3C3 

Tr I B2 type 1 CC6C6 
Tr I B3 type 1 C3C3C6C6 
Tr I B3 type 2 CC3C3C6C6 

symbol. Escher's triangle systems account for five of these six (see Table 3). (For 
further explanation of Escher's triangle systems see [7] or [3, p. 92]). 
Escher's notes indicate he knew about the sixth Heesch type, CC3C3, since he 
specifically mentioned that he was not considering systems where more than 6 
motifs meet at one vertex [7, p. 79]. Heesch type CC3C3 is the only tile type that 
produces such tilings, and in fact, these tilings have vertices where 12 motifs 
meet. 

Counting Escher Tile Types: A Surprise and Mystery 

Tables I, 2, and 3 show that 25 of the 28 Heesch types have associated Escher 
systems. Heesch type CC3C3 was explicitly omitted by Escher. That leaves only 
two types to account for: TGI Gl TG2G2 and TCTGG. Escher's symmetry draw
ing 78 of unicorns (color plate 3) contains the marginal note: "New System?" 
He could not find this system among those he enumerated in his notebook. 
Surprise! This is Heesch type TGI Gl TG2G2. So, working independently, Escher 
had discovered 27 of the possible 28 Heesch types! Amazing for a man who 
claimed to have been poor at mathematics. 

So here is the mystery: What about the remaining Heesch Type, TCTGG? 
Was there something special about this type that it was not included in Escher's 
classification system? It requires a minimum of three colors and it has no 3-fold 
or 6-fold rotation centers so if it could arise using his techniques, it would have 
to be a transition system. I set out to see if I could discover such a transition 
system. Since TesselMania! had been written to create Escher-like tessellations, 
perhaps I could use it to create an Escher-like transition system! I did manage to 
find a transition system to generate TCTGG, but it took one little trick. Figure 7 
illustrates the steps. 

Step 1. (Figure 7a) Start with a tile of Heesch type CCGG (Escher 
system VI). Mark B, the common vertex of the edges with 2-fold rotation centers, 
marked as C and E. Mark D the other vertex on the edge with points Band C. 
Mark any point A on the edge between Band E. Then mark A', B', C', and D', 
the images of A, B, C, and D, under a 1800 rotation about E. 
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c 

Fig. 7. An Escher-like transition system for Heesch Type TCTGG. Using Escher's notation, 
this transition system would be called VI-VI 

Step 2. (Figure 7b) Remove the portion of the edge from A to B and connect 
A to C. To preserve the 2-fold rotation center E, remove the edge segment A'B' 
and connect A' to C'. Do this to every tile in the tessellation. Beginning with 
edge B'C', travel counterclockwise around the new tile: B'C' gets Heesch label 
T, edge C'C is labeled C, edge CD is labeled T, and the two remaining (unal
tered) edges are labeled GG, so the tile is Heesch type TCTGG. Vertex B of the 
original tile has been moved to point C, a center of 2-fold rotation. 

Step 3. (Figure 7c) The process can be continued to return to a quadrilateral 
system. Remove the portion of the edge from A to C and connect A to D. 
Correspondingly, replace A'C' by A'D'. Do this to every tile. The resulting tiling 
is Escher's quadrilateral system VI (Heesch type CCGG). 

It seems that Escher just missed this type. The little trick of moving a vertex 
along to a center of rotation would not have been much of a trick to Escher, who 
created many more amazing feats with regular division. 

In some sense I feel it is unfair (uncharitable) to even point out the missing 
transition system. I know it is missing since I have Heesch's table and further-
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more I know exactly the tile type to look for. Escher wandered " ... through the 
garden of the regular division of the plane all alone ... " [1, p. 162] discover
ing different systems of regular division with no prior knowledge of the exact 
number of possibilities. To have found 27 of the 28 possible types through his 
explorations and investigations was an amazing accomplishment. 

A Colorful Confession 

I will conclude by giving an example of how I am continually surprised and 
always learning from Escher's pioneering work. The original TesselMania! 
implemented 15 Heesch types. In the later TesselMania! Deluxe the remaining 
13 were added, which included Heesch type CC4C4C4C4. Each type is automat
ically colored with a minimum number of colors, which is either two or three. 
This meets Escher's criterion that tiles sharing a common edge must be of dif
ferent colors. But there was a further coloring criterion that Escher implemented: 
the coloring of the tiles should be compatible with all the symmetries of the 
uncolored tiling. This condition is now called "perfect coloring" (see [7] for 
a further explanation of perfect coloring). Figure 8 shows the coloring scheme 
implemented in TesselMania! Deluxe for Heesch type CC4C4C4C4. Here letters 
indicate colors: R stands for red, G for green, and B for blue. 

If a tiling is perfectly colored, every symmetry of the uncolored tiling either 
must preserve all colors or permute the colors in the colored tiling. The coloring 
in Fig. 8 is not perfect. To see this, note that a 90° rotation of the tiling about 
the marked center is a symmetry of the uncolored tiling, that is, it moves every 

Fig. 8. Three-Colored 
CC4C4C4C4 
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tile exactly onto another tile. But look at the four tiles that surround this rotation 
center. The rotation moves one green tile to a blue tile and the other green tile to 
a red tile. If this tiling were perfectly colored, then this rotation would have to 
move every green tile to the same color. It is a nice exercise to try to perfectly 
color this tessellation using four colors (it can't be done using three colors - see 
Shephard's article [3, pp. 111-122]. 

Early on in his studies, Escher became aware of perfect coloring. His sym
metry drawing 14 with 4-fold rotations uses the minimum three colors and has 
the same problem as that of Fig. 8. Made a short time afterward, his symmetry 
drawing number 20 of fish (color plate 2) could also have been done in three col
ors but he choose to use four colors and then perfectly colored it. I would like to 
think he would forgive me for having implemented this tile type in three colors! 

Addendum 

Following in footsteps of Escher and Heesch, my fascination with tessellations 
has continued. Since writing this article I have developed a completely new tiling 
program called Tessellation Exploration [Tom Snyder Productions, Cambridge, 
MA 2001]. This new program takes advantage of what I learned since creating 
TesselMania! (e.g. all tiles are perfectly colored!) It also takes advantage of the 
increased speed and power of the new microprocessors. A demonstration version 
has been included on the accompanying CD with a special set of slide show tiles 
that illustrates all 28 Heesch types. 

In 1998 Bigalke and Wippermann [8] have extended Heesch's classification 
to 43 tile types by including edges with reflections. In Tessellation Exploration I 
implemented five of the new types in a modified way, the reflected edge is used 
to generate a larger tile with bilateral symmetry. Escher quickly discovered that 
an edge based on reflection can not be re-shaped! 
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M.e. Escher at the Museum: 
An Educator's Perspective 

Jean-Fran~ois Leger 

Escher on calendars, T-shirts, posters and more: this we 
are familiar with. But Escher in a museum is a pleasure 
that goes far beyond an amusement for the eye. 

- Jennifer Couelle, Le Devoir, 29 February 1996 

It is rare for a major museum to organize a large-scale exhibition on M.C. Escher. 
Frequently, museums confine their representation of this artist to the book
store shelves. When the National Gallery of Canada organized an exhibition of 
Escher's work, it prepared a comprehensive educational program to mark the 
occasion, as was only fitting. I believe that from this experience emerges a model 
that might guide others who are similarly interested in the reception of the artist's 
work. 

First, a few words about the exhibition M.e. Escher: Landscapes to Mind
scapes (Fig. 1). Shown at the National Gallery of Canada from December 1995 
to mid-March 1996, this retrospective celebrated the gift to the Gallery by the 
artist's eldest son, George Escher, of over 160 engravings and related works. In 

L ....... IIII •• h ....... .., •••• 

Fig. 1. The exhibition banner 
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M.e. Escher, Selinunte, Sicily, 
1935. Woodcut 

Fig. 2. M.e. Escher, Curl-up, 
1951. Lithograph 

addition to the 90 prints selected from the donation, the exhibition contained 
other works belonging to George Escher and his family, as well as prints on 
loan from the Gemeentemuseum in The Hague and from the National Gallery 
of Art in Washington, D.e. A travelling version of the exhibition was circulated 
to various galleries across Canada. 

The organizer of the exhibition, Brydon Smith, Curator of 20th Century 
Art at the National Gallery, titled it Landscapes to Mindscapes to call atten
tion to the way Escher incorporated landscapes from his youthful sojourn in 
Italy into the imagined "mindscapes" he produced later in the Netherlands. 
A multidisciplinary approach to the selection of the prints to be included in the 
show was an underlying consideration, as is clearly reflected by the makeup 
of the selection committee, which included Brydon Smith, Claude Lamon
tagne (psychologist), David Peat (mathematician), and myself, an educator. The 
composition of the committee, in fact, echoed the diverse interests of the artist. 

Escher's works were placed in context according to certain recurring visual 
themes, to give a holistic view of the artist's career by making connections 
between his landscape period and the period when he was inspired more by 
the mathematical and the imaginary. The exhibition provided an opportunity 
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Fig. 3. View of the third of five galleries 

for personal discovery; it was intended as a place to look at and explore works 
that transparently integrate mathematical concepts and theories of perception. 
Figure 2 gives one illustration of these visual links. 

Since an appreciation of the works' aesthetic qualities was an essential first 
step, the context in which they were presented was of crucial importance. Careful 
attention was paid to the way the prints were hung; care was also taken so that 
the installation would appeal to the young audience that was likely to be attracted 
by the exhibition. Works, for instance, were hung at a lower height, as were the 
labels, to allow younger visitors to get closer to the works (Fig. 3). 

It's important to understand that educational initiatives are not intended to 
tum amateurs into experts, but to enrich visitors' view of an artist by suggesting 
avenues to explore. The intervention of the museum educator focuses on making 
the underlying thesis of the exhibition more accessible to the general pUblic. The 
educational program that accompanied the Escher exhibition focused both on the 
artist's works and on their reception. We'll be looking briefly at a few aspects of 
the programming, presented according to their intended audience: two didactic 
rooms, a series of lectures, and a traditional guided tour intended for the general 
public; a workshop for schoolchildren; two activities for teachers; as well as 
programs designed for audiences participating in ongoing museum program
ming, such as families, teenagers, and seniors. Rarely does an education program 
offer so many varied activities to so many publics. 

The Didactic Rooms 

To facilitate a better understanding of the originality of Escher's work, a small 
room was devoted to illustrating a few sources of the artist's inspiration. Visitors 
could see some prints by Durer, Piranesi, Vredeman de Vries, Hogarth, along 
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with a Japanese print. The didactic room was situated after a first gallery giving 
an overview of Escher's work. 

Immediately following the didactic room was exhibited a selection of prints 
on themes such as the self-portrait, tessellation, works of a nature similar to 
Smaller and Smaller, and ambiguous spatial arrangements, to name only a few. 
A third gallery presented the prints relating to regular solids, metamorphosis, and 
impossible worlds. Between these two galleries, at the heart of the exhibition, the 
second didactic room allowed visitors to explore the artist's work methods. 

The first section of the second didactic room concentrated on tessellation. 
In order to fill the plane with recognizable and interlocking geometric shapes, 
Escher's figures undergo changes of shape. The method of producing such 
a metamorphosis is detailed in his book Regelmatige Vlakverdeling (The Regu
lar Division of the Plane), published in 1958 by the De Roos Foundation, 
Utrecht. His text is illustrated with diagrams and punctuated by practical tips 
and philosophical reflections. (The book M.e. Escher, His Life and Complete 
Graphic Work contains the complete text in English translation, together with 
the illustrative plates.) 

A display of prints from Escher's own book introduced visitors to the various 
types of symmetrical transformation required to divide a plane into recognizable 
interlocking shapes. Symmetrical movements were also presented, with the aid 
of an illustrated abridged version of the text from Escher's book. 

It is difficult to appreciate fully the complexity and refinement of the artist's 
technique. Escher's fans are often so distracted by the subject matter of the works 
that they fail to notice his technical virtuosity. This was the topic of the second 
section of the didactic room (Fig. 4). Although M.e. Escher produced drawings 
and watercolours as preliminary sketches for prints, he was first and foremost 
a graphic artist. The printmaking methods he used most often, and with consum
mate mastery, were two relief techniques - wood engraving and woodcut - and 
one planographic technique -lithography. 

Viewers were invited to discover the work involved in simplifying and trans
posing a landscape in order to make a print. Three stages in the making of a print 

Fig.4. Second section of the didactic room 
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were illustrated by a photograph of an alleyway in Atrani by Mark Veldhuysen, 
Escher's drawing of the same subject, and his final woodcut, Covered Alley in 
Atrani (see page 94). This allowed the visitor to compare the actual scene with 
the artist's rendition of it. 

To complete the section on printmaking techniques, a showcase displayed the 
end-grain woodblock (probably pearwood) used for the print (Church at) Corte. 
Corsica, as well as several tools. The preparatory sketch, the printing block, and 
the print were displayed side by side. Of particular interest to the vi sitors was the 
woodblock made of several pieces of wood glued together. Various tools used for 
cutting the grooves that form the design sketched on the block provided an addi
tional context for the creation of the work. A roller similar to the one used by the 
artist to ink the surface offered more information on the printing technique. To 
complete the presentation, a small spoon was included as an example of the type 
of/rattan used by the artist. A/rattan is used for rubbing (burnishing) the back 
of the sheet of paper placed on the inked block, in order to transfer the created 
design onto the paper. 

The video extract from Han Van Gelder's 1969 film Adventures in Percep
tion, showing Escher in his workshop, was especially popular with visitors. It 
was complemented by a nearby display of the print titled Snakes (see page 76) 
and some of the preparatory drawings. In its way, the juxtaposition of this initial 
stage in the engraver's work with the finished product offered an eloquent illus
tration of the technique of creating "mindscapes." It allowed, as well, a better 
understanding of the fact that Escher's multicoloured prints are produced from 
several blocks, one for each colour including black. 

In a room separate from the exhibition (so as not to distract from the prints) 
the video The Fantastic World 0/ M. C. Escher by Michele Emmer was presented. 
The video could be seen in a continuous screening of alternating French and 
English versions. 

The Lecture Series 

A series of public lectures was intended to examine in greater depth a diversity of 
viewpoints on the artist. The various personal, anecdotal, cognitive, and mathe
matical aspects discussed in the lectures put the works more fully in context. The 
invited speakers were indicative of the scope of the program: Douglas Hofstadter 
(Professor of Cognitive Science and Computer Science, Indiana University), 
Claude Lamontagne (Professor, School of Psychology, University of Ottawa), 
Mark Veldhuysen (Dutch photographer), and, to close, Roger Penrose (Professor 
of Mathematics, Oxford University). The lectures attracted a number of people 
not usually likely to attend this type of event. 

George Escher spoke at the exhibition's opening ceremonies, introducing his 
father's works to an enthralled audience. The lecture was broadcast simultane
ously in the museum auditorium, which seats 400, in the lecture hall, which 
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holds 100, and on monitors outside the auditorium doors. Exceptionally, a video 
recording of the lectures was made and retained in the National Gallery Library 
for consultation during the exhibition and afterwards. In this way, those who, for 
whatever reason could not attend the actual event, could benefit from the lectures 
on tape. The lecture drew a record attendance, and George Escher was invited 
back to the National Gallery two months later to give another talk. 

The lecture was followed by a piano recital of Bach's Goldberg Variations. 
Escher's affinity for Bach is well documented: 

Bach played with repetition, superposition, inversion, mirror
ing, acceleration, and slowing down of his themes in a way 
which is, in many regards, comparable with my translation and 
glide-mirroring of my themes of recognizable figures. And that's 
perhaps why I love his music particularly. [6, p. 254] 

Through this choice of musical program, we wanted to broaden the possibil
ities for the interpretation of Escher's work and enable people to hear one of 
his sources of inspiration. The concert was co-produced with the local radio 
station of the Canadian Broadcasting Corporation. The taped concert was later 
broadcast. 

For Teachers 

Interestingly enough, Escher's name is mentioned more often in introductory 
mathematics and psychology texts than in introductions to art history. Mathemat
ics and geometry teachers often use his prints to demonstrate to their students 
how science can be a source of poetry and beauty. Psychology textbooks offer 
them as proof of the claim that our perceptions of reality are, in fact, 
constructions. Thus, three traditionally unrelated disciplines intersect in Escher's 
work. 

Given Escher's enormous popularity, combined with the fascination that 
paradoxes seem to exert, it is not too difficult for teachers to interest their 
students in this artist. Perhaps his appeal also owes something to the fact that 
his work often evokes the sort of smile brought on when we get a joke or have 
been playfully taken in by one. 

Having heard of the exhibition in advance and knowing that Escher would 
attract their members, some teachers' associations met in Ottawa. One such 
meeting was that of the Association francophone des enseignants en arts de 
l'Ontario (AFEAO), which created an opportunity to explore various ways in 
which the work of M.e. Escher could be brought into the classroom. The courses 
and workshops focused on integrating fields of study. Teachers shared lesson 
plans for the integration of visual arts, music, and drama, as well as mathemat
ics and language. Interested teachers can find some of these shared ideas in the 
appendix to this article. 
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The School Program 

Teachers were invited to book a guided tour of the exhibition. Workshops were 
also offered (Fig. 5). The workshop for pupils 9 to 12 years of age included 
a short visit to the exhibition and a studio activity in which they could explore 
the familiar mosaics: the children selected one of three grids and created their 
own tilings to be printed with sponges of different shapes. This simple method of 
engaging children in tessellating art was based on the work of Jill Britton, who 
has successfully designed for school children a simple workshop inspired by 
Escher. The activity was a great success. 

For older students, from 13 to 17 years of age, the workshop was based on 
mirrors. Three types of reflecting surfaces were used: an ordinary mirror, which 
was used to draw the student's own hand, for example; mylar sheets, for the 
transformation of a reflected image; and full spherical mirrors or reflecting hemi
spheres (Fig. 6). The objectives of the activity were to present in a simple form 
Escher's complex work of visual exploration, and to emphasize its artistic aspect. 
About 1000 students were introduced to Escher's work in this way. 

To allow for some preparation prior to class visits to the Gallery, an 
introductory booklet for teachers was provided. In an easy-to-photocopy format 
similar to that of the exhibition catalogue, the booklet gave a quick introduc
tion to Escher's world and offered suggestions on the works' potential to provide 

Fig. S. Introducing the Escher Workshop 



M.C. Escher at the Museum: An Educator's Perspective 415 

Fig. 6. A workshop 
revelation: A la Escher, 
students examine them
selves in a spherical 
mirror 

stimulating activities for students. It was divided into sections that could be used 
separately. An idea of the topics covered in Escher: An Introduction for Teachers 
can be obtained by glancing at its table of contents: Chronology, Escher in His 
Own Words, Printmaking Techniques, Landscapes, Landscapes to Mindscapes, 
Mindscapes, Classroom Activities, and Annotated Bibliography. 

As a supplement, a kit containing ten slides of Escher's prints could be 
borrowed by interested teachers. The kit also included an introduction to each 
print, usually by Escher himself, and suggestions for discussion topics. The 
textual material in the kit was distributed on the Internet in order to reach more 
teachers. 

Taking further advantage ofthe Internet's capabilities, we also offered teach
ers a discussion site modelled on a forum. This second Web site included an 
introduction to the artist and four of his works, a section on printmaking tech
niques, a bibliography, classroom activities, and extracts from texts. The goal 
of this Teacher's Forum was to stimulate conversation and to exchange ideas. 
Key contributions to this page were shared as yet another means of encouraging 
dialogue between teachers and the Gallery. 

Fig. 6. (continued) 
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Teenagers, Families, and Seniors 

Other audiences were also introduced to the artist's work. Two series ofthree-day 
workshops were offered to teenagers, who were invited to discover the work of 
Escher by exploring his techniques and preferred subjects. The fact is that Escher 
did not consider aesthetic value as an end in itself, but rather as the outcome of 
the meticulous cutting or engraving of wood and of a rigorous application of his 
far-reaching studies in geometry and perception. These concepts can be success
fully introduced to participants, especially by privileging a hands-on approach. 
The above-mentioned school workshops were transformed and extended for this 
somewhat older audience. 

The ongoing Family and Friends program of the National Gallery allows 
for learning to be achieved in an informal setting. For the participants, 
comprised of a somewhat loosely defined family, the session began with creative 
exercises, then moved to a first-hand experience of the artist's work by a gallery 
visit, returning to the workshop for a more in-depth exploration. 

The children occupied centre stage, and set the tone in this 
context. Their presence promoted a relaxed atmosphere and 
encouraged a playful approach. This approach, in turn, benefit
ted the adults. [3, p. 124] 

These sessions, offered in English and French, attracted 150 participants and 
attest to the idea that museums are informal learning environments quite different 
from the school setting. 

A few words about the Seniors' Program that caters to a growing segment of 
museum visitors. This ongoing program is structured around a short video intro
duction, a guided tour, followed by a discussion with complementary coffee/tea 
and biscuits. The last component is an important one, as it offers a relaxed 
atmosphere and an occasion for socialization. A total of 200 seniors participated 
in this program. 

Conclusion 

To sum things up, I'd like to mention that the Escher exhibition attracted a record 
number of visitors for a print exhibition at the National Gallery of Canada. All 
the visitors were exposed to some part of the educational program. I should 
also mention that about 30 percent of them were schoolchildren who took part 
in either a visit or a workshop. Young people, with their natural curiosity and 
penchant for irony, enjoy mind-challenging games and respond to a similar 
attitude in Escher. As the artist has said: 

. .. such a game can be played and understood only by those 
who are prepared to penetrate the surface, those who agree to 
use their brain, just as in the solving (~f a riddle. It is thus not 
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a matter for the senses, but rather a cerebral matter. Profundity 
is not at all necessary, but a kind of humour and self-mockery 
is a must. [5, p. 8] 
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Educators can provide certain vital keys to interaction with works of art, 
certain avenues of exploration which visitors can pursue. And once viewers have 
made this journey, they develop an autonomy that can never be lost. In the case 
of M.e. Escher, his modesty, his many and varied interests, and the richness 
and breadth of interpretation of the visible world he offers are all invitations to 
a direct and intimate appreciation of original works of art. 

Appendix: Classroom Activities 

Mathematics 
Escher was not a mathematician himself, but his work has often inspired and 
opened avenues for mathematicians in relation to certain concepts and theories. 
The following activities (beginning with simpler ones) offer ways of explor
ing spatial representation and geometric transformations: translation, rotation, 
reflection, and similarity. 
1. Ask the students to observe their environment and discover examples of 

repeated motifs, whether natural or man-made (beehive, pine cone, scales on 
a fish, mosaic tiles on a kitchen or bathroom floor). 

2. Have the students determine which of these are tilings (planes covered with 
a set of polygons arranged so that there is no space between them and no 
overlapping). 

3. Using dot paper (square lattice paper and triangular lattice paper), have the 
students create a tiling that contains regular polygons of just one shape. 
The students will discover that regular tilings can be constructed only with 
equilateral triangles, squares, and regular hexagons. 

4. Follow 3 by having the students look at semi-regular tilings, constructed 
from different regular polygons; lead them to explore the eight semi-regular 
Archimedean tilings. 

5. Once 4 is completed, have the students examine Escher's works, in which 
they will find similar concepts and inspiration for creations of their own. 

6. Using a squared graph paper, students can design interesting motifs to cover 
a given surface. 

The Visual Arts 
Escher's work can be the basis for any number of art activities, particularly in 
the areas of drawing and printmaking. Some are presented here: 
1. After familiarizing yourself with Escher's tessellations (mentioned above), 

draw a repeating motif completely filling a sheet of paper. Use a drawing 
pencil or felt pen to add a final touch. 
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2. Cover a piece of cardboard with aluminum paper to create a mirror. Hold
ing it in your hand, curve it slightly to get a concave or convex shape. With 
a pencil, draw the distorted image seen in the mirror. 

3. Observe very carefully the print Day and Night. Choose a photo of 
a landscape and glue it on the left side of a sheet of paper. Then draw the same 
landscape inverting the shapes and colours (for mirror effect and light-dark 
contrast). 

4. Using plasticine, create a stamp with a motif that will be printed repeatedly 
on a sheet, thus creating another tessellation. 

5. Using Metamorphosis III as inspiration, make a drawing that could serve as 
a sketch for a school mural. 

Language 
1. Certain of Escher's works - Castle in the Air, Covered Alley in Atrani, Stair

well, Print Gallery, Still Life with Mirror, and Relativity - can be used as the 
basis for an exercise in creative writing. Have the students write a poem or 
a piece of poetic prose inspired by one of these prints. 

2. As well, these same prints could inspire the students to compose the first 
sentence or paragraph of a novel. 

3. Have the students write a variety of compositions: 
a) a short essay praising or criticizing Escher's work. 
b) a short text to go with the auctioning of one of Escher's works. 

4. The students might also enjoy comparing their creative writing efforts. 

Music, Dance, Drama 
Escher was known to have a great love of music. Many of his works use repeated 
motifs and transformations; in the realm of music, composers such as Bach were 
profoundly interested in these same ideas. Rotation, translation, and symmetry 
are characteristics of composition found in dance and physical expression. Have 
the students create dances inspired by Escher's themes and the transformation 
concepts presented above. For example: 
1. Using Still Life and Street, students can stage a performance expressing the 

passage from one world to another. 
2. Using Sky and Water I, students can explore the transformation of a fish to 

a bird, and of a seed to a flower. 
Escher's works are well-suited to such activities as mime, the mirror game, and 
an exploration of the theatre ofthe absurd. Here are some drama activities to try: 
1. Use Relativity to set the tone for a scene of two friends encountering one 

another on the street. 
2. Create a mime based on a transformation. 
3. Stage a sketch based on Belvedere. 
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Escher, Napoleon, Fermat and 
the Nine-point Centre 

John F. Rigby 

In his "abstract motif" notebook, Escher investigated a tiling of the plane by 
congruent non-regular hexagons, as shown in Fig. 1. He found this tiling in an 
article by F. Haag [1]; more details can be found in [2] and [3, p. 90]. This tiling 
can be used to give very simple and elegant proofs of some well known theorems 
in triangle geometry. 

Here are the results stated by Escher in his notebook. 
( i) Let ABC be an equilateral triangle and E any point (Fig. 2). 

Let F be the point such that AF = AE and LFAE = 120°. Let 
D be the point such that BD = BF and LDBF = 120°. Then 
CE = CD and LECD = 120°. 
(ii) Congruent copies of the hexagon AFBDCE can be used to 
tile the plane, 
(Ui) The diagonals AD, BE and CF of the hexagon are concur
rent. 

I have rephrased Escher's version of (i) in the form of a theorem: he himself 
simply stated facts about the hexagon AFBDCE that are mentioned by Haag 
and are observable from Haag's tiling (a version of Fig. 3, without lettering, 
appears in Haag's paper). In [2] I showed how to use a famous geometrical result 
known as Napoleon's theorem to prove the existence of the hexagon and of the 
tiling. But I have recently realised that the reverse procedure can be used: there 
is a simple way to prove (i) and (ii), and we can then use the existence of the 
hexagon and the tiling to give a very simple proof of Napoleon's theorem and 
also of Fermat's triangle theorem. 

A 

D 

Fig.t. Fig. 2. 
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The Existence of the Hexagon 

In Fig. 2, let P be the reflection of E in AC. Then CE = CP; also AP = AE = 
AF and the two angles marked et are equal. Now!.. BAC = 60° = et + {3; hence 
!.. FAE = 120° = 2et + 2{3. Hence!.. FAB = {3. It follows that P is the reflection 
of F in AB. A similar argument at the vertex B shows that P is the reflection 
of D in BC. Hence C E = C P = CD, and an investigation of the pairs of equal 
angles at C shows that !.. E CD = 120°. 

What we have now obtained is a particular type of hexagon; its exact shape 
depends on the position of E (or of P) relative to ABC. Note that Fig. 2 can be 
built up starting from any triangle DEF: we construct an isosceles triangle AFE 
with base FE and an angle of 120° at A, also an isosceles triangle BDF with base 
DF and an angle of 120° at B; then we construct the equilateral triangle ABC, 
and the figure is complete. 

For convenience we shall regard P as lying inside the triangle ABC, but it 
may also lie outside. If P lies just outside ABC, the hexagon AFBDCE will 
no longer be convex; this will not affect the subsequent tiling. But if P lies far 
outside ABC, the hexagon will become re-entrant; we then have to extend our 
ideas of what constitutes a tiling, but the mathematics remains valid. 

The Construction of the Tiling 

To construct the tiling of hexagons, we start with a basic grid of equilateral 
triangles covering the plane, one of which is the triangle A BC of Fig. 2 with the 
point P inside it (Fig. 3). We reflect the triangle ABC and its contents (namely 
the point P and the lines PA, PB and PC) in the sides of the triangle as shown, 
to produce three heavy lines in each of the reflected triangles. (The lines PA, 
PB, PC do not form part of the tiling; having used them to link up this figure 

Fig. 3. 
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Fig. 4. Fig.S. 

with Fig. 2 we can now remove them.) We can now think of Fig. 3 as being built 
up initially from equilateral triangular tiles: plain tiles alternating with copies of 
the triangle BNC each containing a pattern of three lines. The patterned copies 
of BNC are oriented in such a way that the patterns in the triangles at any vertex 
of the grid can be obtained from each other by rotation through 1200 and 2400 

about that vertex. To put this another way, we can regard the vertices of the grid 
as being of three types: B-type, N-type, and C-type; each triangle of the grid 
has one vertex of each type. The entire hexagon tiling has a centre of threefold 
rotational symmetry at each vertex of the grid. 

The method of constructing Fig. 3 can be understood without reference to the 
investigation of Fig. 2 in the previous section; the grid of equilateral triangles is 
shown in Haag's article and is faintly visible in the page from Escher's notebook. 
But the proofs given earlier are not superfluous: it will be important in our subse
quent geometrical investigations to know that Fig. 2 (as mentioned earlier), and 
hence Fig. 3, can be built up starting with any triangle DEF. 

Haag's tiling of hexagons must have assisted Escher's appreciation of repeat
ing patterns with centres of 3-fold rotational symmetry of three different types 
- patterns whose symmetry type is p3 in the crystallographic notation. If we 
replace the straight lines DB, DN, DC in the construction of Fig. 3 by the 
angular lines shown in Fig. 4, we obtain one of Escher's patterns of lizards (see 
page 427). In Escher's drawing of this lizard pattern there is a grid of regular 
hexagons, but he may have introduced this at a later stage in connection with 
the lithograph Reptiles (see page 307) or the woodcut Metamorphosis II (see 
page 147). 

Escher's pattern of running men [3, p. 132] has the same symmetry type p3. 
A grid of diamonds (double equilateral triangles) appears in this drawing, but 
again we can wonder whether this was used in his construction of the pattern or 
introduced later in connection with the lithograph Cycle (see page 77) in which 
the running men are transfonned into diamonds. 
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Napoleon's Theorem 

Figure 5 shows a part of the entire tiling in Fig. 3, with some additional labelling. 
We have observed previously that the contents of the equilateral triangles with 
vertex A can be obtained from each other by rotation through 120° and 240°. It 
follows that X FE is an equilateral triangle with centre A. Similarly YDF and 
ZED are equilateral triangles with centres Band C. Thus the figure, which can 
be built up starting with any triangle DEF, demonstrates Napoleon's theorem: 

If equilateral triangles X FE, YDF, ZED are erected on the 
sides of any triangle DE F, then the centres of these equilateral 
triangles form an equilateral triangle ABC. 

Fermat's Triangle Theorem 

In Fig. 5, if we reflect the points L, M, A and X in the horizontal line through 
A, we obtain the points B, C, A and P; hence X P is a vertical line. If we reflect 
A, B, C and P in the horizontal line BC, we obtain N, B, C and D; hence PD 
is vertical. Hence X, P and D are collinear on a vertical line. Suppose that equi
lateral triangles in the basic grid have sides of length 2 units. Then the points L, 
M, A and X are transformed into B, C, Nand D by a downward vertical trans
lation through a distance 2vS. Hence we have shown that X D has length 2vS, 
that X, P, D are collinear, and that XD is perpendicular to BC. Similarly, YE 
has length 2vS, Y, P, E are collinear, and YE is perpendicular to CA; and also 
ZF has length 2vS, Z, P, F are collinear, and ZF is perpendicular to AB. Thus 
we have Fermat's triangle theorem: 

If equilateral triangles X FE, YDF, ZED are erected on the 
sides of any triangle DEF, then the lines XD, YE, and ZF are 
concurrent (at P), are of equal length, and are inclined to each 
other at angles of 60° . 

The point P is called the Fermat point of triangle DEF. Napoleon's 
theorem and Fermat's theorem can be found in many books on triangle geom
etry, but it is not always pointed out that the "Fermat Lines" XD, YE and ZF 
are perpendicular to the sides of the Napoleon triangle ABC. 

Escher's Theorem 

We refer to the hexagon AFBDCE and its hexagonal tiling as a Haag hexagon 
and a Haag tiling. But Escher's observation (iii) in his notebook was not 
mentioned by Haag, so we shall call it Escher's theorem, even though Escher 
was apparently not able to prove it or to find a reference to a proof. It is in fact 
a known result in triangle geometry, in the following more usual form: 
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If equilateral triangles with centres A, B, C are erected on the 
sides of any triangle DEF as in Fig. 5, then the lines AD, BE, 
C F are concurrent. 

The point of concurrence is called the Napoleon point of DEF. The 
concurrence of XD, YE and ZF at the Fermat point, and of AD, BE and CF 
at the Napoleon point, are both special cases of a general theorem that is stated 
and proved in [2]. Also in [2] I give a proof of Escher's theorem using the Haag 
tiling. The main theorem in the next section suggests yet one more proof of 
Escher's theorem. 

On p. 90 of [3], a confusion between the theorems of Napoleon and Fermat 
seems to have occurred. Doris Schattschneider agrees that the fourth sentence of 
text on that page should read "It can be proved that the diagonals of the hexagon 
ADBECF are concurrent for any chosen angle at A, B, C; when that angle is 
60°, the point of concurrence is known as the Fermat point of triangle DE F." 
But it is the concurrence at the Napoleon point, which occurs when the chosen 
angle at A, B, Cis 120°, which proves Escher's theorem. 

A Theorem About the Nine-Point Centre 

In Escher's "abstract motif" notebook, his drawing 11 shows four Haag tilings 
with edges in four colours [3, p. 87]. Doris Schattschneider remarks that Escher 
"overlays four copies of the hexagon tiling" [3, p. 90]. 

The situation is shown in Fig. 6, and the manner in which the four tilings 
are overlaid can be described in the following way. The tiling of Fig. 3 is trans
formed into itself by three basic translations through a distance 2,J3 vertically 
and in the two directions making angles of 60° with the vertical (using the same 
scale of measurement as before). If we translate the tiling in these same direc
tions but through a distance ,J3 only, we obtain the other three tilings in Fig. 6. 
(The hexagons in Fig. 6 are of a different shape from those in Fig. 3, but they are 

Fig. 6. 
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still Haag hexagons.) The interesting fact about this compound tiling, which is 
apparent from Fig. 6 as well as from Escher's drawing, is that inside any hexagon 
of anyone of the tilings there are three concurrent edges of the other three tilings. 
I proved this fact in [2] by showing that inside the particular hexagon AFBDCE, 
the three edges of the other three tilings all pass through the nine-point centre of 
the triangle DEF. (The nine-point centre of a triangle lies midway between its 
circumcentre and its orthocentre.) 

In his notebook, Escher emphasized the concurrence of AD, BE and C F and 
wrote to his son George to ask if he could prove it; so why did Escher not com
ment on the equally interesting concurrences in Fig. 6? It occurred to me only 
recently that Doris Schattschneider's explanation of how Escher derived Fig. 6 
may be unintentionally misleading, even though it had the happy outcome of 
leading me to the interesting result about the nine-point centre: perhaps Escher 
did not overlay four copies of the original hexagon tiling. In his drawing of the 
original tiling [3, p. 90], Escher drew the diagonals of several of the hexagons, 
and indicated clearly that they are concurrent. Suppose we now remove the edges 
of the hexagons from thisfigure, leaving only the diagonals. We shall show in the 
next paragraph that the diagonals now form the edges of four separate larger 
Haag tilings, and we already know that these edges are concurrent by Escher's 
theorem. 

One of the larger tilings is shown by heavy lines in Fig. 7, and a comparison 
with the method of construction of Fig. 3 shows that this larger tiling is a Haag 
tiling based on a grid of equilateral triangles twice the size of the original grid. 
Consider the translations through a distance 2-J3 vertically and in the directions 
making angles of 60° with the vertical (using the same scale of measurement 
as before); these translations transform the original tiling and the small grid to 
themselves, and they transform the large tiling into three other large tilings. The 
four large tilings taken together use up all the diagonals of the original hexagons. 
Note that the hexagons in the large tilings have a different shape from the original 
hexagons. 

This I think is what Escher did to obtain Fig. 6, and the actual sizes of the 
angles in Escher's hexagons seem to bear this out. 

Fig. 7. 
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Suppose that we do not yet have a proof of Escher's theorem. We can still 
draw the diagonals of the hexagons in the original tiling, then remove the edges, 
and we shall have four larger tilings related to each other by translations in 
the manner described earlier. According to my "nine-point centre theorem," 
whose proof does not depend on Escher's theorem, the edges of the four larger 
tilings are concurrent by threes. But these edges are the diagonals of the original 
hexagons, so we have used the "nine-point centre theorem" to give another proof 
of Escher's theorem. 

Escher as Inspiration 

Many "serious" artists are said to be unimpressed by the work of Escher. 
A referee once, among his comments on a paper of mine, wrote "we only get 
the ubiquitous Escher, the phillistine mathsman's favourite artist." But I hope 
that mathsmen and women will continue to discover, and to study, the surprising 
mathematical results and problems implicit in Escher's work. He often referred 
to his own inability to understand some of the formal mathematics used by 
others to "explain" his work, but his intuitive grasp of geometrical ideas should 
be an inspiration to us all. 
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The Symmetry Mystique 

Marjorie Senechal 

Ornamental Patterns 

M.e. Escher's art presents many worlds which startle and attract in many ways 
and for many reasons. One source of attraction is the universal appeal of repeat
ing patterns. Every human culture, since neolithic times at least, has decorated 
walls, floors, ceilings, and textiles with ornamental patterns. Escher's patterns 
derive from this rich heritage, but his interlocking motifs are uniquely ingenious. 
The public never seems to tire of Escher posters, T-shirts, and other parapherna
lia, which have been reproduced ad infinitum (some would say ad nauseam) in 
countless monographs, articles, and textbooks, especially in mathematics and the 
other sciences. Thanks to Escher, symmetry is not just cool, it is hot. 

I would like to throw some cold water on this enthusiasm, to cool symmetry 
off again, as it were. We - at least we mathematicians - have taken it too far. It is 
true that Escher can help us sugarcoat mathematics, especially the mathematics 
of symmetry. Here's how it goes: first we show our students an Escher print, say 
Reptiles (see page 307). Once they are intrigued, we focus only on the repeating 
pattern and ignore the rest (Fig. 1). The next step is to assume that the pattern is 
"really" intended to continue forever, though Escher has given us only a small 
piece of it. That is, we must assume that the part of the pattern that we see is 
a swatch, like a swatch of wallpaper, that is to be repeated over and over to fill 

Fig. 1. The repeating pattern 
in Reptiles, Escher's symmetry 
drawing 25 
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the entire space. The mathematical term for "swatch" is "fundamental region," 
and the pattern as a whole is the "orbit" of that region. Given the region and the 
way that copies of the region are fitted together to build the orbit, students can 
easily discover the pattern's translational and other symmetries. Soon they are 
happily investigating higher mathematics [14]. 

There's nothing wrong with that, of course, but why are we - their teach
ers - so fixated on symmetry? Our fixation blinds us to dissymmetry which, 
I hope to show, is every bit as mathematically rich, and presents new and exciting 
challenges. 

The mathematician and physicist Hermann Weyl was very interested in 
symmetry, and thought that the patterns of antiquity provide a link with our 
mathematical past. Weyl seems to have assumed that the ancients understood, in 
some sense, the concept of a symmetry group and the fact that the number of such 
groups, for two-dimensional repeating patterns, is limited (the exact number is 
seventeen): "Examples for all 17 groups of symmetry are found among the dec
orative patterns of antiquity, in particular among the Egyptian ornaments. One 
can hardly overestimate the depth of geometric imagination and inventiveness 
reflected in these patterns. Their construction is far from being mathematically 
trivial. The art of ornament contains in implicit form the oldest piece of higher 
mathematics known to us." [18, p. 103] 

I found this statement fascinating when I first read it years ago, and it has 
stimulated my thinking about, and practice of, the role of mathematics in a liberal 
arts college. But with the passing of years, I've grown increasingly skeptical 
of both the statement and the importance of symmetry. Symmetry is a dialogue 
between the parts and the whole. In nature, at least, the parts seem to be as 
important as the whole; neither is just an approximation to the other. If we are 
serious about understanding symmetry, and if we really want to understand the 
role of mathematics in the sciences, and also in the arts, then instead of just jump
ing on symmetry as a springboard to abstraction, we have to try to understand 
how the parts came to be there, and why and in what sense they generate the 
whole that we think we see. 

It is all too tempting to identify a fundamental region and its orbit under some 
group of motions and think we understand the pattern. Of course, in some cases 
that's the best way for a mathematician to proceed. For example, the enumeration 
by Federov and Schoenflies, over a century ago, of the 230 three-dimensional 
groups took place in the context of the scientific battles that were raging over 
the structure of crystals at that time. One can't help but sympathize with Schoen
flies, a mathematician, when he declared that, "Within the fundamental domain 
the crystallographer may do as he likes." 

On the other hand, to this day no one has been able to prove, by statistical 
mechanics or other methods, that left to their own devices the molecules of 
crystals "want" to arrange themselves in a periodic way. In some cases they do 
not do so: this has been understood since the 1970's, and especially since the 
discovery of quasicrystals in 1984. For these crystals, there isn't any fundamental 
domain at all. 
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And in fact, Weyl's admiration for the ancients may have been far off the 
mark. Like nations, professions refashion their pasts to suit their present needs. 
We must be careful not to play the role of the French historian Jules Michelet 
who, as Benedict Anderson explains in Imagined Communities [1, p. 198], "not 
only claimed to speak on behalf of large numbers of anonymous dead people, 
but insisted, with poignant authority, that he could say what they 'really' meant 
and 'reaUy"wanted, because they themselves 'did not understand'." 

We must be careful even with Escher! It is true, as Doris Schattschneider 
has shown so beautifully in Visions of Symmetry [13], that Escher carefully and 
throughly developed his own classification system for infinite repeating pat
terns. But in fact, except when asked to do so by scientist friends, he embedded 
swatches of these patterns in other worlds. He used them as means to other ends. 

Egyptian Ornamental Patterns 

We may find mathematics in ancient ornamental patterns, but that doesn't mean 
that their creators put it there. Let's take a closer look at those Egyptian tombs 
(Fig. 2). They weren't very restful places: every inch of the walls and ceil
ings is decorated. The paintings on the walls depict daily life; this is what is 

Fig. 2. Interior of Egyptian tomb 
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Fig. 3. Multipattemed tomb 
ceiling, from Prehistoric 
Textiles 

usually meant by "Egyptian art." The patterns that interest us were never painted 
on walls, only the ceilings. Why did the Egyptians put them up there? 

Not only were they on the ceilings, but very different patterns were often 
juxtaposed (Fig. 3). Why? Why didn't they decorate the ceilings with a single 
pattern? Did artists intend the ceiling to be a sampler of geometric invention? 

About a year ago, I came across a fascinating discussion of those ceiling pat
terns in a surprising place, an authoritative tome called Prehistoric Textiles [2]. 
Its author, Elizabeth Barber, is not a mathematician and when she wrote the 
book she did not realize that mathematics can be read into these designs. Barber 
is a professor of linguistics and archaeology at Pomona College in California, 
and uses both of those tools to study textile production and diffusion in pre
historic times. She is particularly interested in the Egyptian ceilings because 
they tell us a lot about ancient trade patterns. Barber says, "Let us begin by 
investigating the nature of Egyptian treatment of ceilings in general. .... They 
show sky, with or without stars ... ; or birds in flight, as if startled up from 
a swamp thicket .. , ; or a grape arbor, viewed as if from directly underneath ... ; 
or a repetitive polychrome design framed by architectural strips painted yellow 
to imitate wood." [2, p. 340] She then notes that many of these repetitive patterns 
are common Egyptian mat patterns, and asks, 

Why mat patterns on the ceiling, then? One reason is that mats 
were often laid on poles across the rafters in the houses, in order 
to prevent the mud of the roof from crumbling down onto the 
occupants. In these cases, when one looked up one would indeed 
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Fig. 4. Pattern with border, from 
Prehistoric Textiles 

see mats . ... Another common source of mats overhead was the 
outdoor pavilion erected to provide shade from the hot tropical 
sun. We see such pavilions, with checkered mat coverings over 
a fiat or gently sloping grid-like framework of yellow wooden 
beams, both on land and on boats ... [2, p. 341] 

Can it really be that "the oldest piece of higher mathematics that has come 
down to us" is just a collection of carefully copied mats? Barber argues for this 
conclusion by examining the borders that surround some ofthe two-dimensional 
designs (Fig. 4). Border patterns, she points out, were used as headers for the 
two-dimensional patterns that Minoans wove on warp-weighted looms. And here 
we see something quite remarkable: the border pattern changes although the 
design it surrounds does not! Why ever would an artist do that? If she were 
a textile artist, such a shift would be" ... the happy result of boredom interacting 
with the particular weaving technique; but in paint one is not restricted by what 
the warp will do, nor does the work progress so slowly. So why that particular 
change?" [2, p. 348] If economy of thought is the surest guide to the truth, then 
we must agree that it is possible that the painters merely copied mat and weaving 
patterns onto the ceiling! 

Can we rescue Weyl by arguing that the mats themselves illustrate mathemat
ical experimentation? No, not really. Mats cover small areas, and the designs on 
them are intended for those areas, not for unbounded ones. And, as Washburn 
and Crowe have argued in their fascinating book Symmetries of Culture [17], 
traditional cultures tend to be very conservative with regard to the symmetry of 
their artifacts. They may experiment a little with motifs, but with symmetry, they 
perpetuate tradition. 

If Barber is correct, then we must consider the possibility that the ancient 
Egyptians had a very different aesthetic from ours, a different conception of 
covering a ceiling: not a pattern of symmetry, but one obtained by juxtaposing 
various bounded designs. 

Weyl's remark doesn't tell us anything about mathematics, but it does tell 
us something about ourselves. It reminds us how fascinated with symmetry we 
all are (even the mat designers). In fact, we have what seems to be an inborn 
sense of order that helps us navigate this confusing world. The art historian 
E.H. Gombrich has written a richly detailed book, The Sense of Order [9], about 
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Fig. 5. Imperfect honeycomb, from Animal Architecture 

the ways in which this propensity expresses itself in art. It expresses itself in 
mathematics too, and has since ancient times, as the eternal fascination with the 
regular solids attests. It is probably not accidental that we find symmetry aesthet
ically satisfying and asymmetry disturbing. In medieval times monstrosity was 
sometimes envisaged as gross asymmetry. But precisely because we have a sense 
of order, we are prone to seek regularity, and sometimes to find it where none 
exists. How many people, not only mathematicians but also the author of the 
books from which Fig. 5 was taken [7], have waxed enthusiastic over the perfect 
hexagonal honeycombs of the bees! 

Disorder: The New Frontier 

Our search for symmetry also has the unfortunate side effect of perpetuating 
the old dichotomy between order and disorder, where those states are distin
guished by the presence or absence of translational symmetry and are labeled, 
respectively, periodic and nonperiodic. This dichotomy is outdated; almost
periodic functions, statistical mechanics, chaos, fractals, dynamical systems, and 
many other fields of mathematics teach us that the world of "disorder" is in fact 
wonderfully diverse. 

Let's follow one very old line of mathematical thought to discover the rich 
variety that emerges if we are willing to cross the periodicity jnonperiodicity 
frontier. We start with geometric dissection problems, which are as old as the 
mosaic. There are many dissection problems, of course, but in general they take 
the form: whether and in what ways can a given shape be subdivided into a finite 
number of other shapes of a given form or forms? For example, the classical 
question, the answer to which is affirmative in two dimensions and negative in 
three, is whether given any polygonal (polyhedral) shape can be cut up into 
a finite number of polygons (polyhedra) and rearranged to form any other given 
polygonal (polyhedral) shape of the same area (volume). Was it really only first 
in the 1960's that anyone thought to require that the shapes be dissected into 
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Fig. 6. The "chair" and the 
"sphinx" rep-tiles 

a finite number of smaller copies of themselves? Golomb rS] dubbed polygons 
with this property "rep-tiles." (Fig. 6) 

Rep-tiles can generate infinite nonperiodic patterns. We begin with one tile, 
and then divide it up into smaller copies of itself. Then we blow up the small 
tiles to the size of the originals, and subdivide them into copies of themselves, in 
exactly the same way as before. Repeating these two steps ad infinitum we get, in 
the limit, an infinite tiling of the plane. This tiling contains within itself tilings 
on a countable infinity of scales (Fig. 7). It is easy to prove that if these steps 
can be retraced unambiguously, that is, if at each level there is only one way to 
regroup the tiles at that level into the tiles of the next higher one, then the tiling 
is nonperiodic. 

The various Penrose tilings can all be generated in such a way, though in this 
case there is more than one tile shape. Figure Sa shows the transformation of the 
two Penrose rhombs, in which first dissection and then "gluing" takes place. That 
is, in the iterative process of generating a Penrose tiling (Fig. Sb), parts of the 
dissected interiors of adjacent rhombs are glued together to complete the smaller 
rhombs. 

A similar process will generate the so-called "binary tiling" (Fig. 9), whose 
prototiles are the two Penrose rhombs but whose decomposition rule is very 
different. The properties of this tiling are still not well understood. The 
deceptively simple pinwheel tiling (Fig. 10), whose tiles occur in infinitely many 
orientations, is also generated by iterative dissections. All of these tilings - chair, 
Penrose, binary, and pinwheel - are nonperiodic, but at the same time they are 
not "disorderly," and certainly are not random. Above all, they are very different 
from one another [15]. 

-
J 

Fig. 7. First steps in generating the chair tiling 
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Fig.8. (a) The dissection of the Penrose rhombs; (b) first steps in generating a Penrose 
tiling. In the iterative process of generating a Penrose tiling, parts of the disected interiors 
of adjacent rhombs are glued together to complete the smaller rhombs 
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Fig. 9. Part of a "binary" tiling 

Fig. 10. Part of a "pinwheel" 
tiling 

The mathematician's knee-jerk response to the phenomenon of nonperiodic 
tilings is to try to broaden our concept of symmetry. We've been doing this for 
a long time; it is the very history of mathematical crystallography. As Barlow and 
Miers pointed out in 1900 [3], "The history of its development. .. is the history 
of an attempt to express geometrically the physical properties of crystals, and at 
each stage of the process an appeal to their known morphological properties has 
driven the geometrician to widen the scope of his [sic] inquiry and to enlarge 
his definition of homogeneity." Broader concepts of symmetry that have been 
proposed for nonperiodic tilings include, but are not limited to: 
• self-similarity (which all of the tilings I've shown here possess, but which 

many interesting tilings do not), 
• the symmetry of the diffraction spectrum (which we will consider briefly), 
• the symmetry of the so-called translation modules of the tilings (which we will 

not discuss), and 
• various combinations of the above. 
But why insist on symmetry at all? "We're all amorphologists now," a physicist 
said to me about a decade ago. He meant that the interesting problem is to char
acterize the states that used to be lumped together in the single "amorphous" 
category. But how can we do it? 

There are many approaches to that question; I will indicate one general direc
tion that I find especially interesting. Instead of tilings and patterns, let's consider 
discrete point sets: we can associate many such sets with any tiling or pattern, for 
example the set of vertices of a tiling will do (Fig. 11). 

The basic concept we need is that of Delaunay sets, called (r, R)-systems 
by B.N. Delaunay and his colleagues in Moscow, who introduced them in the 
1930's. 
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Fig.H. Part of a Penrose tiling and its vertex set. The vertex set is a Delaunay set 

Definition. A Delaunay set in n-dimensional Euclidean space is a set of 
points A with two properties: (i) discreteness: there is an r> 0 such that any 
open ball of radius r contains at most one point of A, and (ii) homogeneity: there 
is an R > 0 such that any closed ball of radius R contains at least one point of A 

Note that the vertex set of a tiling (with tiles of uniformly bounded size) is 
a Delaunay set. In Fig. 11, the parameter r is the short diagonal of a thin rhomb, 
while the parameter R is the center of a circle defined by three vertices of a thick 
rhomb. 

The broad research program that engaged Delaunay and his colleagues for 
over half a century included finding the minimal conditions, in addition to (i) and 
(ii) above, that would ensure that a Delaunay set is an orbit of a symmetry group. 
The high point of this research was their proof, in 1976, of the "local theorem," 
which states that global regularity is a consequence of local regularity [4]. 

Let [x - y] be the line segment joining x and y. We define the global star of 
x E A to be the set of line segments joining x to all the other points of A: 

Sh(x) = {[x - y], Vy E A}. 

The bounded or local star (Fig. 12), or p-star, of x E A is constructed like 
a global star, except that we only draw line segments to those points of A that 
lie within a ball B(x, p) about x of radius p: 

STA (x, p) = ([x - y], Vy E Sh (x) n B(x, p)} . 

Fig. 12. A local star in a Penrose vertex set 
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Fig. 13. Periodic and nonperiodic tilings with more than one class of vertex stars 

The vertex sets of both periodic and nonperiodic tilings (and other point sets) can 
have more than one congruence class of local stars for some given p. (Fig. 13) 
Let N A (p) = I Sh (x, p) I be the function that counts the number of congruence 
classes of p-stars. 

One can prove [4] that 
Theorem. A Delaunay set A is nonperiodic if and only if N A (p) is 

unbounded as p tends to infinity. 
But as we have seen, there are various kinds of nonperiodicity. One way to 

study them may be to consider the behavior of N A (p) (which we assume to be 
finite for every finite value of p). We don't know yet for which types of point 
sets the function increases linearly, or has polynomial growth, or exponential; it 
is a difficult problem, but this line of investigation appears to be promising. 

Let us call the point set obtained by superposing all the global stars of 
a Delone set A its difference set; we will denote it by A-A. That is, 

A - A = {[x - y], x, YEA} . 

In Fig. 14 we see that the difference set for a Penrose tiling is discrete. That is not 
the case for the vertex set of a binary tiling, which (eventually) becomes dense. 
On the other hand, the difference set of a chair tiling's vertices is a lattice. This 
suggests that the degree of overlap of the stars of a Delane set may be a useful 
characterization of disorder. 

Following Lagarias [10], [11] and Moody [12], we might consider a hier
archy of increasingly stringent requirements: 
(a) A - A is neither finitely generated nor discrete. 
(b) A - A is finitely generated, but is not discrete. 
(c) A - A is Delaunay; equivalently, A - F 2 A - A, where F is a finite set. 
(d) A-A=A+F 
(e) A -A = A. 
The set of vertices of the pinwheel tiling is a Delaunay set of type (a); the set of 
vertices of the binary tiling seems to be of type (b), the vertices of the Penrose 
tilings are either type (c) or (d); the vertex set of the chair tiling is type (d), and 
some periodic sets are of type (d), while others are type (e). 
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Fig. 14. A and A - A for three tHings. Top: (Part of) a Penrose tiling. Middle: The binary 
tiling. Bottom: A chair tiling. The line segments have been omitted 

A - A is surely the key to understanding the diffraction spectrum of A, which 
is another important approach to characterizing order. The spectrum is, essen
tially, the Fourier transform of A - A, but the fact that some points are weighted 
(i.e., overlap) is taken into account. This transform is a measure, and there are 
well-known ways to classify measures. We cannot go into details here, but these 
diffraction patterns clearly show increasing degrees of order [15]. 

One of the most interesting, and difficult, open problems of mathematical 
amorphology is the precise relation among N A (p), A - fl., and the diffraction 
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spectrum of A. More generally, understanding the relation between the local and 
the global, the parts and the whole, is every bit as profound, and every bit as 
important, as the efforts of physicists to unify quantum mechanics and gravita
tional theory. Symmetry is only our easiest case, group theory only our simplest 
tool. 

Modern, Post-modern, and Post-past-modern Mathematics 

What we are engaged in here is nothing less than the eternal dialogue between the 
continuous and the discrete, a conversation that we can trace back to the ancient 
Greek philosophers. The 16th century poet, Sir John Davies, asked, 

Or if this all, which round about we see, 
As idle Morpheus some sick brains hath taught, 
Of individual motes compacted be, 
How was this goodly architecture wrought? 
Or by what means were they together brought? 
They err that say they did concur by chance: 
Love made them meet in a well-ordered dance! 
- from Orchestra, or a poem on dancing, Sir John Davies, 
1569-1626 

The conversation continues today. On the eve of 1998, the New York Times 
published a list of some of the cosmic questions that scientist/statesmen say they 
are asking themselves. The list included: 

Will the "theory of everything " be a theory of principles, not particles? Will it 
invoke order from above, not below? - Kenneth Ford, Retired Director, American 
Institute of Physics 

Fundamentally, is the flow of time something real, or might our sense of time 
passing be just an illusion that hides the fact that what is real is only a vast 
collection of moments? - Lee Smolin, Physicist, Penn State University. 

I have said nothing here about the symmetry of natural laws. A good start
ing place would be Smolin's recent book, The Life of the Cosmos [16], which 
argues that those natural laws may well be contingent. I also recommend 
another new book, The First Modems [6], which is an effort by its author, 
William Everdell, to understand what "modernism" was, before we move on 
beyond "postmodernism." 

Everdell argues that "modernism" was, in essence, a shift away from the 
19th century view that the world is fundamentally continuous to the view that the 
world is fundamentally discrete. He finds it intriguing that the mathematicians, 
scientists, artists, musicians, and writers whose work he discusses - Picasso, 
Strindberg, Schoenberg, Cantor, Dedekind, Russell, Boltzmann, Einstein, Joyce, 
de Vries, and many others - had all come to the conclusion, at approximately 
the same time, that the discrete approximates the continuous, just as the forest is 



440 Marjorie Senechal 

made up of trees. It was the Zeitgeist, the spirit of the times. Symmetry fits into 
the modernist paradigm very well. But the times are "postmodern" now. 

Of course, many believe, as the philosopher Richard Rorty recently declared, 
that postmodernism is just a word masquerading for an idea: that Emperor has 
no clothes at all. I'm not sure I agree. The cultural postmodernists seem not to 
have realized it, but we can discern an idea there. If modernism was the notion 
that wholes are in fact comprised of parts, then post-modernism took things one 
step further and denied the reality of any wholes. The wholes were artifacts of 
our own making, they said, figments of our collective imagination, and they tried 
to deconstruct those artifacts. The pendulum has swung back to Democritus, the 
atoms, and the void. 

But just as history did not end with the cold war, the dialogue between the 
continuous and the discrete does not end with postmodernism. In mathematics 
as in art, in physics as in language, in music as in biology, we are finding yet again 
that the discrete and the continuous are mysteriously intertwined. If we can move 
beyond the symmetry mystique. we may begin - to use a textile metaphor - to 
unravel them. 
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Escher-Like Tessellations on Spherical Models 

Valentin E. Vulihman 

Everyone has played with a kaleidoscope in which a few colored stones 
reflect through the mirrored edges of an equilateral triangle to create attrac
tive ornaments in the plane. The surface of a sphere also has triangles with 
the same property - reflections through mirrored edges of these triangles cover 
the whole sphere. Those special spherical triangles are referred to as Mobius 
triangles. In his lifetime, M.e. Escher produced many interesting drawings of 
planar ornaments (tessellations) and also carved the surface of some wooden 
balls with interlocked designs that repeat by reflection or rotation according to 
the symmetry of an octahedron, tetrahedron, or dodecahedron. 

Inspired by Escher, I decided to transfer some of his well-known planar 
ornaments onto the surface of a sphere, but not by carving a ball as he did. 
Rather, I developed a computer program that allows one to draw pictures 
in Mobius triangles and then have the program automatically multiply those 
pictures to cover the surface of a sphere, according to specified symmetry. 

In order to create such a program, it was first necessary to input a picture on 
a Mobius triangle. The computer screen is a plane, not a sphere. So what planar 
area can serve on the screen as a Mobius triangle? It turns out that a projection of 
a Mobius triangle onto a cylinder circumscribed around the sphere fits very well 
after unrolling the cylinder. Cylinders, round or elliptic, are excellent surfaces 
for modeling because they can be unrolled to a flat rectangle and their points can 
be stored in the computer memory as two-dimensional arrays. So this technique 
allows us to draw a picture on a planar model of a Mobius triangle on the 
computer screen. 

In order to produce the surface-filling pattern, the whole sphere must be 
drawn on the screen. Again the cylinder surface appears useful. To illustrate 
the technique, let's consider a pattern with dodecahedral symmetry. Using the 
symmetry of a single spherical pentagon centered at the "north pole", the whole 
spherical surface can be divided into ten lunar digons stretching north to south, 
like sections of an orange. The edges of the digons are mirror planes for the 
dodecahedron. Each digon consists of exactly twelve Mobius triangles and there 
are only two different (adjacent) digons, so the whole surface of the sphere can 
be constructed by repeating these two basic digons five times. Figure 1 shows 
a spherical surface divided into the Mobius triangles of a dodecahedron; a pair of 
adjacent digons is outlined by thick lines. One Mobius triangle has been shaded 
in; you can actually count twelve of these triangles in the digon on which the 
vertices of the shaded triangle lie. 

We make two projections of these digons onto a cylinder circumscribed 
around the sphere. Then the complete screen image of the sphere can be created 
by comparatively simple transformations of these two planar digons into copies 
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Fig. 1. A sphere with its surface 
divided into the Mobius trian
gles of a dodecahedron 

Fig. 2. A computer screen view of 
a sphere surface as it will appear with 
a repeating pattern 

of them as spherical digons seen on the screen. Though this image of the sphere 
is rough, it proved to be good enough to be perceived by eye as a sphere. This 
method is very fast, and it gives an opportunity to rotate the sphere on the com
puter screen after an accumulation of several dozen images at different angles. 
Today, with the speed of computers increased substantially, there is a chance to 
simulate a real spherical kaleidoscope in which an ornament is changing on the 
rotating sphere like like the changing picture produced by rotating an ordinary 
(planar) kaleidoscope. Figure 2 shows the screen image of a sphere as it will 
appear with a pattern on it. 

I thought that since it is possible to draw the sphere on the computer screen, 
why not output printed patterns on digons so that one can cut and glue paper 
models of the patterned spheres? Since we have already created the planar digons 
that can be filled with a repeating design, ten such digons can be printed on 
heavy paper, cut out, then glued. In a perfectly smooth situation, they should 
exactly fit each other and create a model of the sphere. Unfortunately these 
planar digons produce a model that is a slight deviation from a real sphere, 
probably because the model circumscribes the sphere. A better model can be 
achieved if we create a projection of the spherical digons onto an elliptic cylin
der which goes through the edges of the spherical digon. In this case the model 
produced is inscribed in the sphere. However the calculation of these projections 
is much more complicated. 

The program also must make other calculations. In order to draw precise geo
metric shapes that are repeated in a regular manner by the computer, one needs to 
have some sort of coordinates of the "drawing pen." During the input of a picture 
into a Mobius triangle, the program calculates and shows distances from the pen 
to the vertices and to the edges ofthe Mobius triangle. Using these coordinates, I 
was successful in transfering onto the sphere several ofM.C. Escher's ornaments 
as well as some other famous planar ornaments. 

In Fig. 3 you see a printed basic pair of patterned digons; five of these pairs 
assemble into a sphere covered by butterflies. Note the teeth along the edges of 
the digons; these interlock with those of an adjacent digon, much like a zipper. 
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Fig. 3. The pair of patterned 
digons that, repeated five times, 
make up the sphere with butter
flies (photo below, left) 

When these teeth are glued (on the underside of the adjacent panel), the model 
looks round and is quite rigid. This particular patterned model has the rotation 
symmetry of a dodecahedron. 

As you can see from Fig. 3, the computer output merely produces an outline 
of the pattern on white paper. An interesting challenge is to color in the outline in 
a manner that is compatible with the symmetry of the pattern on the assembled 
sphere. This color symmetry consideration influences both how many colors are 
used as well as the placement of the colors. All models I have produced I have 
colored with this symmetry consideration in mind. 

The photos show pictures of assembled models of the sphere covered by my 
versions of Escher's ornaments: fish, interlaced rings, men, reptiles, hexagonal 
grids, and flowers. Each model is about the size of a grapefruit. While several of 
the models have the rotation symmetry of a dodecahedron as described above, 
some have the rotation symmetry of a tetrahedron or octahedron. In these cases, 
the digons are determined by mirror planes of these other spherical polyhedra 
and so there will not be ten digons to make up the sphere, but a different num
ber determined by the symmetry of the polyhedron and the pattern. For example, 
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12 digons are used make the sphere with the pattern of men since the patterned 
sphere has tetrahedral rotation symmetry and some reflection symmetry as well. 

The references give additional mathematical details on symmetries of spher
ical polyhedra, tilings on the surface of spheres, constructing spherical models 
from sections based on Mobius triangles, and covering polyhedra with Escher 
designs. 
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page 275, Fig. 1, Hand with Reflecting Sphere, by M.e. Escher. 

© 200 1, Cordon Art. 
page 281, Fig. 7, Inside St. Peter's Rome, by M.e. Escher. © 2001, Cordon Art. 
page 286, Fig. 1, Symmetry drawing E45, by M.C. Escher. © 2001, Cordon Art. 
page 286, Fig. 2, Circle Limit N, by M.e. Escher. © 2001, Cordon Art. 
page 287, Fig. 3, Circle Limit I, by M.C. Escher. © 2001, Cordon Art. 
page 287, Fig. 4, Circle Limit II, by M.e. Escher. © 2001, Cordon Art. 
page 294, Fig. 15, Symmetry Drawing E42, by M.e. Escher. 

© 200 1, Cordon Art. 
page 294, Fig. 17, Symmetry Drawing E56, by M.e. Escher. 

© 200 1, Cordon Art. 
page 298, Fig. 1, Circle Limit III, by M.e. Escher. © 2001, Cordon Art. 
page 307, Fig. 4, Reptiles, by M.e. Escher. © 2001, Cordon Art. 
page 308, Fig. 7, Symmetry drawing E85, by M.e. Escher. © 2001, Cordon Art. 
page 309, Fig. 9 left, Symmetry drawing E105, by M.e. Escher. 

© 200 1, Cordon Art. 
page 360, Fig. 6, Plane-filling Motifwith Reptiles, by M.e. Escher. 

© 2001, Cordon Art. 
page 362, Fig. 7, Symmetry Drawing El15, by M.C. Escher. 

© 200 1, Cordon Art. 
page 371, Fig. 9,4 Graphic Artists, by M.e. Escher. © 2001, Cordon Art. 
page 372, Fig. 11, Dragon, by M.e. Escher. © 2001, Cordon Art. 
page 375, Fig. 16, Man with Cuboid, by M.e. Escher. © 2001, Cordon Art. 
page 380, Fig. 1, Day and Night, by M.e. Escher. © 2001, Cordon Art. 
page 388, Fig. 4 left, The Scapegoat, by M.C. Escher. © 2001, Cordon Art. 
page 409, Fig. 2 top, Selinunte, Sicily, by M.C. Escher. © 2001, Cordon Art. 
page 409, Fig. 2bottom, Curl-up, by M.e. Escher. © 2001, Cordon Art. 
page 427, Fig. 1, Symmetry Drawing E25, by M.e. Escher. © 2001, Cordon Art. 
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