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PREFACE.

THE present work is intended as a sequel to our Elementary
Algebra for Schools. The first few chapters are devoted to
a fuller discussion of Ratio, Proportion, Variation, and the
Progressions, which in the former work were treated in an
elementary manner; and we have here introduced theorems
and examples which are unsuitable for a first course of
reading.

From this point the work covers ground for the most
part new to the student, and enters upon subjects of special
importance : these we have endeavoured to treat minutely
and thoroughly, discussing both bookwork and examples
with that fulness which we have always found necessary in
our experience as teachers.

It has been our aim to discuss all the essential parts
as completely as possible within the limits of a single
volume, but in a few of the later chapters it has been im-
possible to find room for more than an introductory sketch ;
in all such cases our object has been to map out a suitable
- first course of reading, referring the student to special treatises
for fuller information.

In the chapter on Permutations and Combinations we
are much indebted to the Rev. W. A. Whitworth for per-
mission to make use of some of the proofs given in his
Choice und Chance. For many years we have used these
proofs in our own teaching, and we are convinced that this
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part of Algebra is made far more intelligible to the beginner
by a system of common sense reasoning from first principles
than by the proofs usually found in algebraical text-books.

The discussion of Convergency and Divergency of Series
always presents great difficulty to the student on his first
reading. The inherent difficulties of the subject are no
doubt considerable, and these are increased by the place it
has ordinarily occupied, and by the somewhat inadequate
treatment it has hitherto received. Accordingly we have
placed this section somewhat later than is usual; much
thought has been bestowed on its general arrangement, and
on the selection of suitable examples to illustrate the text;
and we have endeavoured to make it more interesting and
intelligible by previously introducing a short chapter on
Limiting Values and Vanishing Fractions.

In the chapter on Summation of Series we have laid
much stress on the “ Method of Differences” and its wide and
important applications. The basis of this method is a well-
known formula in the Calculus of Finite Differences, which in
the absence of a purely algebraical proof can hardly be con-
sidered admissible in a treatise on Algebra. The proof of the
Finite Difference formula which we have given in Arts. 395,
896, we believe to be new and original, and the development
of the Difference Method from this formula has enabled us to
introduce many interesting types of series which have hitherto
been relegated to a much later stage in the student’s reading.

We have received able and material assistance in the
chapter on Probability from the Rev. T. C. Simmons of
Christ’s College, Brecon, and our warmest thanks are due
to him, both for his aid in criticising and improving the
text, and for placing at our disposal several interesting and
original problems.

It is hardly possible to read any modern treatise on
Apalytical Conics or Solid Geometry without some know-
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ledge of Determinants and their applications. We have
therefore -given a brief elementary discussion of Determi-
nants in Chapter XXXIII., in the hope that it may provide
the student with a useful introductory course, and prepare
him for a more complete study of the subject.

The last chapter contains all the most useful propositions
in the Theory of Equations suitable for a first reading. The
Theory of Equations follows so naturally on the study of
Algebra that no apology is needed for here introducing pro-
positions which usually find place in a separate treatise. In
fact, a considerable part of Chapter XxXXV. may be read
with advantage at a much earlier stage, and may conveniently
be studied before some of the harder sections of previous
chapters.

It will be found that each chapter is as nearly as possible
complete in itself, so that the order of their succession can
be varied at the discretion of the teacher; but it is recom-
mended that all sections marked with an asterisk should be
reserved for a second reading.

In enumerating the sources from which we have derived
assistance in the preparation of this work, there is one book
to which it is difficult to say how far we are indebted.
Todhunter’s Algebra for Schools and Colleges has been the
recognised English text-book for so long that it is hardly
possible that any one writing a text-book on Algebra at the
present day should not be largely influenced by it. At the
same time, though for many years Todhunter’s Algebra has
been in constant use among our pupils, we have rarely
adopted the order and arrangement there laid down; in
many chapters we have found it expedient to make frequent
use of alternative proofs; and we have always largely sup-
plemented the text .by manuscript notes. These notes,

. which now appear scattered throughout the present work,

. .Japve been collected at different times during the last twenty
B - g A » . b -
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years, so that it is impossible to make definite acknowledge-
ment in every case where assistance has been obtained from
other writers, But speaking generally, our acknowledge-
ments are chiefly due to the treatises of Schlomilch, Serret,
and Laurent; and among English writers, besides Todhunter’s
Algebra, we have occasionally consulted the works of De
Morgan, Colenso, Gross, and Chrystal.

To the Rev. J. Wolstenholme, D.Sc., Professor of Mathe-
matics at the Royal Indian Engineering College, our thanks
are due for his kindness in allowing us to select questions
from his unique collection of problems; and the consequent
gain to our later chapters we gratefully acknowledge.

It remains for us to express our thanks to our colleagues
and friends who have so largely assisted us in reading and
correcting the proof sheets; in particular we are indebted to
the Rev. H. C. Watson of Clifton College for his kindness in
revising the whole work, and for many valuable suggestions
in every part of it.

Moy, 1881, H. S. HALL
S. R. KNIGHT.

PREFACE TO THE THIRD EDITION.

IN this edition the text and examples are substantially
the same as in previous editions, but a few articles have
been recast, and all the examples have been verified again.
We have also added a collection of three hundred Miscel-
laneous Examples which will be found useful for advanced
students. These examples have been selected mainly but
not exclusively from Scholarship or Senate House papers;
much care has been taken to illustrate every part of the
subject, and to fairly represent the principal University and
Civil Service Examinations.

March, 1889,
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HIGHER ALGEBRA.

CHAPTER 1.

RATIO.

1. DerinirioN. Ratio is the relation which one quantity
bears to another of the same kind, the comparison being made by
considering what multiple, part, or parts, one quantity is of the
other. :

The ratio of 4 to B is usually written 4 : B. The quantities

A and B are called the terms of the ratio. The first term is
called the antecedent, the second term the consequent.

2. To find what multiple or part 4 is of B, we divide 4
by B; hence the ratio 4 : B may be measured by the fraction

% , and we shall usually find it convenient to adopt this notation.

In order to compare two quantities they must be expressed in
terms of the same unit. Thus the ratio of £2 to 15s. is measured
2x20 8

by the fraction 5 or R

Note. A ratio expresses the number of times that one quantity con-
tains another, and therefore every ratio is an abstract quantity.

3. Since by the laws of fractions,

it follows that the ratio @ : b is equal to the ratio ma : mb;
that is, the value of a ratio remains unaltered if the antecedent
and the consequent are multiplied or divided by the same quantity.

H. H. A. \
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4. Two or more ratios may be compared by reducing their
equivalent fractions to a common denominator. Thus suppose
g J andf—éf' hence
b by’ Ty by’
the ratio a : b is greater than, equal to, .or less than the ratio
x : y according as ay is greater than, equal to, or less than ba.

a : band 2 : y are two ratios. Now

5. The ratio of two fractions can be expressed as a ratio
of two integers. Thus the ratio ‘bl : f? is measured by the
a

fraction E, or ‘bi—::l ; and is therefore equivalent to the ratio
d

ad : be.

6. If either, or both, of the terms of a ratio be a surd
quantity, then no two integers can be found which will exactly
measure their ratio. Thus the ratio ,/2 :1 cannot be exactly
expressed by any two integers.

7. DerinNiTION. If the ratio of any two quantities can be
expressed exactly by the ratio of two integers, the quantities
are said to be commensurable; otherwise, they are said to be
incommensurable.

Although we cannot find two integers which will exactly
measure the ratio of two incommensurable quantities, we can
always find two integers whose ratio differs from that required
by as small a quantity as we please.

Thas i; =2_'2.?’(5f_67'_"=-559016...
A5 559016 559017
and therefore T ~ 1000000 and <1000000°

so that the difference between the ratios 559016 : 1000000 and
A5 : 4 is less than -000001. By carrying the decimals further, a
closer approximation may be arrived at. '

8. DeriniTiON. Ratios are compounded by multiplying to-
gether the fractions which denote them ; or by multiplying to-
gether the antecedents for a new antecedent, and the consequents
for a.new consequent.

Ezample. Find the ratio compounded of the three ratios
2a : 3, 6ab : 6c%, c:a
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The required ra.tit;u:i—‘bl b %‘:—g X 2
_4a
=z
9. DeriNiTION. "When the ratio @ : b is compounded with
itself the resulting ratio is @ : b%, and is called the duplicate ratio
of a:b. Similarly o®:5* is called the triplicate ratio of o : b.

Also a? : 8} is called the subduplicate ratio of a : b.

Ezxamples. (1) The duplicate ratio of 2a : 8b is 4a? : 9%
(2) The subduplicate ratio of 49 : 25 is 7 : 5.
(8) The triplicate ratio of 2z : 1 is 823 : 1.

10. DeriviTION. A ratio is said to be a ratio of greater
snequality, of less inequality, or of equality, according as the
antecedent is greater than, less than, or equal to the consequent.

11. A ratio of greater inequality is diminished, and a ratio of
less inequality is increased, by adding the same quantity to both
18 terms.

Let % be the ratio, and let % be the new ratio formed by

b+
adding « to both its terms.

a a+x ar—bx
5 bvs b(Ta)
_x(a—b)
RIEDE
and a-—b is positive or negative according as a is greater or
less than b.

Now

. a a+zx

Hence if a > b, i et

. a a+zx
and if a <b, 5 <572

which proves the proposition.

Similarly it can be proved that a ratio of greater inequality
8 increased, and a ratio of less inequality i8 diminished, by taking
the same quantity from both its terms.

12. When two or more ratios are equal many useful pro-
positions may be proved by introducing a single symbol to
denote each of the equal ratios.

\—2
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The proof of the following important theorem will illustrate
the method of procedure,.

a ¢ e
-I.f‘ i—)=a=?=.‘..'.,

1
pa“+qc“+re“+...)ﬁ
b*+ qd®+ rf* + .../’

where p, q, r, D are any quantities whatever.

each of these ratios =

Let 2=

then a=0bk, c=dk, e=fk,...;
whence pa” =pb'k*, qc*=qd"k", re*=1f"k,...;
L pattgct e+ ... pbE +qd'k +of K+ ...
opbtagdtarftH... pb4qd 4+
=]c";

1
. pa"+qc"+re“+...):_k_g_ c_
) (pb“+qd"+7;/"‘+... e d T
By giving different values to p, g, , = many particular cases

of this general proposition may be deduced; or they may be
proved independently by using the same method. For instance,

” a_c_e_

1 b—d—f—...,
N a+c+e+...

each of these ratios = b-i-_d+_f.+... H

& result of such frequent utility that the following verbal equi-
valent should be noticed: When a series of fractions are equal,
each of them s equal to the sum of all the numerators divided by the
sum of all the denominators.

ae_c_¢

b"d f
a®h+2c% —3ae®f _ace

b+ 2d% - 3bf%  bdf”

Ezample 1. If , shew that

a _c e
Let 5_3_'—,;11,

then a=bk, c=dk, e=fk;
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. a%+2c% - Baelf _ b3+ 24k3 — Bbf3kS
U B 2d -85 | A+ 2dif — 85

4

=kB= Xax

IR

AN Y

__ ace

baf
Ezample 2. 1f E:%:g, prove the.

2'+ad Y +b? B+ (z+y+2)P+(atbte)?
z+a ' y+b  z+c z+y+z+afbdte

z z
Let ;:% == =k, so that z=ak, y=>bk, z=ck;

2i+a® _a’k2+a®_ (K+1)a,
then z+a  ak+a  EkE+1 °
L Pra gP fe (Bila (B4D)D (B+1)e
"t zta T y+b Tawe - k+l T k4l k+1
_(¥*+1) (a+d+c)
- k+1
_Ka+d+c)+(at+d+c)?
T k(a+d+o)+a+d+c
_ (ka+ kb +ke)*+ (a+b+c)?
= (ka+kb+ke)+at+bte
_(z+y+2)2+(a+d+c)?
T z+ytztatdte

13. If an equation is homogeneous with respect to certain
quantities, we may for these quantities substitute in the equation
any others proportional to them. For instance, the equation

by + maxy’z + ny’zs* =0
is homogeneous in @, ¥, 2. ILet a, B, y be three quantities pro-
portional to &, y, z respectively.

z
Put k=§=%=;, so that x=ak, y =k, z=vk;

then la’Bk* + maf’yk' + nfy'k' = 0,

that is, la’B +mafy + nfiy'=0;

an equation of the same form as the original one, but with
a, B, y in the places of z, y, z respectively.
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14. The following theorem is important.

]f B F’ ﬁ be unequal fractions, of which the de-

3
b,’
nominators ar al of the same sign, then the fraction

a+a +a,+ ... +8,
b, +b,+b,+ ... +b,
lies in magnitude between the greatest and least of them.

a,

Suppose that all the denominators are positive. Let 3 be the

b,
least fraction, and denote it by % ; then
Z’: ; -.oa,=kb,;
g—'>k; oa>kb
1
Z—’>Ic; c.oa, > kb, ;
and so on;
by addition,
G, +a+a+...... +a >, +b,+b +...... +b)k;
a +a,+a+...... + O r. thatis > .

Tb b, b+ . +b T )
Similarly we may prove that

r

a +a +a+...... +a, a,
<731
b +b +b,+......+b, b,

- where % is the greatest of the given fractions.

In like manner the theorem may be proved when all the
- denominators are negative.

15. The ready application of the general principle involved
in Art. 12 is of such great value in all branches of mathematics,
that the student should be able to use it with some freedom in
any particular case that may arise, without necessarily introducing
an auxiliary symbol.

z y z

b+c-a cta-b a+tb-c’
zHyte _z(y+e)+y(eta)+e(e+y)
at+btec 2 (ax+ by +c2)

Ezample 1. If

prove that
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sum of numerators
sum of denominators

Each of the given fractions=
_T+y+z .
S b e e ).

Again, if we multiply both numerator and denominator of the three
given fractions by y +z, z+ z, £ +y respectively,

s amly+s) _ y(tax)  z(z+y)
cach fraction = Y G+c—a) ~ ¥ 2) C+a-8) ~ (s ¥y) @+5-9)
_sum of numerators
~ sum of denominators
_Ty+a)+y(E+2)+z(@+y) @
ezt Byt .

.. from (1) and (2),
z+y+z_z(y+2)+y(e+2)+2z(z+y) .

a+b+c 2 (az+by +c2)
z _ y - 2 ___
Feample 2 N b v ne—la) ~ m (e +la—mb) — n (la+mb=nc)’
l m Lid
provethat  Cyroi-an) yletar-by) iaEiby-c)’
z Y :
1 m n
‘We have mbinc—-la nctla—mb la+mb—nc
Y.t
_m n
=%

=two similar expressions;
ny+ms_lz+nz_ma+ly
a b T ¢

Multiply the first of these fractions above and below by z, the second by
9, and the third by z; then

nry+mzz _ lyz+nzy  maz+lyz

az by cz
=2y
T bytecz-azx
=two gimilar expressions;

l _ m _ n
z (by+cz—ax) y(cz+az-by) z(az+dy-cz)
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16. If we have two equations containing thres unknown
quantities in the first degree, such as

ar+by+ez=0 ...l (1),
ax+by+ez=0 ......ooiiiniin, 2),

we cannot solve these completely; but by writing them in the

form
a, (;) +b, (%) +¢, =0,

NCRACI

we can, by regarding ; and % as the unknowns, solve in the

ordinary way and obtain

x _ b, —bye, Y _ca,—ca,
z ab-ab’ 2z ab-—ad’
or, more symmetrically,
z y e, (3).

b,e,—bye, = ca, —ca - ab, ~ab
It thus appears that when we have two equations of the type
represented by (1) and (2) we may always by the above formula
write down the ratios 2 :y :2 in terms of the coefficients of the
equations by the following rule:

‘Write down the coefficients of , y, # in order, beginning with
those of 7; and repeat these as in the diagram.

b, c, @, b,
8 cl al b’

Multiply the coefficients across in the way indicated by the
arrows, remembering that in forming the products any one
obtained by descending is positive, and any one obtained by
ascending is negative. The three results

blcz - b!cl’ 0,0y — Ci2ys a’lbz - a’sbl
are proportional to x, ¥, z respectively.

This is called the Rule of Cross Multiplication.
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Ezample 1. Find the ratios of z : y : z from the equations
Tz=4y+8z, 8z=12x+11y.
By transposition we have 7z —4y - 82=0,

12z +11y - 32=0.
‘Write down the coefficients, thus
-4 -8 7 -4
11 -3 12 11,
whence we obtain the products
(-4)x(-8)-11x(-8), (-8)x12-(-8)x7, Tx11-12x(-4),
or 100, -175, 125;

z _ Y _ 2
100~ =75 125’
. z_y _2
that is, i=23%§

Ezample 2. Eliminate z, y, 2 from “the equations

az+ by +¢,2=0
agt+ by +cg2=0.....

g+ Dy +632=0.....cc0rrrriiiiiinniiiniinnnnns (3)
From (2) and (3), by cross multiplication,
z y 2

bycy — bye = Colly— Cylly gby— aghy’
denoting each of these ratios by k, by multiplying up, substituting in (1),
and dividing out by k, we obtain
ay (baCs — byta) + by (0o — C3ay) +¢; (aghy — aghy) =0.
This relation is called the eliminant of the given equations
Ezample 3. Solve the equations

AT+ DY +62=0....ccoeeeiiiiiiiiiiiiii e 1),
TH Y+ 2=0.ciiii 2),
bez+cay+abz=(b-c)(c—a)(@—D).eerrrrerrrrirennnnies (3)-
From (1) and (2), by cross multiplication,
d )

s ===k, suppose;
-¢ ¢-a a-b
o x=k(-c),y=k(c-a), z2=k(a-1).

Substituting in (3),
k{be(—c)+ca(c—a)+ab(a-b)}=(b-c)(c-a)(a-D),

k{ (b-0) = ) (a-B)=(0=0) ¢~ ) o-D);

Ck=-1;
z=c—b,y=a—c,z=b-—a.

whence
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17. If in Art. 16 we put z =1, equations (1) and (2) become
ax+by+ec =0,
ax+by+c,=0;

and (3) becomes
x 0y __1
be,~be, ca,-ca  ab—ab’
_ blcs - b!cl _ cl?’:__—_cs‘_zx
o “= alb!— a’sbl e a’lbn - dibl ’

Hence any two simultaneous equations involving two un-
knowns in the first degree may be solved by the rule of cross
multiplication.

Ezample. Solve 52-3y-1=0, z+2=12.
By transposition, 5z-3y- 1=0,
z+2y-12=0;
Loo® oy _ 1.
‘ 86+2 -1+60 10+3°
38 59
whence z=13 y=1_3.

EXAMPLES. I

1. Find the ratio compounded of
(1) the ratio 2a : 3b, and the duplicate ratio of 942 : ab.
(2) the subduplicate ratio of 64 : 9, and the ratio 27 : 56.

2
(3) the duplicate ratio of %b? : “—/I?Ta , and the ratio 3az : 2by.

2. Ifx+7 : 2(2+14) in the duplicate ratio of 5 : 8, find .

3. Find two numbers in the ratio of 7 : 12 so that the greater
exceeds the less by 275.

4. What number must be added to each term of the ratio 5 : 37
to make it equal to 1 : 37

5. Ifx: y=3: 4, find the ratio of 7Tz —4y : 3z +y.
6. 1f 15 (22% — »%)="Tay, find the ratio of z : .
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a, ¢
1. If =3=7 f’
2(1,‘1)2+3cv,’e2 5e4f a‘

prove that. S 36T 6f —

8. If ;—: % —5 prove thatg is equal to
FIPATDE
ble+ dt+ bcd?’

9, If F _-_¥ __°

g+r—p r+p-q p+g-r’
shew that (g—-nx+(-p)y+(p-—q)2=0.
."/+-’«
x z
1. 1If yrz _ it _ oty

pb+ge petga patgd’
shew that 2(@ty+e)_(b+o)z+ (c+a)y+(a+d)z

a+b+e be+ca+ab
r_¥_2
12, If a b ¢’
Bt P8 B4 (wty+aP+(atbiof
shew that HArat yz+bz+zz+cz_(,;+_7/+z)2+(a+b+c)’ :
18 1 @ WABos ooy Wwidy-s
a b ¢
shew that d = g = :

20+2-a 2+2a-b 2a+2b-c’
14, If (a?+ B2+ c®) (w2 + y2+23)=(ax+ by + c2)%,
shew that x:ia=y:b=z:c
15, If I (my + nz—lx)=m (nz+ 1z — my)=n ({z + my — nz),

y+z-x_z2+x-y_ =x+y-z
{ m o

prove

16. Shew that the eliminant of
ax+cy +b2=0, cx+by+az=0, bz+ay+cz=0,
is - a3+ b+ c3 — 3abe=0.
17. Eliminate x, y, 2 from the equations
ax+hy+gz=0, hw+by+f2=0, gu+fy+cz=0.

11
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18. If
shew that

HIGHER ALGEBRA.

r=cy+bz y=az+cx, z=bzr+ay,
R L
et 1-58 1-&"

19. Given that a (y+2)=x, b(z+2)=y, c(z+y)=2

prove that

be+ ca+ab+2abe=1.

Solve the following equations:

20.

22,

shew that

3r—4y+Tz= 0, 21. z+y= 2
2 —y 2= 0, 3r—2y+17z= 0,
38— y3+23=18. 28+ 3%+ 2:8=167.
Tyz 4 322 =4xy, 23, 3a?-2y%4522=0,
21yz - 3ax =4xy, 722 - 3y2 - 1622=0,
x+2y+32=19. bx—4y+72=6.

l m n
Ja=Jo Y To=Te T Jo=nfa= "

l m n -0
Jat bt Joxdet Jexda

l m n

(a=8)(c—Nab) (h—0)(a-Nbo) (c—a)(b-Nac)

Solve the equations:

25.

26.

27. If
prove that

28, If
prove that

M
@

az+by+cz=0,
bex + cay + abz=0,
xyz+ abe (aPz + b3y + 32)=0.
ax+ by + cz=atx+ b2y +c%=0,
z+y+z+(b—c)(c—a) (a—b)=0.
a(y+3)=m b(s+2)=y, c(z+y)=2
22 » 2
a(l—b¢) b(l-ca) c(l—ab)

az+hy+9z=0, hx+by+fe=0, gr+fy+cz=0,

22 y? 22
be—f2 ca—gt ab—RE'
(be —1?) (ca - g*) (ab— k%) =(fg — ch) (gh—af ) (hf - bg).




CHAPTER 1II.
PROPORTION.

18. DerFiNiTION. When two ratios are equal, the four
quantities composing them are said to be proportionals. Thus
a ¢

if b=a then q, b, ¢, d are proportionals. This is expressed by

saying that a is to b as ¢ is to d, and the proportion is written
a:b:c:d;

or a:b=c:d.

The terms @ and d are called the extremes, b and ¢ the means.
19. If four quantities are in proportion, the product of the
extremes 18 equal to the product of the means.
Let a, b, c, d be the proportionals.
c
4’
whence ad = be.

Then by definition %:

Hence if any three terms of a proportion are given, the

fourth may be found. Thus if g, ¢, d are given, then b = a—g

Conversely, if there are any four quantities, a, b, ¢, d, such
that ad = be, then a, b, ¢, d are proportionals; @ and d being the
extremes, b and ¢ the means; or vice versé.

20. DerFiNiTION. Quantities are said to be in continued
proportion when the first is to the second, as the second is
to the third, as the third to the fourth; and so on. Thus
a, b ocd,...... are in continued proportion when

a b ¢
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1f three quantities a, b, ¢ are in continued proportion, then
a:b=b:c;
ac="0" [Art. 18.]

In this case b is said to be a mean proportional between a and
¢; and ¢ is said to be a third proportional to a and &.

21. If three quantities are proportionals the first is to the
third in the duplicate ratio of the first to the second.

Let the three quantities be a, b, ¢; the: 3 =g
Now “_%x b
¢c b ¢
LI
5758’
that is, a:c=a’: b

It will be seen that this proposition is the same as the definition
of duplicate ratio given in Euclid, Book v.

22. Ifa:b=c:dande:f=g:h, then will ae: bf:ég:dh.

For (—" ‘ andf W’
X9
T db’
or ae : bf =cg : dh.
Cor. If a:b=c:d,
and b:x=d:y,
then aix=c:y.

This is the theorem known as ex equali in Geometry.

23. If four quantities a, b, ¢, d form a proportion, many
other proportions may be deduced by the properties of fractions.
The results of these operations are very useful, and some of
them are often quoted by the annexed names borrowed from
Geometry.
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(1) Ifa:b=c:d, then b:a=4d :c. [ Invertendo.]
For b d’ therefore 1 —17 =1+
that is Il ‘}
a ¢’
or b:a=d:ec.
(2) Ifa:b=c:d, thena:c=5:d. [Altem.ando.]
ad _be
For ad = be ; therefore od " edt
. a b
that is, 5 = d;
or tc=b

3) Ifa:b=c:d,thena+b:b=c+d:d. [Componendo.]

For b d’ therefore b+1~a+1

. : a+db c+d
that is it
or a+b:b=c+d:d.

4) Ifa:b=c:d, then a—b:b=c—d:d. [Dividendo.]

a _ ¢
For 5= l' therefore Z——l a- 1;
. -b c¢-d
that is, T=T’
or a-b:b=c-d:d.
(b) Ifa:b=c:d, then a+b:a-b=c+d:c-d
a+d c+d
For by (3) e Rl o
a-b c—-d
and by (4) 5 =g
e e a+bd c+d
. by division, Pyy S ¥
or a+b:a-b=c+d:c—-d.

This proposition is usually quoted as Componendo and Divi-
dendo.

Several other proportions may be proved in a similar way.
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24. The results of the preceding article are the algebraical
equivalents of some of the propositions in the fifth book of Euclid,
and the student is advised to make himself familiar with them
in their verbal form. For example, dividendo may be quoted as
follows :

When there are four proportionals, the excess of the first above
the second ts to the second, as the excess of the third above the
Jourth 18 to the fourth.

25. 'We shall now compare the algebraical definition of pro-
portion with that given in Euclid.

Euclid’s definition is as follows :

Four quantities are said to be proportionals when if any equi-
multiples whatever be taken of the first and third, and also any
equimultiples whatever of the second and fourth, the multiple of
the third is greater than, equal to, or less than the multiple of the
fourth, according as the multiple of the first is greater than, equal
to, or less than the multiple of the second.

In algebraical symbols the definition may be thus stated :

Four quantities @, b, ¢, d are in proportion when pc z qd
<
according as pa Eqb, p and ¢ being any positive integers whatever.

I. To deduce the geometrical definition of proportion from
the algebraical definition.

Since % = gl’ by multiplying both sides by g , we obtain
pa_pe.
g ¢d’

hence, from the properties of fractions,
> . >
pe= ¢d according as pa= qb,
which proves the proposition.

II. To deduce the algebraical definition of proportion from
the geometrical definition.

Given that pc E qd according as pa E ¢b, to prove

o Q
ale
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a ¢
) d
Suppose g > (—;; then it will be possible to find some fraction g

If - is not equal to -, one of them must be the greater.

which lies between them, ¢ and p being positive integers.

Hence e TR 1),
;> M
¢c_9q

and S 2).
| o<1 @
From (1) pa=>gb;
from (2) pe<qd;

and these contradict the hypothesis.

Therefore - and :; are not unequal; that is ; which proves

_c
b b d
the proposition.

26. It should be noticed that the geometrical definition of pro-
portion deals with concrete magnitudes, such as lines or areas,
represented geometrically but not referred to any common unit
of measurement. So that Euclid’s definition is applicable to in-
commensurable as well as to commensurable quantities ; whereas
the algebraical definition, strictly speaking, applies only to com-
mensurable quantities, since it tacitly assumes that o is the same
determinate multiple, part, or parts, of b that ¢ is of d. But the
proofs which have been given for commensurable quantities will
still be true for incommensurables, since the ratio of two incom-
mensurables can always be made to differ from the ratio of two
integers by less than any assignable quantity. This has been
shewn in Art. 7 ; it may also be proved more generally as in the
next article.

27. Suppose that @ and b are incommensurable ; divide b
into m equal parts each equal to B, so that b=mf, where m is a
positive integer. Also suppose 8 is contained in a more than n
times and less than n + 1 times;

a_ nf (n+1)B
then Z>;Ll—3and<—m—3—,
that is, % Jies between — and n+l 5
b m m
50 that = differs from ”% by a quantity less tha.nl-”%. And since we

b
H. H. A 2
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can choose 3 (our unit of measurement) as small as we please, m can
be made as great as we please. Hence 5, can be made as small

as we please, and two integers n and m can be found whose ratio
will express that of @ and b to any required degree of accuracy.

28. The propositions proved in Art. 23 are often useful in
solving problems. In particular, the solution of certain equa-
tions is greatly facilitated by a skilful use of the operations com-
ponendo and dividendo.

Ezample 1.
If (2ma + 6mb + 3nc+ 9nd) (2ma — 6mb — 31w+997’13
=(2ma — 6mb + 8nc — Ind) (2ma + 6mb - 3nc - Ind),
prove that a, b, ¢, d are proportionals.
We have 2ma + 6mb + 3nc + Ind - 2ma+ 6mb — 8nc - 9nd _
2ma — 6mb + 3nc —9nd ~ 2ma — 6mb — 3nc + 9nd’
.. componendo and dividendo,
2 (2ma+3nc) _ 2 (2ma — 3nc)
2 (6mb+9nd) ~ 2 (6md—9nd)"
2ma+3nc _ 6mb+9nd

Alternando, 3ma—38nc  6mb-9nd’
Again, componendo and dividendo,
dma _ 12mb
6nc — 18nd’
a b
whence =
or a:b=c:d.

Example 2. Solve the equation
Nzl Jr=1 dz-1
,Jle -Jz-1 T2
‘We have, componendo and dividendo,
NEZSUR'22 8
Nt Tk
.2+l 162+ 8z41
"z-1 1629-24x+9"
Again, componendo and dividgndo,
2z _ 322%-16z+10

2 32z-8 '
. x__lGx'-’—S:c+5.
YT 16z-4
whence 1622 - 4r=162%-8z+5;
5

o $=Z.
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PROPORTION.

EXAMPLES. II.
Find the fourth proportional to 3, 5, 27.
Find the mean proportional between
(1) 6 and 24, (2) 360a* and 250a2b2,

Find the third proportional to §+% andg .

If a: b=c: d, prove that

4,
5.

6.

7.

a’c+ac : Vd+bdP=(a+c): (b+d).
pat+qgb? : pa®—gbi=pc?+qd? : pct—qd?:
a—c: b-d=Nal+ : Wb+ dk

NETS BB factS : \[1a1 D

If a, b, ¢, d are in continued proportion, prove that

8.
9.
10.
11.

12,

a:b+d=c: cd+dd.

2a+3d : 3a—4d=2a%+3b3 : 3a3— 455,

(a?+ b2+ c?) (b2 + 2+ d?) = (ab+ be+ cd)?

If b is a mean proportional between a and ¢, prove that

a?-b4cE

a=2-b 24t
Ifa:b=c:d,ande: f=g : A, prove that
ae+bf : ae—bf=cg+dh : cg—dh.

bt

Solve the equations:

13.

14,

15.

16.

17,

29 -3a%+a+1_ 32°-a4bs-13
-3 —w-1 3—a2-bs+13’

3rA+22—-22—-3 5244227 -T243
3A—224224+3 b5x4—2224+Txr-3°

(m4n)z—(a-b) (m4+n)r+ate
m—-n)z—(a+d) (m-n)z+a-c’

If a, b, ¢, d are proportionals, prove that

a+d=b+c+(“_—bl(‘i"—c).

If a, b, ¢, d, e are in continued proportion, prove that
(ab+be+cd + de)t = (a2 + b2+ c2+ d?) (b4 2+ dP +€?).

2L—2

19
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18. If the work done by #—1 men in x+1days is to the work don
by #+2 men in x -1 days in the ratio of 9 : 10, find 2.

19, Find four proportionals such that the sum of the extremes i
21, the sum of the means 19, and the sum of the squares of all fow
numbers is 442.

20. Two casks 4 and B were filled with two kinds of sherry, mixec
in the cask 4 in the ratio of 2 : 7, and in the cask B in the ratio o
1 : 5. What quantity must be taken from each to form a mixtum
which shall consist of 2 gallons of one kind and 9 gallons of the other?

21. Nine gallons are drawn from a cask full of wine; it is ther
filled with water, then nine gallons of the mixture are drawn, and the
cask is again filled with water. If the quantity of wine now in the casl
ge t(f the quantity of water in it as 16 to 9, how much does the casl

old ?

22, If four positive quantities are in continued proportion, shev
that the difference between the first and last is at least t times a
great as the difference between the other two.

23. In England the population increased 159 per cent. betwee:
1871 and 1881; if the town population increased 18 (Fer cent. and th
country population 4 per cent., compare the town and country popula
tions in 1871,

24, In a certain country the consumption of tea is five times th
consumption of coffee. If @ per cent. more tea and b per cent. mon
coffee were consumed, the aggregate amount consumed would be 7¢
cent. more; but if b per cent. more tea and @ per cent. more coffe
were consumed, the agiregate amount consumed would be 3¢ per cent
more : compare a and b.

25. Brass is an alloy of copper and zinc; bronze is an allo
containing 80 per cent. of copper, 4 of zinc, and 16 of tin. A fuse
mass of brass and bronze is found to contain 74 per cent. of copper, 1(
o£ lz)inc, and 10 of tin : find the ratio of copper to zinc in the compositios
of brass.

26. A crew can row a certain course up stream in 84 minutes
they can row the same course down stream in 9 minutes less tha
they could row it in still water: how long would they take to row dow:
with the stream?



CHAPTER IIIL
VARIATION.

29. DeriniTiION. One quantity 4 is said to vary directly
as another B, when the two quantities depend upon each other in
such a manner that if B is changed, 4 is changed in the same
ratio.

Norte. The word directly is often omitted, and 4 is said to vary
as B.

For instance: if a train moving at a uniform rate travels
40 miles in 60 minutes, it will travel 20 miles in 30 minutes,
80 miles in 120 minutes, and so on ; the distance in each case
being increased or diminished in the same ratio as the time.
This is expressed by saying that when the velocity is uniform
the distance 18 proportional to the time, or the distance varies as
the time.

30. The symbol o« is used to denote variation; so that
A o B is read “A varies as B.”

31. If A varies as B, then A is equal to B multiplied by some
constant quantity.

For suppose that a, a, a, a,...,5,0,0,b,... are corresponding
values of 4 and B.

Then, by definition, g =

72 = ..., each being equal to g.

any value of 4

Hence the corresponding value of B

is always the same

that is, 4 =m, where m is constant.

B
S A=mB,
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If any pair of corresponding values of 4 and B are known,
the constant m can be determined. For instance, if 4 =3 when
B=12,

we have 3=mx12;
m =1,
and A=1B.

32. DeFiNITION. One quantity 4 is said to vary inversely
as another B, when A varies directly as the reciprocal of B.

Thus if 4 varies inversely as B, 4 = , where m is constant,

The following is an illustration of inverse variation: If 6 men
do a certain work in 8 hours, 12 men would do the same work in
4 hours, 2 men in 24 hours; and so on. Thus it appears that
when the number of men is increased, the time is proportionately
decreased; and vice-versi.

Ezample 1, The cube root of x varies inversely as the square of y; if
=8 when y =38, find £ when y=14.
By supposition ,Q/m=;1-; , where m is constant.

Putting =8, y=3, we have 2=:—';’,

. m=18,
18 '
and ,g‘/x:—y—2;

hence, by putting y=g , we obtain 2=512.

Ezxample 2. The square of the time of a planet’s revolution varies as
the cube of its distance from the Sun; find the time of Venus’ revolution,
assuming the distances of the Earth and Venus from the Sun to be 91} and
66 millions of miles respectively.

Let P be the periodic time measured in days, D the distance in millions
of miles; we have P2 DB,

or Pi=kD?3,
where k is some constant.

For the Earth, 365 x 3656=Fkx 91} x 91} x 914,

4x4x4
whence L—_L’:(T’
.. P’=4X4X4D3.

364
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_4x4x4

For Venus, Pi= — x 66 x66x66;
365
whenoe P=4x66x , /264
365
=264 x /7233, approximately,
=264 x 85
=9224-4.

Hence the time of revolution is nearly 224} days.

33. DeriNiTION. One quantity is said to vary jointly as a
number of others, when it varies directly as their product.

Thus A4 varies jointly as B and C, when 4 =mBC. For in-
stance, the interest on a sum of money varies jointly as the
principal, the time, and the rate per cent.

34. DErFINITION. 4 is said to vary directly as B and in-

versely as C, when A varies as o

35. If A varies as B when C 13 constant, and A varies as C
when B is constant, then will A vary as BC when both B and C
vary.

The variation of 4 depends partly on that of B and partly on
that of C. Suppose these latter variations to take place sepa-
rately, each in its turn producing its own effect on 4 ; also let
a, b, ¢ be certain simultaneous values of 4, B, C.

1. Let C be constant while B changes to b; then 4 must
undergo a partial change and will assume some intermediate value
a’, where

4 B
DT s (1).

2. Let B be constant, that is, let it retain its value b, while '
changes to ¢; then 4 must complete its change and pass from its
intermediate value a’ to its final value a, where

a C
T ).
From (1) and (2) g;x% =%x(—j;
that is, =2.BC,

or A varies as BC,
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36. The following are illustrations of the theorem proved in
the last article.

The amount of work done by a given number of men varies
directly as the number of days they work, and the amount of
work done in a given time varies directly as the number of men;
therefore when the number of days and the number of men are
both variable, the amount of work will vary as the product of
the number of men and the number of days.

ain, in Geometry the area of a triangle varies directly as
its base when the height is constant, and directly as the height
when the base is constant; and when both the height and base
are variable, the area varies as the product of the numbers
representing the height and the base.

Ezample. The volume of a right circular cone varies as the square of the
radma of the base when the height is constant, and as the height when the
base is constant. If the radius of the base is 7 feet and the height 15 feet,
the volume is 770 cubic feet; find the height of a cone whose volume is 132
cubic feet and which stands on a base whose radius is 3 feet.

Let h and r denote respectively the height and radius of the base
measured in feet; also let ¥ be the volume in cubic feet.

Then ¥V =mr2h, where m is constant.

By supposition, T10=mxT*x15;
22
whence m=5y3
22
V= 31 72h.

.*. by substituting V= 132, r=38, we get
22
182=37 x9x h;

whence h=14;
and therefore the height is 14 feet.

37. The proposition of Art. 35 can easily be extended to the
case in which the variation of 4 depends upon that of more than
two variables. Further, the variations may be either direct or
inverse. The principle is interesting because of its frequent oc-
currence in Physical Science. For example, in the theory of
gases it is found by experiment that the pressure (p) of a gas
varies as the ‘“absolute temperature” (f) when its volume (v) is
constant, and that the pressure varies inversely as the volume
when the temperature is constant ; that is

p « t, when v is constant;
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and px % , When ¢ is constant.

From these results we should expect that, when both ¢ and v are
variable, we should have the formula

pe %, or pv =/kt, where % is constant ;

and by actual experiment this is found to be the case.

Ezample. The duration of a railway journey varies directly as the
distance and inversely as the velocity; the velocity varies directly as the
square root of the quantity of coal used per mile, and inversely as the
number of carriages in the train. In a journey of 25 miles in half an hour
with 18 carriages 10 owt. of coal is required; how much coal will be
consumed in a journey of 21 miles in 28 minutes with 16 carriages?

Let ¢ be the time expressed in hours,
d the distance in miles,
v the velocity in miles per hour,
¢ the number of ewt. of coal used per mile,
¢ the number of carriages.

‘We have t g,
and v ,\%q ,
whence tec :/% ,
or t= l:—/cqg , where k is constant.

Substituting the values given, we have (since q= ;—(5))
1 _kx18x25x5
D) Jio
J10

that is, k= o5 %36
N10.cd
Henee t= 35 36.g"

Bubstituting now the values of ¢, ¢, d given in the second part of the
question, we have

28 _ A/10x16x21

60~ 125x386.g '

J1I0x16x21 4

that is, ~/q=———75x28 =2—5~/10;
N _ 32
‘whence q—m.
21x32

Hence the quantity of coal is =5 #fx owt,

125
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EXAMPLES., III
1. If z varies as y, and =8 when y =15, find # when y=10.
2. If P varies inversely as @, and =7 when @=3, find P when

Q=23
3. If the square of x varies as the cube of , and =3 when y =4,

find the value of y when o=-1

NEN
4 A4 varies as B and O jointly; if A=2 when B=3 and =19,
find € when 4=>54 and B=3.

5. If A varies as C, and B varies as C, then 4 + B and /4B will
each vary as C.

6. If A varies as BC, then B varies inversely as;—‘i .

7. P varies directly as @ and inversely as R; also P=§ when

Q=§ and R=1%: find @ when P=4/48 and R=4/75,

8. If x varies as g, prove that 2%+ y2 varies as 22 - 32

9, If y varies as the sum of two quantities, of which one varies
directly as # and the other inversely as z; and if y=6 when =4, and
y=3} when x=3; find the equation between z and y.

10. If y is equal to the sum of two quantities one of which varies
as 2 directly, and the other as 22 inversely; and if y=19 when r=2, or
3; find y in terms of z.

11. If A varies directly as the square root of B and inversely as
the cube of C, and if 4=3 when B=256 and C'=2, find B when 4 =24

and 0=%.

12. Given that z+y varies as z+%, and that —y varies as z—% ,

find the relation between x and z, provided that z=2 when x=3 and
y=1.

13. If A varies as B and C jointly, while B varies as D3, and ¢
varies inversely as 4, shew that A varies as D.

14, If y varies as the sum of three quantities of which the first is
constant, the second varies as z, and the third as 2?; and if y=0 when
x=1, y=1 when =2, and y=4 when x=3; find y when x="1.

15. When a body falls from rest its distance from the starting
point varies as the square of the time it has been falling : if a body falls
through 402} feet in 5 seconds, how far does it fall in 10 seconds?
Also how far does it fall in the 10t second ?
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16. Given that the volume of a sphere varies as the cube of its

radius, and that when the radius is 33 feet the volumeis 179% cubic
feet, find the volume when the radius is 1 foot 9 inches.

17. 'The weight of a circular disc varies as the square of the radius
when the thickness remains the same; it also varies as the thickness
when the radius remains the same. Two discs have their thicknesses
in the ratio of 9 : 8; find the ratio of their radii if the weight of the
first is twice that of the second.

18. At a certain regatta the number of races on each day varied
Jjointly as the number of days from the beginning and end of the regatta
up to and including the day in question. On three successive days
there were respectively 6, 5 and 3 races. Which days were these, and
how long did the regatta last?

19. The price of a diamond varies as the square of its weight.
Three rings of equal weight, each composed of asgiamond set in gold,
have values £a, £b, £¢, the diamonds in them weighing 3, 4, 5 carats
respectively. Shew that the value of a diamond of one carat is

+
£ ((‘fz_c - ) )
the cost of workmanship being the same for each ring.

20, Two persons are awarded pensions in proportion to the square
root of the number of years they have served. One has served 9 years
longer than the other and receives a pension greater by £50. If the
length of service of the first had exceeded that of the second by 4} years
their pensions would have been in the proportion of 9 : 8. ilow long
had they served and what were their respective pensions?

21. The attraction of a planet on its satellites varies directly as
the mass (M) of the planet, and inversely as the square of the distance
(D) ; also the square of a satellite’s time of revolution varies directly
as the distance and inversely as the force of attraction. If m,, d,, ¢,

all:;l My, dy, 1y, are simultaneous values of M, D, T respectively, prove
that

mt? _d}

myt? d¥

Hence find the time of revolution of that moon of Jupiter whose
distance is to the distance of our Moon as 35 : 31, having given
that the mass of Jupiter is 343 times that of the Earth, and that the
Moon’s period is 27-32 days.

22. The consumption of coal by a locomotive varies as the square
of the velocity ; when the speed is 16 miles an hour the consumption of
coal per hour is 2 tons: if the price of coal be 10s. per ton, and the other

expenses of the engine be 11s. 3d. an hour, find the least cost of a journey
of 100 miles,




CHAPTER 1IV.
ARITHMETICAL PROGRESSION,

38. DErFINITION. Quantities are said to be in Arithmetical
Progression when they increase or decrease by a common dif-
Jerence,

Thus each of the following series forms an Arithmetical
Progression :

8,2 —4 —10,.ccceerreneennnn..

The common difference is found by subtracting any term of
the series from that which follows it. In the first of the above
examples the common difference is 4 ; in the second it is — 6 ; in
the third it is d.

39. If we examine the series
a, a+d, a+2d, a+3d,...
we notice that in any term the coefficient of d is always less by one
than the number of the term in the series.
Thus the 3" term is a + 2d ;
6t term is a+ 5d ;
20t term is a + 19d;
and, generally, the p'termisa+(p—1)d.

If n be the number of terms, and if ! denote the last, or
n'® term, we have l=a+(n-1)d.

40. To find the swm of a number of terms in Arithmetical
Progression.

Let a denote the first term, d the common difference, and n
the number of terms. Also let ! denote the last term, and s
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the required sum ; then
s=a+(a+d)+(a+2d)+ ...+ (-2d)+(I-d)+;
and, by writing the series in the reverse order,
s=l+(l-d)+({-2d)+ ...+ (a+2d)+ (¢ +d) +a.
Adding together these two series,
2=(a+l)+(@a+l)+(a+0)+... ton terms

=n(a+l),
B (B D)ereerereeeeeeeeeee e, 1);
and I=a4 (=11 ceeers eoeeeriirieeeeeenns (@),
a={2a4 (= 1) s (3).

41. In the last article we have three useful formule (1),
(2), (3); in each of these any one of the letters may denote
the unknown quantity when the three others are known. For
instance, in (1) if we substitute given values for s, n, /, we obtain
an equation for finding a; and similarly in the other formule.
But it is necessary to guard against a too mechanical use of these
general formulse, and it will often be found better to solve simple
questions by a mental rather than by an actual reference to the
requisite formula.

Ezample 1. Find the sum of the series 5}, 63, 8,...... to 17 terms.
Here the common difference is 1}; hence from (3),

the sum g’{zxgnexu}

= ? 7 (11.420)
_17x31

= )
=2634.

Ezample 2. The first term of a series is 5, the last 45, and the sum
400: find the number of terms, and the common difference.

If n be the number of terms, then from (1)

400='§"(5+45);
whence n=16.
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If d be the common difference
45=the 16" term=5+15d;
whence d=2%.

42. 1If any two terms of an Arithmetical Progression be
given, the series can be completely determined; for the data
furnish ¢{wo simultaneous equations, the solution of which will
give the first term and the common difference.

Ezample. The 54" and 4* terms of an A.P. are — 61 and 64; find the
23" term.

If a be the first term, and d the common difference,
— 61=the 54* term=a + 53d;

and 64=the 4" term=a+3d;
whence we obtain d= -g, a=T1%;

and the 23" term=a + 22d =164}.

43. DeriNiTioN. When three quantities are in Arithmetical
Progression the middle one is said to be the arithmetic mean of
the other two.

Thus a is the arithmetic mean between a — d and a + d.

44. To find the arithmetic mean between two given quantities.

Let a and b be the two quantities; 4 the arithmetic mean.
Then since a, 4, b are in A.P. we must have

b—-4=A4A-a,
each being equal to the common difference ;
whence 4= ‘}_;_IZ .

45. Between two given quantities it is always possible to
insert any number of terms such that the whole series thus
formed shall be in A.P.; and by an extension of the definition in
Art. 43, the terms thus inserted are called the arithmetic means.

Ezample. Insert 20 arithmetic means between 4 and 67.

Including the extremes, the number of terms will be 22; so that we have
to find a series of 22 terms in A.P., of which 4 is the first and 67 the last.

Let d be the common difference ;
then 67 =the 22 term =4 +21d;

whence d=38, and the series is 4, 7, 10,...... 61, 64, 67;
and the required means are 7, 10, 13,...... 58, 71, 64.
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46. To insert a given number of arithmetic means between
two given quantities.
Let a and b be the given quantities, n the number of means.

Including the extremes the number of terms will be n +2;
go that we have to find a series of n+ 2 terms in A.P., of which
a is the first, and b is the last.

Let d be the common difference ;

then b= the (n+ 2) term
=a+(n+l)d;
whence d=b—t—a;
n+1
and the required means are
a+1{:-‘, a+2—<i_—a), ...... wr2b-9)
n+1l n+1 n+1

Ezample 1. The sum of three numbers in AP, is 27, and the sum of
their squares is 293 ; find them.

Let a be the middle number, d the common difference; then the three
numbers are a - d, a, a +d.

Hence a-d+ata+d=27;
whence a=9, and the three numbers are 9-d, 9, 9+d.
oo (9-d)2+81 + (9+d)?=293;
whence d==x5;
and the numbers are 4, 9, 14.

Ezample 2. Find the sum of the first p terms of the series whose
n* term is 3n - 1.

By putting n=1, and n=p respectively, we obtain
first term =2, last term=3p-1;

sum=% (2+3p-1) =g Bp+1).

EXAMPLES. IV.a.

1. Sum 2, 3}, 4},... to 20 terms.
2. Sum 49, 44, 39,... to 17 terms.

3 Sum3, 2 7

1 30 1g- to 19 terms.
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9.
10.
11.
12,

13.

14,
15,
16.
17.
18.
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Sum 3, %,
Sum 375, 35, 3:25,... to 16 terms.

Sum —74, -7, —63,... to 24 terms.
Sum 1-3, —31, —7°5,... to 10 terms.

3J3, 1—,23,... to 50 terms.
LY

1§,... to » terms,

6
Sum 75 N

Sum ib’ A/5,... to 25 terms,

3
NEAN]
Sum a—3b, 2a—5b, 3a—Tb,... to 40 terms.
Sum 2a - b, 4a — 3b, 6a — 5b,... to n terms.
Suma—-'-—b Sa—b

g ' % —2—,...to2lterms.

Insert 19 arithmetic means between i and —93.

Insert 17 arithmetic means between 3} and —413.

Insert 18 arithmetic means between — 35+ and 3.

Insert # arithmetic means between 22 and 1.

Find the sum of the first » odd numbers,

In an A, P. the first term is 2, the last term 29, the sum 155;

find the difference.

19,

The sum of 15 terms of an A. P. is 600, and the common differ-

ence is 5; find the first term.

20.

The third term of an A.P. is 18, and the seventh term is 30 ;

find the sum of 17 terms.

21, The sum of three numbers in A. P. is 27, and their product is
504; find them,

22.

The sum of three numbers in A. P. is 12, and the sum of their

cubes is 408; find them.

R B

8 8

_ Find the sum of 15 terms of the series whose n* term is 4n+ 1.

Find the sum of 35 terms of the series whose p* term is%’+2.

Find the sum of p terms of the series whose n* term is g+ b.

Find the sum of » terms of the series
2a2-1 4a 3 6a2-5

) a) a bARA
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47. In an Arithmetical Progression when s, a, d are given,
to determine the values of n we have the quadratic equation

0= {20+ (-1}

when both roots are positive and integral there is no difficulty
in interpreting the result corresponding to each. In some cases
a suitable interpretation can be given for a negative value of .

Ezample. How many terms of the series -9, —6, —3,... must be
taken that the sum may be 66 ?

Here 3{-18+(n-1)8}=66;
that is, n?-Tn-44=0,
or (n-11) (n+4)=0;
v n=1lor -4,

If we take 11 terms of the series, we have
-9, -6, -8,0,8,6,9, 12, 15, 18, 21;
the sum of which is 66.

If we begin at the last of these terms and count backwards four terms, the
sum is also 66; and thus, although the negative solution does not directly
answer the question proposed, we are enabled to give it an intelligible meaning,
and we see that it answers a question closely connected with that to which
the positive solution applies.

48, We can justify this interpretation in the general case in
the following way. .
The equation to determine # is
dn’+(2a-d)n—-28=0.......... ...... 1).

Since in the case under discussion the roots of this equation have
opposite signs, let us denote them by n, and -n, The last
term of the series corresponding to n, is

a+(n,-1)d;

if we begin at this term and count backwards, the common
difference must be denoted by —d, and the sum of n, terms is

22:{2 (@+n ~1d) +(n,-1) (- d)}»

and we shall shew that this is equal to s.
H. H. A. 3
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For the expression =7—;—’ {2a +(2n, - n, — l)d}

{2a/n +2nnd—-n,(n,+ l)d}

mn—a

-3 {2nln,d — (dn?- Ja=d. n,)}

= 1(4.&1—2.3) =3,
since —n, satisfies dn'+(2a—d)n—28=0, and —nmn, is the
product of the roots of this equation,

49. When the value of # is fractional there is no exact num-
ber of terms which corresponds to such a solution.

Ezample. How many terms of the series 26, 21, 16,...must be taken to
amount to 74 ?

Here 3 {52+ (n-1)(~6)}=T4;
that is, 502 - 57n+148 =0,
or (n-4)(5n-387)=0;

o n=4o0r 74,
Thus the number of terms is 4. It will be found that the sum of 7 terms
is greater, while the sum of 8 terms is less than 74.
50. We add some Miscellaneous Examples.
Ezample 1. The sums of n terms of two arithmetic series are in the
ratio of Tn+1 : 4n+4-27; find the ratio of their 11% terms,

Let the first term and common difference of the two series be a;, d, and
a,, d, respectively.

2¢,+(n-1)d, _ Tn+1

We have %4, +(n-1)d, n+37°
a,+10d, |
2,+10d,°

Now we have to find the value of

hence, by putting n=21, we
obfain
2a,+20d, 148 4
2a,+20d, 111" 3’
thus the required ratio is 4 : 3.
Ezample 2. If S, 8, f S are the sums of n terms of arithmetic
2,38

geries whose first terms s.re .. and whose common differences are
1,38, 5, 7,...; find the value of

Sy +8s+Sg+ ... +8,e
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We have 8i=3 {2+(n-1);=’L;”,
Sy=] 4+ (m-1) 3 =2E2EL),
n

Sy=2{6+(n-1)5}=

n(5n+1)
3 7

S,=g {2p+(ﬂ—l) (21)—1)}_—:; {(2p—l)n+1};

.~. the required sum = g {(n+1)+@n+1)+......2p - 1. n+1)}

=g{(n+3n+5n+...§1ﬁ + n) +p}
=3 {n(1+3+5+...29- 1) +p}

= (' +p)

='—'§ (np+1).

EXAMPLES. IV.b.

1. Given a= -2, d=4 and $=160, find .

2. How many terms of the series 12, 16, 20,... must be taken to
make 2087

8. Inan A.P. the third term is four times the first term, and the
sixth term is 17; find the series.
4, The 2%, 31%, and last terms of an A.P. are 73, % and -6}

respectively ; find the first term and the number of terms.

5. The 4, 42" and last terms of an A.P. are 0, —95 and —-125
respectively; find the first term and the number of terms. )

6. A man arranges to pag off a debt of £3600 by 40 annual
instalments which form an arithmetic series. When 30 of the instal-
ments are paid he dies leaving a third of the debt unpaid: find the
value of the first instalment.

7. Between two numbers whose sum is 2} an even number of
arithmetic means is inserted; the sum of these means exceeds their
number by unity : how many means are there ?

8. The sum of n terms of the series 2, 5, 8,... is 950: find .
3—2
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. 1 1 1
9, Sumthesenesm, m, m, ... to n terms.

10, If the sum of 7 terms is 49, and the sum of 17 terms is 289,
find the sum of » terms.

11, If the p*, ¢*t, st terms of an A. P. are a, b, ¢ respectively, shew

hat (@-7)a+(r-p) b+ (p—q)c=0.

. 12. The sum of p terms of an A. P. is ¢, and the sum of ¢ terms is
p; find the sum of p + ¢ terms.

.13, The sum of four integers in A.P. is 24, and their product is
945; find them.

14, Divide 20 into four parts which are in A. P., and such that the
roduct of the first and fourth is to the product of the second and third
1n the ratio of 2 to 3.

. 15. The pth term of an A. P, is g, and the ¢** term is p; find the
mte term,

16, How many terms of the series 9, 12, 15,... must be taken to
make 3067

17, If the sum of n terms of an A. P. is 2n+ 3n3, find the 7" term.

18, If the sum of m terms of an A. P. is to the sum of » terms as
m? to n?, shew that the m** term is to the n** term as 2m —1is to 2n— 1.

19. Prove that the sum of an odd number of terms in A. P. is equal
to the middle term multiplied by the number of terms.

20, If s=n(5n- 3) for all values of n, find the p* term.

21. The number of terms in an A. P. is even; the sum of the odd
terms is 24, of the even terms 30, and the last term exceeds the first by
10}: find the number of terms.

22. Thereare two sets of numbers each consisting of 3 termsin A. P,
and the sum of each set is 15, The common difference of the first set
is greater by 1 than the common difference of the second set, and the
product of the first set is to the product of the second set as 7 to 8: find
the numbers.

23. Find the relation between » and y in order that the r** mean
between x and 2y may be the same as the »* mean between 2 and g,
7 means being inserted in each case.

24, If the sum of an A. P. is the same for p as for ¢ terms, shew
that its sum for p+ ¢ terms is zero.



CHAPTER V.
GEOMETRICAL PROGRESSION.

51. DerFiNiTION. Quantities are said to be in Geometrical
Progression when they increase or decrease by a constant factor.

Thus each of the following series forms a Geometrical Pro-
gression :

3, 6, 12, 24, ...l
, 1101

B T g reeeeee
a, ar, art, ar’, .................

The constant factor is also called the common ratio, and it is
found by dividing any term by that which immediately precedes
it. In the first of the above examples the common ratio is 2 ; in

the second it is — %; in the third it is s

52. If we examine the series

we notice that ¢n any term the index of r is always less by one
than the number of the term in the series.

Thus the 3™ term is ar*;
the 6t term is ar*;
the 20% term is ar'®;

and, generally, the p't term is a2,
If » be the number of terms, and if ! denote the last, or n*t
term, we have l=ar""\

53. DrriNniTioN. When three quantities are in Geometrical
Progression the middle one is called the geometric mean between
the other two.
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To find the geometric mean between two given quantities.

Let a and b be the two quantities; G the geometric mean.
Then since a, G, b are in G. P.,

s_¢
G a’
each being equal to the common ratio ;
. G;=ab ;
whence G =,Jab.

54. To insert a given number of geometric means between
two given quantities.
Let a and b be the given quantities, n the number of means.

In all there will be n+ 2 terms; so that we have to find a
series of n + 2 terms in G. P., of which a is the first and b the last.
Let 7 be the common ratio ;
then b=the (n + 2)™ term
n41,

=ar 5
ntl b

St =—

1
¥

a
r=(§)" e (1).

Hence the required means are ar, ar’,... ar", where r has the
value found in (1).

Ezample, Insert 4 geometric means between 160 and 5.

. ‘;Ve have to find 6 terms in G. P. of which 160 is the first, and 6 the
sixth.
Let r be the common ratio;
then §=the sixth term
=16075;

whence r==:

and the means are 80, 40, 20, 10.
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55. To find the sum of a number of terms in Geometrical
Progression.

Let a be the first term, » the common ratio, n the number of
terms, and 8 the sum required. Then

multiplying every term by r, we have
. ré=ar+ar+ ... +ar" " +ar" T +art

Hence by subtraction,
re—s=ar" —a;

sr=1)s=a(-1);

G2 VI

.................... 1).
r—-1 "7 @
Changing the signs in numerator and denominator,
_a(l-7") 9
8= —1_—”‘— ........................... ( ).

Nore. It will be found convenient to remember both forms given above
for s, using (2) in all cases except when r is positive and greater than 1.

8inoe ar*~1=1, the formula (1) may be written

rl-a

g=——0
r-1’

& form which is sometimes useful.

Ezample. Sum the series g , =1, g, .....

2 8\7
2(;_ (__
the sum =3 2)



40 HIGHER ALGEBRA.

. . 1 1 1
56. Consider the series 1, 51 gar ghreeee

The sum to n terms ==T

From this result it appears that however many terms be
taken the sum of the above series is always less than 2. Also we
see that, by making » sufficiently large, we can make the fraction
5,1_7 as small as we please. Thus by taking a sufficient number
of terms the sum can be made to differ by as little as we please
from 2.

In the next article a more general case is discussed.

57. From Art. b5 we have 8___(1(11__—::'_)
.8 o
T l-r 1l-r’

Suppose r is a proper fraction; then the greater the value of
n the smaller is the value of #*, and consequently of {n_'r"r ; and

therefore by making = sufliciently large, we can make the sum of
a

n terms of the series differ from i

by as small a quantity as

we please.
This result is usually stated thus: the sum of an infinite

number of terms of a decreasing Geometrical Progression is l—a—r ;

or more briefly, the sum to infinity is l_a_!: .

Ezxample 1. Find three numbers in G.P. whose sum is 19, and whose
product is 216.

Denote the numbers by ‘—:. a, ar; then gx axar=216; hence a=6, and

the numbers areg , 6, 6r.
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) §+6+6r=19;

. 6-13r+6r2=0;

3 2
whence T =50rg.

Thus the numbers are 4, 6, 9.

Ezample 2. The sum of an infinite number of terms in G. P. is 15, and
the sum of their squares is 45 ; find the series.
Let a denote the first term, » the common mtlo then the sum of the

temuus—, and the sum of their squares is lar'

Hence l—‘j—r= 150 ceeeeeeeeeeeeees s (1),
r‘_"—r,=45 ....................................... (@)
Dividing (2) by (1) 1aTr=3 ....................................... @),
and from (1) and (3) }_-*Z:s;
whence r=§ , and therefore a=3.
Thus fhe series is 5, ao, %0, ......

EXAMPLES. V.a.

1. Sum%, %, %,...to 7 terms.
2. Sum -2, 24, —3},... to 6 terms,
3. Sum— 1}, 3,... to 8 terms.

P

Sum 2, —4, 8,... to 10 terms.
Sum 162, 54, 1'8,... to 7 terms.
Sum 1, 5, 25,... to p terms.
Sum 3, —4, }9,
3
Sum 1, 4/3, 3,... to 12 terms.

o o

to 2n terms.

L

to 7 terms.

8
Sllsz, —2, J—2,...
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11 3 '
—5, —2-, —z, .. to 7 terms.

11, Insert 3 geometric means between 2} and % .

10. Sum

12. TInsert 5 geometric means between 3§ and 404.

13. Insert 6 geometric means between 14 and — 6?1 .

Sum the following series to infinity:

14, g’ -1, g;--- 15, -45, ‘015, ‘0005,...
- 16, 1665, —1°11, “74,... 17. 371, 372 373,...
18. 3, V3, 1,. 19. 7, J42, 6,..

20, The sum of the first 6 terms of a G.P. is 9 times the sum of
the first 3 terms; find the common ratio.

21. The fifth term of a G. P. is 81, and the second term is 24; find
the series.

22. The sum of a G.P. whose common ratio is 3 is 728, and the
last term is 486; find the first term.

23. Ina Q. P. the first term is 7, the last term 448, and the sum
889; find the common ratio.

* 24, The sum of three numbers in G. P. is 38, and their product is
1728; find them.

25. The continued product of three numbers in G. P. is 216, and
the sum of the product of them in pairs is 156; find the numbers.

26. denote the sum of the series 147741+ .., ad inf.,, and
s, the sum ofp the series 1 -+~ ad inf, prove that
Sp+8,= 282,.

27. If the p't, gt 7*t terms of a G. P. be @, b, ¢ respectively, prove
al-Thr-rer-e=1,

28. The sum of an infinite number of terms of a G. P, is 4, and the
sum of their cubes is 192 ; find the series.

58. Recurring decimals furnish a good illustration of infinite
" Geometrical Progressmns
Example. Find the value of 433,
495=-4232323......

O N
10 " 1000 " 100000 "
4 23 23

=107 ips
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. a4 23 1 1
that is, 4%_ﬁ+ﬁ3(1+f5’+ﬁ‘+ ...... )

_4, 8 1
"0t T
102
_4 + 23 100
T107 103 99
_4,
=101 390
_419
~990°
which agrees with the value found by the usual arithmetical rule.

59. The general rule for reducing any recurring decimal to
. a vulgar fraction may be proved by the method employed in the
last example; but it is easier to proceed as follows,

To find the value of a recurring decimal.

Let P. denote the figures which do not recur, and éuppose
them p in number; let @ denote the recurring period consisting of
g figures ; let D denote the value of the recurring decimal ; then

D=-PQQqQ............ ;
o100 x D=P@QQQ............ ;
and 10**x D= PQ-QQQ .. ...... ;
therefore, by subtraction, (10°*/— 10°) D=PQ - P;
that is, 10°(10°=1) D=PQ - P;
PQ-P
- D =(10,L_1)m,.

Now 10— 1 is a number consisting of ¢ nines; therefore the
denominator consists of ¢ nines followed by p ciphers. Hence
we have the following rule for reducing a recurring decimal to a
vulgar fraction :

For the numerator subtract the integral number consisting of
the mon-recurring figures from the integral number consisting of
the non-recurring and recwrring figures; for the denominator take
a number consisting of as many nines as there are recurring figures
Jollowed by as many ciphers as there are non-recurring figures.
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60. To find the sum of n terms of the series
a, (a+d)r, (a+2d)r?, (a+3d)r’.........
in which each term is the product of corresponding terms in an
arithmetic and geometric series.
- Denote the sum by §'; then

S=a+(@+d)r+(a+2d)r' + ... +(a+n—1d)r;
~ r8= ar + (a+d)r*+ ... +(a+n=2d)r" '+ (@+n—1d)r".

By subtraction,

S(l-r)=a+(dr+dr'+..+dr"")=(a+n-1d)r"
=a+ ____dr(l T l)—(a.+'n 1d)»*; |

. S=_a_+dr(l r"')_(a+'n l(l)'r
o 1-7r (1-7ry 1-r

Cor. Write § in the form
LI dr dr _(a+nTld)r".
=7y (Q1-7¢ 1-r ’
then if r<1, we can make 7" as small as we please by taking =

sufficiently grea.t In this case, assuming that all the terms which
mvolver"canbemadeso small that they may be neglected, we

obtain 1= (1 pr for the sum to infinity. 'We shall refer
to this pomt again in Chap, XXT.

In summing to infinity series of this class it is usually best to
proceed as in the following example.

Ezample 1. 1If <1, sum the series
14224323 +42%+...... to infinity.
Let 8=1+2z+32%+4a3+...... 3

=1
T1-z°

S=(—~1_x)§.
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Ezample 2. 8umtheseﬁesl+§+51,+g+-~-t°"m
4 7 10 8n-2
Let S=1+E+-5_’+ 5,'*' ...... +_5;-:l ’
1 1,47 Sn-5 B8a-2
. gs= 5-|-5—’-|-5--’-|- ...... + FA1 ™
4 3 3 8 8 Sn-2
. ES--_-]_.|. 3+5-’+E’+ ...... +5'_|) 33
8 1 1 1 8n-2
=1+E 1+E+5—’+ ...... +5u-! T T
1 L
1.3 T 51 8n-2
1-2
5
3 1 3n-2
=1+Z(1 pn-1 i3
=7 1247,
S L
86 12n+17

8=~ 16. 51"

EXAMPLES. V.b.

Sum 1+2a+3a®+4a3+... to n terms.
3.7 15 31

Sum l-l-z-l-ﬁ +6‘4+2—5§

Sum 1+ 32+ 522+ 723+ 924+ ... to infinity.
2 3 4

Sum l+§+2—,+§,+... to n terms.

3,5 7 soas
sum1+§+a+§+...tomﬁmty.

L

+... to infinity.

0 o

[

o

Sum 1+32+622+1023+... to infinity.

. Prove that the (n + 1) term of a G. P., of which the first term
is @ and the third term b, is equal to the §2n+ 1)t term of a Q. P. of
which the first term is @ and the fifth term b.

8. The sum of 2 terms of a G. P. whose first term ia @ and com-
mon ratio r is egual to the sum of » of a G. P. whose first, term is b and
common ratio 13, Prove that b is equal ta the sum of the first, twa
terms of the first series. .

N
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9. Find the sum of the infinite series
1+(1+0)r+(1+0+0%) 72+ (1 +0+ 02+ 5% 3 +...,
r and b being proper fractions.
10, The sum of three numbers in G. P. ig 70; if the two extremes

be multiplied each by 4, and the mean by 5, the products are in A. P.;
find the numbers.

11. The first two terms of an infinite G. P. are together equal to 5,
and every term is 3 times the sum of all the terms that followit; find -
the series.

Sum the following series :
12. z+a, 22+2a, 23+ 3a... to n terms.

13. z(z+y)+22(22+y)+23(23+2%)+... to n terms.
1 1
L 5“+ﬁ+“' to 2p terms.
2 3 2 3 2 3 . .
§+3—,+§3+3—,+ ;;‘5"‘373""-- to infinity.
4 5 4 5 4 5 . .
7= .7,4'7—3— 7—4+7_5—73+... to infinity.
17. Ifa, b, ¢, d be in G. P., prove that
| (B 0P+ (o - @+ (d— B =(a— P
18, If the arithmetic mean between a and b is twice as great as the
geometric mean, shew that @ : 5=2+.4/3 : 2-4/3.
19. Find the sum of = terms of the series the 7** term of which is
(2r+1)2n

20. Find the sum of 2n terms of a series of which every even term
is a times the term before it, and every odd term ¢ times the term
before it, the first term being unity.

21. If S, denote the sum of » terms of a G. P. whose first term is
a, and common ratio r, find the sum of §;, Ss, Ss,...Spn—1-

22. If 8, 8, 8,...8, are the sums of infinite geometric series,
whose first terms are 1, 2, 3,...p, and whose common ratios are

14, a+%, 3a—
15.

16.

111 ——l—res ectivel
232" pr1 % Ys

prove that S1+S,+S,,+...+S,,=’—2’(p+3).

23. If » <1 and positive, and m is & positive integer, shew that
@m+1)rm(1—r)<1—rim+l
Henoe shew that n:® is indefinitely small when = is indefinitely great.
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HARMONICAL PROGRESSION. THEOREMS CONNECTED WITH
THE PROGRESSIONS.

61. DeriniTION. Three quantities a, b, ¢ are said to be in
Harmonical Progression when ‘—: = Z—_—i .

Any number of quantities are said to be in Harmonical
Progression when every three consecutive terms are in Har-
monical Progression.

62. The reciprocals of quantities in Harmonical Progression
are in Arithmetical Progression.

By definition, if @, b, ¢ are in Harmonical Progression,

a a-b,

¢ b-¢’

sa-c)y=c(a-0),

dividing every term by abc,
1

(4

p—

1 1
b a’

ol =

which proves the proposition.

63. Harmonical properties are chiefly interesting because
of their importance in Geometry and in the Theory of Sound:
. in Algebra the proposition just proved is the only one of any
importance. There is no general formula for the sum of any
number of quantities in Harmonical Progression. Questions in
H. P. are generally solved by inverting the terms, and making use
of the properties of the corresponding A. P. .
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64. To find the harmonic mean between two given quantities.
Let a, b be the two quantities, H their harmonic mean;

11 lare in A, P.;

thena, E, b
1.1 1 1
"H a"3
2_ 1,1
H «a™ ¥
2ab
H=m.

Example. Insert 40 harmonic means between 7 and % .
Here 6 is the 42" term of an A, P. whose first term is;; let d be the

common difference ; then

1 1
6=7+41d, whenced-ﬁ.
Thus the arithmetic means are 7 ;,47—1, and therefore the har-

monic means are 3§, 23,... 47—1 .

65. If 4, G, H be the arithmetic, geometric, and harmonic
means between a and b, we have proved

a+bd
A—‘-’—Q‘- .............................. (1)
G=Jab ....ccovveaiiniiine. (2)
2ab
=m ............................. (3)

Therefore Ag=2*8 29 _ e,
2 ‘a+bd

that is, @ is the geometric mean between 4 and H.

From these results we see that
a+b — a+b—2\/a7b
A—G:—‘Z——A,‘/ab=——2——
_ (Na= b\,

(s
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which is positive if @ and b are positive ; therefore the arithmetic
mean of any two positive quantities is greater than their geometric
mean.

Also from the equation G®=AH, we see that @ is inter-
mediate in value between 4 and H; and it has been proved that
4 > @, therefore @ > H ; that is, the arithmetic, geometric, and
harmonic means between any two positive quantities are in descending
order of magnitude.

66. Miscellaneous questions in the Progressions afford scope
for skill and ingenuity, the solution being often neatly effected
by some special artifice. The student will find the following
hints useful.

1. If the same quantity be added to, or subtracted from, all
the terms of an A.P., the resulting terms will form an A.P. with
the same common difference as before. [Art. 38.]

2. If all the terms of an A.P. be multiplied or divided by
the same quantity, the resulting terms will form an A.P., but
with a new common difference. [Art. 38.]

3. If all the terms of a G.P. be multiplied or divided by the
same quantity, the resulting terms will form a G.P. with the
same common ratio as before. [Art. 51.]

4, Ifa,bd,c d... arein G.P., they are also in continued pro-
portion, since, by definition,

=

Conversely, a series of quantities in continued proportion may
be represented by x, xr, xr’,.......

Ezample 1. If a% 12, c? are in A.P., shew that b+¢, c+a, a+b are
in H.P.

By adding ab+ac+ be to each term, we see that
ad+ab+ac+be, b3+ba+bec+ae, c*+ca+ch+abarein AP.;

that is (a+b) (a+c), (b+c)(b+a), (c+a)(c+D)arein A, P,
.*., dividing each term by (a + b) (b +¢) (c +a),

1 1 1 R
b3¢’ cxa’ maremA.P.,
that is, b+c, c+a, a+darein H.P.

H.H. A LN
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Ezample 2. If 1 the last term, d the common difference, and s the sum
of n terms of an A. P. be connected by the equation 8ds=(d + 213, prove that

d=2a.

Since the given relation is true for any number of terms, put n=1; then

a=l=s.

Hence by substitution, 8ad=(d +2a)?,

or (d-2a)?=0;
o d=2a.
Ezample 3. If the p*, ¢*, 7", 8" terms of an A.P. are in G. P., shew that
p-¢,9-1,r—8arein G.P.

‘With the usual notation we have
c}t(p—1)d=a+(q—1)d_a+(r—1)d
a+(g-1)d a+(r-1)d a+(s-1)d

.. each of these ratios
_fatl@-Ddj-{at(g-1)d} _{at+(g-1)d}-{a+(r-1)a}
Tlat(g-1)d}-{a+(r-1)d}  {a+(r-1)d} - {a+(s-1)d}

[Art. 66. (4)];

==,

Hencep-g,g—1,7~5arein G.P.

67. The numbers 1, 2, 3,...... are often referred to as the
natural numbers ; the n'* term of the series is », and the sum of

the first » terms is% (n+1).

68. To find the sum of the squares of the first n natural

numbers.
Let the sum be denoted by S'; then
S=1"+2"+3*+...... +n'

‘We have = (n-1P=3n"-3n+1;
and by changing = into n—1,
n—-1°~(n—-2>=3(n~-1°-3(n-1)+1;
similarly (n—2)°—(n—3)’=3(n—-2)'-3(n-2)+1;
3P-2°=3.3"-3.3+1;
2%-1°=3.2"~3.2+1;
1°-0°=3.1"-3.1+1.
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Hence, by addition, ‘
P=3(1"+2°+3"+ ... +7°)-3(1+2+3+... +n) +n
_3n (1:;+ 1)+n.

&

=38
3S=n“-—n+-——3n(7;+ 1)

=n(n+1)(n-1+3);

_n(n+l1)(2n +_ll

S 6

69. To find the sum of the cubes of the first n natural
numbers.
Let the sum be denoted by §; then
S=12+224+3"+...... + 0
‘We have nt—(n-1)=4n"-6n"+4n-1;
n-1)-(n-2)=4(n-1*-6(n—-1)°+4 (n-1)-1;
n-2)-(n-38)'=4(n-2)-6(n-2)"+4(n-2)-1;

3'-2'=4.3-6.3+4.3-1;
20 -1'=4.2-6.2"+4.2-1;
1'-0'=4.1°-6.1"+4.1-1.
Hence, by addition,
n=48-6(1"+2'+...+n)+4 (1 +2+.. +n)—n;
SAS=n 4+ n+6 (174 2%+ 40T -4 (1424 ... 4n)

=n'+n+n(n+1)(2n+1)-2n(n+1)
=n(n+l)(*-n+1+2n+1-2)
=n(n+1)(®’+n);

S n (n4+ 1)°_ {n(n2+ 1)}’.

Thus the sum of the cubes of the first n natural numbers is
equal to the square of the sum of these numbers.

The formule of this and the two preceding articles may be
applied to find the sum of the squares, and the sum of the cubes
of the terms of the series

4—2
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70. In referring to the results we have just proved it will
be convenient to introduce a notation which the student will fre-
quently meet with in Higher Mathematics. We shall denote the
series

14243+ ... +n by 3n;

1P+ 2'+ 3"+ ... +2° by 3n';

12+ 22+ 3%+ ... +n® by 3n®;
where 3 placed before a term signifies the sum of all terms of
which that term is the general type.

Ezample 1. Sum the series

1.2+2.3+3.4+...ton terms.

The n™ term=n (n+1)=n3+n; and by writing down each term in a
similar form we shall have two columns, one consisting of the first n natural
numbers, and the other of their squares.

.. the sum=2n?+ 3n

_n(n+1)(2n+1) n(n+l)
= 6 t—3
n(n+l) (2n+1
=3 {3—“}
_n(n+l)(n+2)
=—

Ezxample 2. Sum to n terms the series whose n* term is 2*~14 8n% — 6n2.
Let the sum be denoted by 8; then
S=32 %14 823 - 6Zn?
- 1 + 8n*(n+1)* 6n(n+1)(@n+1)
2-1 4 6
=2-1+n(n+1){2n(n+1) - (2n+1)}
=2*~1+n(n+1)(2n2-1).

EXAMPLES. VI a.

1. Find the fourth term in each of the following series:
(1) 2, 2%, 33,...
©@ 2 2, 3,..
3 2, 23, 33,...

2. Insert two harmonic means between 5 and 11.

3. Insert four harmonic means between ,723 and T23 .
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4. If 12 and 9% are the geometric and harmonic means, respect-
ively, between two numbers, find them.

5. If the harmonic mean between two quantities is to their geo-

metric means as 12 to 13, prove that the quantities are in the ratio
of4t09. :

6. Ifa,bd, c bein H. P., shew that
a:a-b=at+tc:a-c
7. If the m'* term of a H.P. be equal to %, and the =** term be

equal to m, prove that the (m+ %)™ term is equal to mmfn .

8. TIf the p*, ¢, +** terms of a H. P. be g, b, ¢ respectively, prove
that ’(q—’r)bc+(r—p) ca+(p—q) ab=0. ’
9. If b is the harmonic mean between « and ¢, prove that
1 1 1

1
b—atb-e ate"
Find the sum of » terms of the series whose n!* term is

10. 3n2-n. 11 n3+g n. 12. 7 (n+2).

13. 2%(2n+3).. 14, 3n-2n, 15. 3 (4"+2n2)—4nd.

16. If the (m+1)*®, (n+1)®, and (r+1)* terms of an A.P. are in
G. P., and m, n, r are in H. P., shew that the ratio of the common
difference to the first term in the A. P. is —>.

17. If I, m, n are three numbers in G. P., prove that the first term
of an A. P. whose I m't) and n'** terms are in H. P. is to the common
difference as m+1 to 1.

18, If the sum of » terms of a series be a+bn+cn?, find the nt
term and the nature of the series.
19, Find the sum of z terms of the series whose n'* term is
4n (n2+1)~(6n2+1).
20. If between any two quantities there be inserted two arithmetic

means 4,, 4,; two geometric means @, Gy; and two harmonic means
H,, H,; shew that 4G, : HH,=A,+4, : H+H,.

21, If &be the first of n arithmetic means between two numbers,
and ¢ the first of # harmonic means between the same t;vo numbers,
prove that the value of ¢ cannot lie between p and (;%) P

22. Find the sum of the cubes of the terms of an A. P., and shew
that it is exactly divisible by the sum of the terms.
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PiLES oF SHOT AND SHELLS.

71. To find the number of shot arranged in a complete
pyramid on a square base.

Suppose that each side of the base contains n shot ; then the
number of shot in the lowest layer is n; in the next it is (n—1);
in the next (»-—2)?; and so on, up to a single shot at the
top.

S S=nt (=1 +(n-2)+..+1

_n(r+1)(2n+1)

; [Art. 68.]

72. To find the number of shot arranged in a complete
pyramid the base of which i8 an equilateral triangle.

Suppose that each side of the base contains n shot; then the
number of shot in the lowest layer is :

n+(n-1)+(n-2)+.... +1;
1
that is, i (n9+ 1) org (n" + ).
In this result writen—-1,n-2,...... for n, and we thus obtain

the number of shot in the 2nd, 3rd,...... layers.
. §=3(3n'+3n)
=n(n+lg(n+2) [Art. 70]

73. To find the number of shot arranged in a complete
pyramid the base of which is a rectangle.

Let m and n be the number of shot in the long and short side
respectively of the base.

The top layer consists of a single row of m—(n—1), or
" m—mn+1 shot;

in the next layer the number is 2 (m —n+2);
in the next layer the number is 3 (m —n + 3);

and so on;

in the lowest layer the number is n (m—n+ n)
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s 8=(m-n+1)+2(m-—n+2)+3(m-n+3)+... +n(m—n+n)
=(m-n)(1+2+3+...+n)+(1I"+2°+ 3"+ ... +n")
_(m-n)n(n+1) +n(n+l)(2n+l)

B 2 6

=nf—(n6+ 1) {83(m—n)+2n+1}

_n(m+1)(3m-n+1)
= 5 .

74. To find the number of shot arranged ¢n an incomplete
pyramid the base of which is a rectangle.

Let a and b denote the number of shot in the two sides of the
top layer, » the number of layers.

In the top layer the number of shot is ab ;
in the next layer the number is (& + 1) (b + 1) ;
in the next layer the number is (a + 2) (b +2) ;

and 8o on;
in the lowest layer the number is (¢ +n —1) (b +n—1)
or ab+ (a+b)(n—-1)+ (n-1)~.

oo S=abn+(a+b)S(n—-1)+3(n-1)
=abn+("_l);(“+b)+ (n—l)n(26.nTl+l)

= Z16ab+3(@+8) (n-1)+(m—1)@n~-1)}

75. In numerical examples it is generally easier to use the
following method.

Ezxample. Find the number of shot in an incomplete square pile of 16
courses, having 12 shot in each side of the top.

If we place on the given pile a square pile having 11 shot in each side of
the base, we obtain a complete square pile of 27 courses;
and number of shot in the complete pile=27x—2—68><55=6930 ; [Art. 71.]

also number of shot in the added pﬂe:u"l__:_’i?Lm ;

.*, number of shot in the incomplete pile =6424.
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EXAMPLES. VLb.

Find the number of shot in
1. A square pile, having 15 shot in each side of the base.
2. A triangular pile, having 18 shot in each side of the base.

3. A rectangular pile, the length and the breadth of the base con-
taining 50 and 28 shot respectively.

4. An incomplete triangular pile, a side of the base having 25 shot,
and a side of the top 14.

5. An incomplete square pile of 27 courses, having 40 shot in each
side of the base.

6. The number of shot in a complete rectangular pile is 24395 ; if
there are 34 shot in the breadth of the base, how many are there in its
length ?

7. The number of shot in the top layer of a square pile is 169,
and in the lowest layer is 1089; how many shot does the pile contain ?

8. Find the number of shot in a complete rectangular pile of
15 courses, having 20 shot in the longer side of its base.

9. Find the number of shot in an incomplete rectangular pile,
the number of shot in the sides of its upper course being 11 and 18,
and the number in the shorter side of its lowest course being 30.

10. What is the number of shot required to complete a recta,n%ular
pile having 15 and 6 shot in the longer and shorter side, respectively, of
1ts upper course?

11, The number of shot in a trian%u]a.r pile is greater by 150 than
half the number of shot in a square pile, the number of layers in each
being the same; find the number of shot in the lowest layer of the tri-
angular pile.

12. Find the number of shot in an incomplete square pile of 16
courses when the number of shot in the upper course is 1005 less than
in the lowest course.

13. Shew that the number of shot in a square pile is one-fourth the
number of shot in & triangular pile of double the number of courses.

14. If the number of shot in a triangular pile is to the number of
shot in a square pile of double the number of courses as 13 to 175; find
the number of shot in each pile.

15. The value of a triangular pile of 16 lb. shot is £51; if the
value of iron be 10s. 6d. per cwt., find the number of shot in the
lowest layer.

16. If from a complete square pile of » courses a triangular pile of
the same number of courses be formed ; shew that the remaining shot
will be just sufficient to form another triangular pile, and find the -
number of shot in its side,



CHAPTER VIL

SCALES OF NOTATION.

76. The ordinary numbers with which we are acquainted in
Arithmetic are expressed by means of multiples of powers of 10;
for instance

25=2x10+5;
4705=4x10*+7 x 10°+ 0 x 10 + 5.

This method of representing numbers is called the common or
denary scale of notation, and ten is said to be the radix of the
scale. The symbols employed in this system of notation are the
nine digits and zero.

In like manner any number other than ten may be taken as
the radix of a scale of notation ; thus if 7 is the radix, a number
expressed by 2453 represents 2x 7°+4 x7*+5x7+3; and in
this scale no digit higher than 6 can occur.

Again in a scale whose radix is denoted by » the above
number 2453 stands for 2r° + 47*+ 5r +3. More generally, if in
the scale whose radix is » we denote the digits, beginning with
that in the units’ place, by @, @, a,,...a_; then the number so
formed will be represented by

ar‘+a, o '+va, _r"+ . t+ar+ar+a,
where the coefficients o, a,_,,...a, are integers, all less than r, of
which any one or more after the first may be zero.

Hence in this scale the digits are » in number, their values
ranging from 0 to »— 1.

77. The names Binary, Ternary, Quaternary, Quinary, Senary,
Septenary, Octenary, Nonary, Denary, Undenary, and Duodenary
are used to denote the scales corresponding to the values fwo,
three,...twelve of the radix.
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In the undenary, duodenary,... scales we shall require symbols
to represent the digits which are greater than nine. It is unusual
to consider any scale higher than that with radix twelve; when
necessary we shall employ the symbols ¢, ¢, 7" as digita to denote
‘ten’, ‘eleven’ and ‘twelve’. ’

It is especially worthy of notice that in every scale 10 is the
symbol not for ¢ten’, but for the radix itself.

78. The ordinary operations of Arithmetic may be performed
in any scale ; but, bearing in mind that the successive powers of
the radix are no longer powers of ten, in determining the carrying
Jigures we must not divide by ten, but by the radix of the scale
in question.

Ezample 1. In the scale of eight subtract 371532 from 530225, and
multiply the difference by 27.

530225 136473

871632 27

136473 1226235
275166
4200115

Ezplanation. After the first figure of the subtraction, since we cannot
‘take 3 from 2 we add 8; thus wehave totake 3 from ten, which leaves 7; then
6 from ten, which leaves 4; then 2 from eight which leaves 6; and so on.

Again, in multiplying by 7, we have

8 x 7T=twenty one=2x8+5;
‘we therefore put down 5 and carry 2.

Next 7 x 7+ 2=fifty one=6 x 8 + 3;

put down 8 and carry 6; and so on, until the multiplication ig completed.

In the addition,
8+6=nine=1x8+1;

we therefore put down 1 and carry 1.

Similarly 24+6+1=nine=1x8+1;
and 6+1+1=eight=1x8+0;
and 8o on.
Ezample 2. Divide 15¢t20 by 9 in the scale of twelve.
9)15¢t20
Lee96...6.

Ezplanation. Since 15=1x T+ 5=seventeen=1x9+8,
we put down 1 and carry 8.

Algo 8 x T + e=one hundred and seven=e x 9+ 8;
we therefore put down e and carry 8; and so on.
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Ezample 3. Find the square root of 442641 in the scale of seven.
442641(546
34

134)|1026
602

1416|12441
12441

EXAMPLES. VIL a.

o

Add together 23241, 4032, 300421 in the scale of five.

Find the sum of the nonary numbers 303478, 150732, 264305.
Subtract 1732765 from 3673124 in the scale of eight.

From 32¢756 take 2¢46¢2 in the duodenary scale.

. Divide the difference between 1131315 and 235143 by 4 in the
scale of six.

6. Multiply 6431 by 35 in the scale of seven.
7. Find the product of the nonary numbers 4685, 3483.
8. Divide 102432 by 36 in the scale of seven.

9. In the ternary scale subtract 121012 from 11022201, and divide
the result by 1201.

10. Find the square root of 300114 in the quinary scale.

11. Find the square of ¢ttt in the scale of eleven.

12. Find the G. C. M. of 2541 and 3102 in the scale of seven.
13. Divide 14332216 by 6541 in the septenary scale.

14, Subtract 20404020 from 103050301 and find the square root of
the result in the octenary scale.
15. Find the square root of €e2001 in the scale of twelve.

16. The following numbers are in the scale of six, find by the ordi-
nary rules, without transforming to the denary scale:

(1) the G.C. M. of 31141 and 3102;
(2) the L. C. M. of 23, 24, 30, 32, 40, 41, 43, 50.

@

o

79.  To express a given sntegral number in any proposed scale.
]Let N be the given number, and  the radix of the proposed
scale.
Let a,, a,, a,,...a_ be the required digits by which & is to be
expressed, beginning with that in the units’ place; then
N=asr+a,_r" '+ .. +a2" +ar+a,
‘We have now to find the values of a,, a,, a,,...q

'
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Divide N by 7, then the remainder is a,, and the quotient is
ar+a_r"+. +ar+a.
If this quotient is divided by », the remainder is a;

if the next quotient ... a,;
and so on, until there is no further quotient.

Thus all the required digits a,, a,, ,,...a, are determined by
successive divisions by the radix of the proposed scale.

Ezample 1. Express the denary number 5213 in the scale of seven.

7)5213
7)44......5
7)106......2
nis......1
2.1
Thus 5218=2xT4+1xT+1xT72+2x7+5;

and the number required is 21125.
Ezample 2. Transform 21125 from scale seven to scale eleven.

€)21125
e)1244......t
¢)6l.....0
T3t

.. the required number is 3t0¢.
Ezplanation. In the first line of work
21=2xT7+1=fifteen=1xe+4;
therefore on dividing by e we put down 1 and carry 4.
Next 4 x 7+ 1=twenty nine=2xe+7;
therefore we put down 2 and carry 7; and so on.

Ezample 3. Reduce 7215 from scale twelve to scale ten by working in
scale ten, and verify the result by working in the scale twelve.

7215 1)7215
12 CLIZI ) .
86 Y n scale
In scale 86 t)it """ 0 of twelve
of ten _ 12 $)10.....4
1033 1..... 2
12
12401

Thus the result is 12401 in each case.

Ezplanation. 7215 in scale twelve means 7x 123+ 2x1234+1x12+5 in
scale ten, The calculation is most readily effected by writing this expression
in the form [{(7x12+2)} x12+1]x12+5; thus we multiply 7 by 12, and
add 2 to the product; then we multiply 86 by 12 and add 1 to the product;
then 1033 by 12 and add 5 to the product.
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80. Hitherto we have only discussed whole numbers; but
fractions may also be expressed in any scale of notation ; thus

. 2 5
+25 in scale ten denotes 10 + 103

+25 in scale six denotes % + &

‘25 in scale r denotes 2 + 5.
_ r
Fractions thus expressed in a form analogous to that of

ordinary decimal fractions are called radix-fractions, and the point
is called the radix-point. The general type of such fractions in
scale r is

bl b! bB

; + F + 7’?3 + ------
where b, b, b,,... are integers, all less than », of which any one
or more may be zero.

81. To express a given radix fraction in any proposed scale.

Let F be the given fraction, and » the radix of the proposed
scale.

Let b,, b, b,,... be the required digits beginning from the
left ; then

F=Z+%+%+ ......
r r r

‘We have now to find the values of b, &_, b -

19 Ogy Oyy . ceeee

Multiply both sides of the equation by »; then

rF=b, +2" + b—,

r o7

Hence b, is equal to the integral part of r¥; and, if we denote
the fractional part by F,, we have

Multiply again by r; then, as before, b, is the integral part
of rF ; and similarly by successive multiplications by r, each of
the digits may be found, and the fraction expressed in the pro-
posed scale.
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If in the successive multiplications by » any one of the
products is an integer the process terminates at this stage, and
the given fraction can be expressed by a finite number of digits.
But if none of the products is an integer the process will never
terminate, and in this case the digits recur, forming a radix-
fraction analogous to a recurring decimal.

Ezample 1. Express :% as a radix fraction in scale six.

. s 4 5 1 3
.. the required fmcf.xon_6 tatmata
=+4513.
Ezample 2. Transform 16064:24 from scale eight to scale five,

We must treat the integral and the fractional parts separately,

5)16064 -24
5)2644...0 5
5)440...4 144
5)71...8 5
5)13...2 264
2.1 5
- pTiry
5
024

After this the digits in the fractional part recur; hemce the required
number is 212340-1240,

82. In any scale of notation of which the radiz is r, the sum
of the digits of any whole number divided by r—1 will leave the
same remainder as the whole number divided by r — 1.

) Let. X denote the number, a,, a,, Goyenennn a, the digits begin-
nlxlng with that in the units’ place, and S the sum of the digits;
then

N=a,+ar+ar’+...... +a,_r+ar;
S=a,+a +a,+...... +a,_ +a

n=1

o N=8=a(r-1)+a,(*~1)+...... +a (" =1)+a (r-1).

n-1
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Now every term on the right hand side is divisible by » — 1 ;

. N_S—a int ;
« 57 =on integer;
that is, rifl“”rii’

where I is some integer ; which proves the proposition.

Hence a number in scale = will be divisible by # — 1 when the
sum of its digits is divisible by » — 1.

83. By taking =10 we learn from the above proposition
that a number divided by 9 will leave the same remainder as the
sum of its digits divided by 9. The rule known as “casting out
the nines” for testing the accuracy of multiplication is founded
on this property.

The rule may be thus explained :

Let two numbers be represented by 9a + & and 9¢+ d, and
their product by P; then

P =8lac + 9bc + ad + bd.

Hence { has the same remainder as b—d; and therefore the

9 9
sum of the digits of P, when divided by 9, gives the same
remainder as the sum of the digits of bd, when divided by 9. If
on trial this should not be the case, the multiplication must have
been incorrectly performed. In practice b and d are readily
found from the sums of the digits of the two numbers to be
multiplied together.

Ezample. Can the product of 31256 and 8427 be 263395312 ?

The sums of the digits of the multiplicand, multiplier, and product are 17,
21, and 34 respectively; again, the sums of the digits of these three numbers
are 8, 8, and 7, whence bd=8 x 3=24, which has 6 for the sum of the
digits; thus we have two different remainders, 6 and 7, and the multiplication
is incorrect.

84. If N denote any number in the scale of r, and D denote
the difference, supposed positive, between the sums of the digits in the
odd and the even places; then N —D or N +D is a multiple of
r+1.
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Let a,, a,, a,, ...... a, denote the digits beginning with that
in the units’ place; then
N=a,+ar+ar'+ar’+...... +a,_ 1" +ar
S N-—a+a—ag+a,—...=a (r+1)+a, (F*-1)+a,(P+1)+...;
and the last term on the right will be a (" +1) or a_ (r"-1)

according a8 7 is odd or even. Thus every term on the right is
divisible by » + 1 ; hence

N—(a,—a+a, —a +...... .
(“ 1 3 )=an integer.
r+1
Now a,—a +a,—-a,+ ... == D;
. N=D

. is an integer ;
r+1 8er’;

which proves the proposition.

Cor. If the sum of the digits in the even places is equal to
the sum of the digits in the odd places, D =0, and & is divisible
by »+ 1.

Ezample 1. Prove that 4°41 is a square number in any scale of notation
whose radix is greater than 4.

Let r be the radix ; then
2
4-41=4+3+l=(2+1) ;
r r
thus the given number is the square of 2-1.

Ezample 2, In what scale is the denary number 2:4375 represented by
2:13? .

Let r be the scale ; then
1 8 7
2+;+'—"=2 4375=2E,
whenoe Tr*-16r-48=0;
' =0,

lowing method.
mary number 25607 be expressed

\

P, since the new number appears

:l.[ ‘, .thuof" ore the reqm.re«f l;cale
itis 7.
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Ezample 4. By working in the duodenary scale, find the height of a
rectangular solid whose volume is 364 cub. ft. 1048 cub. in., and the area of
whose base is 46 sq. ft. 8 sq. in.

The volume is 36414 cub. ft., which expressed in the scale of twelve is
264-734 cub. ft.

The area is 46§ sq. ft., which expressed in the scale of twelve is 3¢-08,
‘We have therefore to dwuie 264-734 by 3¢-08 in the scale of twelve

3108)264734(T-¢
22148
36274
36274

Thus the height is 7ft. 11in,

PRSP

R el el
PPES®

=

b
Noe o

18,

EXAMPLES. VILb.

Express 4954 in the scale of seven.

Express 624 in the scale of five.

Express 206 in the binary scale.

Express 1458 in the scale of three.

Express 5381 in powers of nine.

Transform 212231 from scale four to scale five.

Express the duodenary number 398¢ in powers of 10.
Transform 612 from scale twelve to scale eleven.
Transform 213014 from the senary to the nonary scale.
Transform 23861 from scale nine to scale eight.
Transform 400803 from the nonary to the quinary scale.
Express the septenary number 20665152 in powers of 12.
Tra.nsform ttteee from scale twelve to the common scale.

Express T radix fraction in the septenary scale.

0
Transform 17-15625 from scale ten to scale twelve.
Transform 200211 from the ternary to the nonary scale.
Transform 71+03 from the duodenary to the octenary scale.

Express the septenary fraction =—— 1862

696 2 8 denary vulgar fraction

in its lowest terms.

19.

Find the denary value of the septenary numbers ‘4 and -49.

- 20. In what scale is the denary number 182 denoted by 222 ?

21.

‘In what scale is the denary fraction 122_58 denoted by ‘0302 ?

H. H. A. >



66 HIGHER ALGEBRA,

22, Find the radix of the scale in which 554 represents the square
of 24. ’

23. In what scale is 511197 denoted by 174633517

24. Find the radix of the scale in which the numbers denoted by
479, 698, 907 are in arithmetical progression.

25. In what scale are the radix-fractions ‘16, ‘20, 28 in geometric
progression?

26. The number 212642 is in the scale of six; in what scale will it
be denoted by 174861

27. Shew that 148'84 is a perfect square in every scale in which the
radix is greater than eight.

28, Shew that 1234321 is a perfect square in any scale whose radix
is greater than 4; and that the square root is always expressed by the
same four digits.

29, Prove that 1-331 is a perfect cube in any scale whose radix is
greater than three.

80. Find which of the weights 1, 2, 4, 8, 16,... 1bs. must be used to
weigh one ton.

31, Find which of the weights 1, 3, 9, 27, 81,... lIbs. must be used
to weigh ten thousand lbs., not more than one of each kind being used
but in either scale that is necessary.

32. Shew that 1367631 is a perfect cube in every scale in which the
radix is greater than seven.

33. Prove that in the ordinary scale a number will be divisible by
8 if the number formed by its last three digits is divisible by eight.

34, Prove that the square of rrrr in the scale of s is 7r¢0001, where
¢, 7, 8 are any three consecutive integers.

35, If any number &V be taken in the scale 7, and a new number N’
be formed by altering the order of its digits in any way, shew that the
difference between & and N’ is divisible by »—1.

36, If a number has an even number of digits, shew that it is
divisible by »+1 if the digits equidistant from each end are the same.

37. Ifin the ordinary scale S; be the sum of the digits of a number
N, and 38, be the sum of the digits of the number 34, prove that the
difference between 8, and §; is a multiple of 3.

38, Shew that in the ordinary scale a.nﬁ number formed by
writing down three digits and then repeating them in the same order
is a multiple of 7, 11, and 13.

. 39, In a scale whose radix is odd, shew that the sum of the
digits of any number will be odd if the number be odd, and even if
the number be even. :

40. If n be odd, and a number in the denary scale be formed
by writing down » digits and then repeating them in the same order,
shew that it will be divisible by the number formed by the n digits,
and also by 9090...9091 containing n - 1 digits.



CHAPTER VIIL

SURDS AND IMAGINARY QUANTITIES.

85. 1In the Elementary Algebra, Art. 272, it is proved that
the denominator of any expression of the form ’71,—1:7" can be
rationalised by multiplying the numerator and the denominator
by ./b— /¢, the surd conjugate to the denominator.

Similarly, in the case of a fraction of the form ﬁ—""j"—"'\/‘—l ,
where the denominator involves three quadratic surds, we may by
two operations render that denominator rational.

For, first multiply both numerator and denominator b
b+ Je—./d; the denominator becomes (\/b+,/c)*—(./d)* or
b+c—d+2,/bc. Then multiply both numerator and denominator
by (b + ¢ — d)—2 Jbe; the denominator becomes (b + ¢ ~ d)* — 4bc,
which is a rational quantity.

12

Ezample, 8implify §T/5=23"

_12(8+./6+2,/2)
@B 2V
_13(3+,/5+2/2)
T 6+65

_2(3+4/5+2/2) (5-1)

T W+ We-1)
_242/5+2,/10-2,/2
=D AV

The expression

=1+44/5+4/10-/2
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86. To find the factor which wiil rationalise any given bino-
mial surd.
Case I Suppose the given surd is J/a — ,Jb.

Let Ja==x, Yb=y, and let n be the L.c.m. of p and ¢; then
2" and y" are both rational.

Now & — g is divisible by « —y for all values of n, and
o~y = (e-y) (@ 2 Ty 2t Ty +y" 7).
Thus the rationalising factor is
" Ty Y L +y" Y
and the rational product is 2" — y".
Casr IL.  Suppose the given surd is %/a + J/b.
Let =, y, » have the same meanings as before; then
(1) If nis even, 2 — y" is divisible by = + y, and
L-y=(z+y) (@ "y +...... +ay" -y ).
Thus the rationalising factor is
- Ty +ay” =yt
and the rational product is «" —y".

(2) If nisodd, «" + y" is divisible by = +y, and

L+y=(+y) (@ -2y + ... —zy" Tty
Thus the rationalising factor is
7 =2y + —xy" 4y

and the rational product is " + y".

Ezample 1. Find the factor which will rationalise \/3 +,¥/5.
1 1
Let =382 y=>53; then 2% and y° are both rational, and
- = (@+y) (5 -y +a%y? - 2y oyt
thus, substituting for z and y, the required factor is
5 4 1 3 2 2 38 1 4 5
3283, 58483, 5333, 58432, 55 53
5 1 3 3 1 4 5
or 32-9.5%+32.53-15+38%, 5353,

6 6
and the rational product is 8% — 53=33 - 522,
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1 1 1 1
Ezample 2. Express (5’+9°) + (52 - 98)
as an equivalent fraction with a rational denominator.

1 1 1
. To rationalise the denominator, which is equal to 53— 3% put 5i=gz,

3i=y; then since at-y=(z—y) (z*+ 2% + 2y3+7°)

3 31 1 2 3
the required factor is 524+52.844 52,344 34,

4 4
and the rational denominator is 52— 34=52-3=22,

1 1y /3 31 1 3 3
. the exprossion =(52+3‘) (5‘1+52. 34452, 34+34)

22
4 3 1 3 2 13 4
_5%+2.5%,.34+2,52,.34+2,.52,.344 34
- 22
3 1 1 1 3
_ 14452, 34+5.37+5%. 8¢

11

87. We have shewn in the Elementary Algebra, Art. 277,
how to find the square root of a binomial quadratic surd. We
may sometimes extract the square root of an expression contain-
ing more than two quadratic surds, such as a + /b + /¢ + \/d.

Assume ,Ja+ ,\/b+,\/c+~/d=,‘/x+,\/y+~/z,'
cat bt Jor Jd=z+y+2+2, [ay+ 2 Jrz+ 2 [y

If then 2, Jxy=.b, 2. Joz= /¢, 2./yz=/d,

and if, at the same time, the values of x, y, # thus found satisfy
« + y + z =a, we shall have obtained the required root.

Ezample. Find the square root of 21 - 4,/5+8,/3 - 4,/15.
Asgume NI NI N Y NG CEN - ESY TN

2 21— 45+ 8,3 - 4/16=a+y +2 + 2oy - 27z - 2/yz.
Put 2/zy=8,/3, 2Wfzz=415, 2Jyz=45;

by multiplication,  zyz=240; that is \/zyz =4/15;
whence it follows that \/z=2,/3, \/y=2, \/2=4/5.

And since these values satisfy the equation z+y+2z=21, the required
root is 2,/3 +2-,/5.
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88. If Yat Jb=x+.Jy, them will fa—Jb—x— Jy.
For, by cubing, we obtain
a+, /b=2"+ 3z \Jy + 3wy +y \Jy.
Equating rational and irrational parts, we have
a=a"+3xy, Jb=32"Jy+y.y;
v a-\Jb=a"-3 Jy+3xy—y Jy;
that is, Ja—Jb=2—/y.

Similarly, by the help of the Binomial Theorem, Chap. XIII,,
it may be proved that if

Ja+ Jb==+./y, then Ja— Jo=z— ]y,
where 7 is any positive integer. '

89. By the following method the cube root of an expression
of the form a=,/b may sometimes be found.

Suppose :/a+Jb=x+Jy;
then Ja—=Jb=x~/y.
@ == =Y (1)

Again, as in the last article,
=02+ 3BY. i (2).
The values of « and y have to be determined from (1) and (2).
In (1) suppose that o/a®* —b =¢; then by substituting for y in
(2) we obtain
a=x"+3x(2"-c);
that is, 42° - 3cx = a.

If from this equation the value of x can be determined by
trial, the value of y is obtained from y=a* —¢.

Nore. We do not here assume ,/z+,/y for the cube root, as in the
extraction of the square root; for with this assumption, on cubing we should

have .
a+nb=z\z +3z/y+3y\Jx+yy,

and since every term on the right hand side is irrational we cannot equate
rational and irrational parts.
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Ezample. Find the cube root of 72 — 82,/5.

Assume J m: ERINIH

then Ji2+82/6=z+./y.
By multiplication, 5184 - 1024 x 5=23—y;

that is, 4= -y .ot (1).
Again 72 - 82,/5=2%-3x%/y + 8zy - y\Jy;

whence T2=234382Y ...coveeviriniiririenieeneiieee s 2).
From (1) and (2), 72=2%43x (22— 4);

that is, % - Bx=18.

By trial, we find that =3; hence y=5, and the cube root is 3 — /5.

90. When the binomial whose cube root we are seeking
consists of fwo quadratic surds, we proceed as follows.

Ezample. Find the cube root of 9,/3 +11,/2.

YogETiige=n/ 543 (3+ /Y

=a/3 \/ 3+ \/ 3"
By proceeding as in the last article, we find that
\/ 3+38/3=1+ /3
.. the required cube root  =,/3 (1 + \/ 5)
91. We add a few harder examples in surds.

Ezample 1. Express with rational denominator
4

9= ~/3 +1°
The expression =5
333341

1
_ 4a(ser)

(3§+ 1) (3§ 3’17+ 1)

4(33+1)
=331 _3§+1
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Ezample 2. Find the square root of

g(z—1)+J2x7—7x—4.
The expression:% {8z-3+2 J@z+1) (z-4);

=%{(2z+1)+(x—4)+2J(2x+1) ®=9);

hence, by inspection, the square root is
1 ,— -
E(J‘zx»fu Jz—4).
Example 8. Given z/5=223607, find the value of
W3-6
N2+NT-35

Multiplying numerator and denominator by /2,

_ _Af6-2J5
2+./14-6/5

_ WB-1
RTEENG

the expression

=1 _W5_.
=5="F =441

EXAMPLES. VIIL a.

Express as equivalent fractions with rational denominator :

L1 o _ NP
* 144/2-43° V2+J/3-4/5"
1 i 24/a+1

Na+b+ratd Na—1-N2a+Na+l’
5 ~10+J5-43 6. W3+V5)(W/5+42)
" VBFJI0-5 " © T2+
Find a factor which will rationalise :
7. y3-Je 8. Y5+ 9, a‘%+b%.

‘ 10. ¥3-1. 1. 2+37.° 12, Y53
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Express with rational denominator :

V3-1 N9—4/8 N2.Y3
13. PBEL 14, JoT 8" 15. ErW R
3 - J8+4{/4 27
16. Nk 17. J8—i’ 18. =95
Find the square root of
19, 16-2./20—2./284+24/35. 20, 24+4./15—4,/21 -2,/35.
21. 64./12—4/24—4/8. 22. 5-,/10-4/15+./6.

23. a+3b+4+44a—44/3b—24/3ab.
24, 21+43./8—643—6./7T—4/24-./56+2./21.

Find the cube root of
25. 104643 26. 38+417./5. 21. 99-70./2.
28. 384/14-100,/2. 29. 54./3+41,/5. 30. 135,/3 —87./6.
Find the square root of
3l. a+z+A2az+a% 32. 2a—+/3a%—2ab— 0.
1 21
33. 1+a®+(1+ad+at) 34 1+(1-a?) 2
3. fa=—1' ", b= find the value of 7a?+11ab — 52

2—J3’ 2+J3’

_Af3-J2 J3+42
%. U= Y=UE-va

find the value of 342 — 5xy + 3y

Find the value of
a7 N26-15./3 38 6+243
* 5J2-A38+543 ’ 33-19./3°

2 2
39, (28-10 J3)'§ —(7+4 \/3)'3. 40. (26415 /33— (26+154/3) 3.
4], Given \/5=2'23607, find the value of
1042 J10+418
VI8-W3+J5 JB+N3-5
Divide 2®+1+3z 32 by z—14+23/2.
Find the cube root of 9ab? + (b2 + 24a2) :\/ 52— 3a2.

LS

44, Evaluate Y~ __— Vai-1 = when 2z'_~/a+
x— 4/1: -

~/ ?
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IMAGINARY QUANTITIES.

92. Although from the rule of signs it is evident that a
negative quantity cannot have a real square root, yet imaginary

quantities represented by symbols of the form ,/—a, /=1 are of
frequent occurrence in mathematical investigations, and their
use leads to valuable results. We therefore proceed to explain
in what sense such roots are to be regarded.

‘When the quantity under the radical sign is negative, we can no
longer consider the symbol ./ as indicating a possible arithmetical
operation ; but just as ,/a may be defined as a symbol which obeys
the relation ,/a x ,/a = @, so we shall define ,/—a to be such that
J=ax J—a=—a, and we shall accept the meaning to which this
assumption leads us.

It will be found that this definition will enable us to bring
imaginary quantities under the dominion of ordinary algebraical
rules, and that through their use results may be obtained which
can be relied on with as much certainty as others which depend
solely on the use of real quantities.

93. By definition, /-1x,/~I=-1
coa/=1x Ja.J-1=a(-1);
that is, (Ja.J-1)=-a.
Thus the product ,/a . ,/—1 may be regarded as equivalent to
the imaginary quantity ,/— a.

94. Tt will generally be found convenient to indicate the
imaginary character of an expression by the presence of the

symbol ,/—1; thus
J=E=Jix(-1)=-2, /-1
J=T12 = JTa x (- T)=a J7,/-1.

95. We shall always consider that, in the absence of any
statement to the contrary, of the signs which may be prefixed
before a radical the positive sign is to be taken. But in the use
of imaginary quantities there.is one point of importance which
deserves notice,
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Since (- @) x (— b) = ab,
by taking the square root, we have
J=ax . J=b=x=[ab.
Thus in forming the product of ,/— a and /= it would appear

that either of the signs + or — might be placed before ./ab.
This is not the case, for

JaxJb=uJa. JTIxNE. =T
- Jab (/=Y
- Ja,
96. It 1s usual to apply the term ‘imaginary’ to all expres-
sions which are not wholly real. Thus & +5,/—1 may be taken

as the general type of all imaginary expressions. Here a and b
are real quantities, but not necessarily rational.

97. 1In dealing with imaginary quantities we apply the laws
of combination which have been proved in the case of other surd
quantities.

Ezamplel. a+by=1x(c+d/"T)=axc+(bxd)a/ 1.
Ezample 2. The product of a+b./—1and c+da/ -1
=(@+b-1) (c+d "T)
=ac-bd+ (be+ad) N/ = 1.

98. Ifa+b,/-1=0,thena=0, and b=0.

For, if wa+bJ=1=0,
then b/-1=-a;
oo =b=at
. a?+b*=0.

Now a? and b* are both positive, therefore their sum cannot
be zero unless each of them is separately zero; that is, a =0,
and b=0.

99. Ifa+b,/-1=c+d,/-1,thena=c, andb=d.

For, by transposition, a —c + (6 —d) /- 1=0;

therefore, by the last article, a —¢=0,and b—d =0;
that is a=c,and b=d.
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Thus in order that two imaginary expressions may be equal it
8 necessary and sufficient that the real parts should be equal, and
the imaginary parts should be equal.

100. DerFiNiTION. When two imaginary expressions differ
only in the sign of the imaginary part they are said to be
conjugate.

Thus a—b./—1 is conjugate to a +b ./~ 1.
Similarly /2 +3.,/—1 is conjugate to /2 -3,/ 1.

101. The sum and the product of two conjugate imaginary
expressions are both real.

For a+bf=T+a-b,/-1=2a.
Again  (a+b/=1)(a-b/=1)=a"—(-b")
=a + b

102. DeriNiTiON. The positive value of the square root of
a® + b* is called the modulus of each of the conjugate expressions

a+b/~Tand a-b./-T1.

103. The modulus of the product of two imaginary expres-
sions is equal to the product of their moduli.

Let the two expressions be denoted by a+b,/~1 and ¢+d,/—1.

Then their product =ac—bd + (ad + bc) J —1, which is an
imaginary expression whose modulus

= J(ac - bd)* + (ad + be)*
= Jd’c* + b°d’ + a’d’ + b*c°
=J(@ +b) (+ )
=Ja 0 x JF+ &

which proves the proposition.

104, If the denominator of a fraction is of the form a +b,/~1,
it may be rationalised by multiplying the numerator and the

denominator by the conjugate expression a—b,/-1.



SURDS AND IMAGINARY QUANTITIES. 77

For instance

c+dJ:f=(c+dJ—_l)(a—bJ——].)

a+b J=1 (a+bJ-1)(a-b,/-1)
_ac+bd+(ad—be) /-1
B a*+ b
ac+bd ad-be —
ar A Al

Thus by reference to Art. 97, we see that the sum, difference,
product, and quotient of two imaginary expressions is in each case
an imaginary expression of the same form.

105. 7o find the square root of a+b /1.
Assume Jarby—1=a+yV=1,

where z and y are real quantities.

By squaring, a+b./—1=a"—y + 22y, /—1;
therefore, by equating real and imaginary parts,

D=9 =a ererriiiii (1),
2BY =B cereeeniiniiiiini, 2);
@) = )+ )
=a*+b;

Ly =S (3).

From (1) and (3), we obtain

@+ +a JEib-a
o AETT e JETT =

- {Ja’+2b’+ a}i’ Yo {,,/a’ +9b’ - a}é.

H

Thus the required root is obtained.

Since x and y are real quantities, £2+y? is positive, and therefore in (3)
the positive sign must be prefixed before the quantity J a®+ b3,

Also from (2) we see that the product zy must have the same sign as b;
hence z and y must have like signs if b is positive, and unlike signs if b is
negative.
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Ezample 1. Find the square root of —7-24,/=1.

Assume J—7—24Jt—:l=z+y J——l;
then —7-24"1=a-yt+ 22y - 1;
Byl =—Toiiiii,
and =-24.
L (@Y= (- )+ oy
=49 +576
=625;
W +Y3=26

From (1) and (2), 22=9 and y’=16;
oo x==£3, y==x4.

Since the product xy is negative, we must take
=38, y=-4; orz=-3, y=4

Thus the roots are 3—4 ,/—1and -3+4 4/-1;

that is, J-T1-24 " 1=23-4,/71).

Ezample 2. To find the value of A/ = 64at.

I T6id= 280 -1

It romains to find the value of o/+,/—1.
Assume N -1=z+y5/=T;
then +a 1= -y 20y = 1;

e 2?-y?=0 and 22y =1;
whence r=— y=—1—~ orz——i =
Jz’ J2’ - J2’ y— J2’

Ry e (1+J 1).

Similarly J-J=T Jo1= :h 51— -J-0)

oo wafT=a G S

and finally J -64at= d:2a (1+,/=1).



SURDS AND IMAGINARY QUANTITIES, . 79

106. The symbol ./ ~1 is often represented by the letter; but
until the student has had a little practice in the use of imaginary

quantities he will find it easier to retain the symbol ,/ — 1. Tt is
useful to notice the successive powers of ,/—1 or ¢ ; thus

W=D =J71, =i
W-1r=-1, =1
W=Ip=-J-1,  P=—i;
W=-1y=1, i=1;

and since each power is obtained by multiplying the one before it
by J — 1, or %, we see that the results must now recur.

107. 'We shall now investigate the properties of certain imagi-
nary quantities which are of very frequent occurrence.
Suppose = )Y1; thena’=1,0ora’-1=0;
that is, (z-1)(@*+x+1)=0.
., either x—-1=0,or2’+2+1=0;
-1,/-3
—g

It may be shewn by actual involution that each of these
values when cubed is equal to unity. Thus unity has three cube
roots, '

whence z=l,or =z=

1-1+Ji§ -1-/-3
’ 2 ’ 2 b
two of which are imaginary expressions.

Let us denote these by a and 8 ; then since they are the roots .
of the equation

+2+1=0,
their product is equal to unity ;
that is, aff=1;
~ d’B=a’;
that is, B =a’, sinced’®=1.

Similarly we may shew that a ="

108. Since each of the imaginary roots is the square of the
other, it is usual to denote the three cube roots of unity by 1, o, ",
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Also o satisfies the equation *+2+1=0;
v 1l+ow+0°=0;
that is, the sum of the three cube roots of unity 18 zero.
Again, 0. 0'=0"=1;
therefore (1) the product of the two imaginary roots is unity ;
(2) every integral power of w* i8 unity.
109. It is useful to notice that the successive positive

integral powers of w are 1, v, and o*; for, if n be a multiple of 3,
it must be of the form 3m and o"=o™=1.

If » be not a multiple of 3, it must be of the form 3m + 1 or
3m + 2.

If n=3m+1, 0" = o =o". 0=

If n=3m+ 2, o =™ =", o' =0’

110. 'We now see that every quantity has three cube roots,
two of which are imaginary. For the cube roots of a® are those

of a® x 1, and therefore are @, aw, aw’®. Similarly the cube roots

of 9 are /9, v /9, ' /9, where Y9 is the cube root found by the
ordinary arithmetical rule. In future, unless otherwise stated,
the symbol J/a will always be taken to denote the arithmetical
cube root of a.

Ezample 1. Re(luce(ita—‘/.__—l)2 to the form 4 + B/ ~1. -
24+,4/-1 i
_4-9+12,/-1
NS
(-5+12,/7T) @-/ =)
@+V-1e-J-9)
_ -10+12+429 /-1
- 4+1

.__.+ 9,\/—

which is of the required form.

The expression

Ezample 2. Resolve x3+ y3 into three factors of the first degree.
Since o +y'=(@+y) (2 -2y +¥7)

B +yP=(2+y) (2 +wy) (@+o'y);
for wtw?= -1, and w3=1.
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Ezample 3. Shew that
(a+wb+ w¥) (a + wb + we)=a?+ b2 4 ¢3— be - ca - ab.

In the product of a+wb+ wc and a + w?b + we,
the coefficients of 42 and c? are «3, or 1;

- the coefficient of bc . =t ut=w?tw=-1;

L

the coefficients of ca and ab=w?+ w=-1;
< (a+wb+wi) (a+ w?b+ we) =ad+ b2+ ¢* - be - ca - ab.
Ezample 4. Shew that
(1+w-wl)?~(l-w+w?)3=0.

Since 1+ w+ w?=0, we have
. (L= o (1= w0+ 6=~ 208 - (- 2
‘\ = - 8wl + 8w’
,‘.!) =-8+8
N =0,

EXAMPLES. VIIL b,

1. Multiply 24/ —3434/—2 by 44/=3-54/"2.
2. Multiply 34/ =7-54/—2 by 34/ —7+54/—2.
3. Multiply N by eNT1_g-W71,
4

Multiply x—l+~2/—3 by .r—l_;/.—a.

Express with rational denominator:

i 1 34/ —2+24/=5
L vt 6 SV eV S
ﬂ g 3+2WT1 3-241 o atawT1_a-asW/=1

2-54/—1 2454/ =1 a-zN—1 at+taxN-1"

9 (.Z‘+l\/—_])2 _ (‘r—'\/:—i)z. 10. (a+l\/Zl)3—(d—l\/:_——i‘)3-

T w1 z+4 -1 (@a+N =12 —(a -4/ —1)2
11. Find the value of (—4/ —1)**+3, when = is a positive integer.

12. Find the square of /9+40 4/ —1+./9—-404/—1.
H.H. A, ({
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Find the square root of

13. -54124/=1. 14 -11-604/—1. 15, —47484/-3.
16. -84/ —1. 17. a®-1+42a4/—1.

18. 4ab—2(a?- )4 1.

Fxpress in.the form A +:B

3457 V3-i2 1+
190 2-__32. . m. 2 J3 — i J2 . 21. 1_—2 .
(1+3) (a+b)t _(a—ib)
2 5o B e " arn

If 1, w, w? are the three cube roots of unity, prove
24, (1+e?)=o. 25, (1-w+o?) (l+o—w?)=4.
26. (1-0)(1-0’)(1-o!)(1-f)=9.
21, (245042070 =(2 + 2w + bw?)s =729,
28. (1-w0+e?) (1—e?+of) (1 —ot+ob)... to 2 factors=22s,
29. Prove that-
a#+y3+z.3— 3zyr=(r+y+2) (+Yw + 20%) (£+yo?+z0).
30. If r=a+bd, y=aw+bw?, z=aw?+ b,
shew that

1) zyz=ad+b.

(2) 2®+y+21=6ab.

3) 23+y3+23=3(a®+b3).
3l If ad+cy+be=JX, cx+bytaz=Y,br+ay+cz=2,

shew that (a®+ %+ c®—be—ca— ab) (12432 +22 —yz — 2x — xy)
' =X+ Y34+ 22 -YZ-XZ-XY.



CHAPTER IX.
THE THEORY OF QUADRATIC EQUATIONS.

111. Arrer suitable reduction every quadratic equation may
be written in the form

ax’ +bx+ec=0 ... 1),
and the solution of the equation is
— b= /'~ dac :
z= \é*a ........................ 2).

We shall now prove some important propositions connected
with the roots and coefficients of all equations of which (1) is
the type.

112. A quadratic equation cannot have more than two roots.

For, if possible, let the equation aa®+bx +c=0 have three
different roots a, B, y. Then since each of these values must
satisfy the equation, we have

ao’ +ba+e=0.ccciiiiiiiiiinnn. 1),
aft +bB+c=0.ccccoiiniinnininnnin 2),
ay +by+e=0....coeiiiiinninn. (3)

From (1) and (2), by subtraction,
a(a'- ) +b(a-B)=0;
divide out by a — 8 which, by hypothesis, is not zero ; then
‘ a(e+pB)+5=0.
Similarly from (2) and (3)
a(B+y)+b=0;
.. by subtraction a(a—y)=0;

which is impossible, since, by hypothesis, a is not zero, and a is
not equal to y. Ilence there cannot be three different roots.

6—2%
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113. In Art. 111 let the two roots in (2) be denoted by a and
B, so that
I TN T N BN ey
“= 2a ’ h 2a ’

then we have the following results :

(1) If b* - 4ac (the quantity under the radical) is positive,
a and B are real and unequal.

(2) If *-4ac is zero, a and B are real and equal, each

reducing in this case to — 2- .
2a

(8) If b" — 4ac is negative, a and B are imaginary and unequal.

(4) 1If b°— 4ac is a perfect square, a and B are rational and
unequal.

By applying these tests the nature of the roots of any
quadratic may be determined without solving the equation.

>  Ezample 1. Shew that the equation 2x2—6x+7=0 cannot be satisfied

by any real values of x.

Here a=2, b= -6, ¢c=T; so that

b —dac=(-6)2-4.2.7=-20.

Therefore the roots are imaginary.

Ezxample 2. If the equation 22+ 2 (k+2) z + 9k =0 has equal roots, find %.
The condition for equal roots gives
(k+2)3=9%,
k2 - 5k+4=0,
(k= 4) (k=1)=0;
. k=4,0rl,
Ezample 3. Shew that the roots of the equation
% - 2pz +p* - q* 4+ 2gqr - r*=0

are rational.

The roots will be rational provided (-2p)*—4(p?*-g¢*+2¢r—1?) is a
perfect square. But this expression reduces to 4 (¢ - 2¢r+12), or 4 (g -1)%.
Hence the roots are rational.

— b+ 6" —dac B=—b—./b“—4¢w

114. Since a= % % ,

we have by addition

_ 2 _ _b_ 3 __ .
s B b+.Jo 4ac2ab Jb = 4ac
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and by multiplication we have

_(=b+ Jb’ — 4ac) (- b—,\/b'—-—4a;)
o = 4a’
(=)= (8~ 4ac)
- 40’
- g’ T @).

By writing the equation in the form
z® + !’-a: +2= 0,
a a
these results may also be expressed as follows.

In a quadratic equation where the coefficient of the first term is
unity,

(i) the sum of the roots is equal to the coefficient of x with
its sign changed ;

(ii) the product of the roots is equal to the third term.

Nore. In any equation the term which does not contain the unknown
quantity is frequently called the absolute term.

. b c
115. Slnce - E =a +B, and a_aﬁ’

the equation a:’+% x+ 2 =0 may be written

2 —(a+B)x+af=0.......... e (1).
Hence é,ny quadratic may also be expressed in the form
z* — (sum of roots) « + product of roots=0......... (2).
Again, from (1) we have
(T—a)(@—=B)=0.ccccovireiiiiaenis (3).

We may now easily form an equation with given roots.

Ezample 1, Form the equation whose roots are 3 and -2,
The equation is (% - 8) (x+2)=0,
or 22—2-6=0.

‘When the roots are irrational it is easier to use the following
method.
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Ezample 2. Form the equation whose roots are 2+4/3 and 2 - /3.

‘We have sum of roots=
product of roots=1;
*. the equation is 22 -4z+1=0,

by using formula (2) of the present article.

116. By a method analogous to that used in Example 1 of
the last article we can form an equation with three or more given
roots.

Ezample 1. Form the equation whose roots are 2, -3, and %

The required equation must be satisfied by each of the following sup-
positions:
2-2=0, z+3=0, x_g=o;
therefore the equation must be .

(z—2) (z+3) (x—g =0;

that is, (z -2)(x+3) (52 -7)=0,
or 523 — 2z - 37 +42=0.

Ezample 2. Form the equation whose roots are 0, *a, -g .

The equation has to be satisfied by

z=0, z=a, 2= -a, a:=;—i 3
therefore it is
z (z+a)(r—a) ( -z )=
that is, z (22 - a?) (bz - ¢)=0,
or bat - cx® - a?ba? + a?cz=0.

117. The results of Art. 114 are most important, and they
are generally sufficient to solve problems connected with the
roots of quadratics. In such questions the roots should never be
considered singly, but use should be made of the relations ob-
tained by writing down the sum of the roots, and their product,
in terms of the coefficients of the equation.

) Ezample 1. If a and 8 are the roots of z’-—p::+q =0, find the value of
(1) 2318 (2) o+ 5
We have a+B=p,
af=q.
. al+@i=(a+pP)*-2a8
=p’—2q.
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Again, ad+f3=(a+p) (a®+p* - ap)
=p {(a+p)*-3ap}
=p (p*-3q).
— '
Ezample 2. Ifa,p are the roots of the equation lr2+1ru:+1p 0, find the
equation whose roots are — '8
B'a’
2 2
‘We have sum of roots=2 + £ =2 +ﬂ_,
B .a af:
e B_q.
product of roots= ﬁ a...l s
.~ by Art. 115 the required equation is
2
- ( 2+ zr1=0,
af .
or afa? - (a?+ 8%) 2+ af=0..
N\ Asin the last example a’+ﬁ'— +‘i’2_rz} , and aﬂ— P
: 3_
.*. the equation is 2a-T 2n‘l-x+ m_o
1 B 17"
or nlz? — (m? - 2nl) z+nl=0,
Fizample 3. When z =L;/‘1 , find the value of 248+ 227~ Tz+72;

and shew that it will be unaltered if % V-1 be substituted for x.

Form the quadratic equation whose roots are §f5—2“/—_1—;
the sum of the roots =3;
the product of the roots = lg;
hence the equation is 273 -6z +17=0;

.. 228 - 6x+17 iz a quadratic expression which vanishes for either of the
values 3_*_5;/;].' .

Now 2z3+22%—Tae+T72=x (222 - 62+17) +4 (222 - 62+ 17) +4
=zx0+4x0+4
=4;

which is the numerical value of the expression in each of the supposed cases.,
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118. To find the condition that the roots of the egquation
ax®+bx + c=0 should be (1) equal in magnitude and opposite
in sign, (2) reciprocals.

The roots will be equal in magnitude and opposite in sign if
their sum is zero ; hence the required condition is

—Il=0, or b=0.
a

Again, the roots will be reciprocals when their product is
unity ; hence we must have

c
—-=1, ore=a.
a

The first of these results is of frequent occurrence in Analyti-
cal Geometry, and the second is a particular case of a more
general condition applicable to equations of any degree.

Ezample. Find the condition that the roots of az?+ bz +c=0 may be (1)
both positive, (2) opposite in sign, but the greater of them negative.

‘We have u+ﬂ=—%, aﬂ::—:.

ha (1) If the roots are both positive, ag is positive, and therefore ¢ and a
ve like signs.

Also, since a + 8 is positive, % is negative; therefore b and a have unlike
signs,

Hence the required condition is that the signs of a and ¢ should be like,
and opposite to the sign of b.

(2) If the roots are of opposite signs, ag is negative, and therefore ¢ and
a have unlike signs.

Also since « + 8 has the sign of the greater root it is negative, and there-
fore g is positive; therefore b and a have like signs.

Hence the required condition is that the signs of a and b should be like,
and opposite to the sign of c.

EXAMPLFS. IX. a.
Form fhe equations whose roots are

4 3 n n - +
\ -=, 2 noo_n rP-q9 _Ptg
1. 5 ? 7 : 2\ n’ m’ \3. p+q’ p_q'
\4 72,05 5\ +2,/3-5, \6. -—p+2Vo.
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7.« —3+50 s 8 -—atib 9. *i(a-0d).
2 1 a 2 .
10. A "‘3, 5, §. \11- §, 0, —‘;. ‘12. 2iJ3, 4.

A nntn "é}. (W
13. Prove that the roots of thelfollowing equations are real : ‘ Lﬂ‘a
1) 22— 2az+ai— b2 - 2=0,
\(2) (@—b+c)id+4(a-b)x+(a-b—c)=0.

\14. If the equation 42— 15— m (22— 8)=0 has equal roots, find the
values of m.

715, For what values of m will the equation
22—2x (14 3m)+7 (3+2m)=0
have equal roots ?
16. Y For what value of m will the equation
2i-br_m-1
ar-¢ m+1l
have roots equal in magnitude but opposite in sign ?

17. Prove that the roots of the following equations are rational:
N (1) (ate—b)2P 420w+ (b+c—a)=0,
N\ (2) abc’s®+3aPex + blex ~ 64’ — ab+2b%=0.

If a, B are the roots of the equation ax?+ bz +¢=0, find the values of

1 1 . a B\?
18 5+ 19. ol +algt 2. (B - ;) :
Find the value of

21, 23+4+2%- 2422 when y=1+2i.
22, #3-32%-8x+15 when w=3+1.
23, 2%—ax?+2a%r+4ad when§=l—,\/:3_.
24, If a and B are the roots of z®+pxr+¢=0, form the equation
whose roots are (a — 8)? and (a+8)%
25. Prove that the roots of (v—a)(z— b)=4? are always real.
26. If x,, x, are the roots of ax?+ bz + ¢=0, find the value of
(1) (e, +b)~2+(azy+ )72
(@) (az;+b)~3+(azy+b)">
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27. Find the. condition that one root of aw?+bx+c¢=0 shall be
7 times the other.

28. If a, 8 are the roots of aa?+bx+¢=0, form the equation whose
roots are a®+B% and a2+ 82
29. Form the equation whose roots are the squares of the sum and
of the difference of the roots of
223+ 2 (m+n) x +m2+n2=0.

30. Discuss the signs of the roots of the equation
pat+qr+1r=0.

119. The following example illustrates a useful application
of the results proved in Art. 113.

2 -
Ezample. If z is a real quantity, prove that the expression %%)L]"

can have all numerical values except such as lie between 2 and 6.

Let the given expression be represented by y, so that

then multiplying up and transposing, we have
2242z (1 -y) +6y - 11=0.

This is a quadratic equation, and in order that z may have real values
4(1-y)>-4(6y—11) must be positive; or dividing by 4 and simplifying,
92 - 8y + 12 must be positive; that is, (y — 6) (y — 2) must be positive. Hence
the factors of this product must be both positive, or both negative. In the

former case y is greater than 6; in the latter y is less than 2. Therefore
y cannot lie between 2 and 6, but may have any other value.

In this example it will be noticed that the quadratic expression
y* — 8y + 12 is positive so long as y does not lie between the roots
of the corresponding quadratic equation y*— 8y +12=0.

This is a particular case of the general proposition investigated
in the next article.

120. For all real values of x the expression ax®+bx+c has
the same sign as a, except when the roots of the equation ax*+bx+c=0
are real and unequal, and x has a value lying between them.

Case I. Suppose that the roots of the equation

axr’ +bx+c=0
are real ; denote them by a and B, and let a be the greater.
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" . b c
Then w*+bx+c=a a:+c—ta:+“

=a{x'— (a+ B)x +aB}
— a(w—a) (5—f).

Now if « is greater than a, the factors £ —a, x — B are both
positive ; and if x is less than B, the factors @ —a, x — 8 are both
negative ; therefore in each case the expression (x— a)(x— B) is
positive, and ax®+ bx + ¢ has the same sign as . But if 2 has a
value lying between a and B, the expression (z—a)(x—p) is
negative, and the sign of ax® + bx + ¢ is opposite to that of a.

Case II. If a and B are equal, then

ax’ + bx + c=a (x— a)’,
and (- a)® is positive for all real values of x; hence a2’ + bz + ¢
has the same sign as a.

Case IIL. Suppose that the equation ax®+bdx+c¢=0 has
imaginary roots; then

b ¢
ax’+bx+c=a{w’+—w+—}
a a

—a { . i)' , Rac-¥
B (x 2a ia’ }
But b° — 4ac is negative since the roots are imaginary ; hence

4ac-b* [
4a*

is positive, and the expression

+ b )' . 4ac-b°

(a: %, 4o’

is positive for all real values of x; therefore az® + bx + ¢ has the
same sign as a. This establishes the proposition.

121. From the preceding article it follows that the expression
ax’ + bz + ¢ will always have the same sign whatever real value x
may have, provided that b®— 4ac is negative or zero; and if this
condition is satisfied the expression is positive or negative accord-
ing as a is positive or negative.

Conversely, in order that the expression ax’+ bx+ ¢ may be
always positive, *— 4ac must be negative or zero, and @ must be
positive ; and in order that ax®+ bx + ¢ may be always negative
b® - 4ac must be negative or zero, and @ must be negative.
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Ezample. Find the limits between which a must lie in order that

2 -7z +5
6z'-Tz+a
may be capable of all values, z being any real quantity.
az?-Tz+5
Fut 8 -Tava
then (a - by)a?—Tx (1 -y)+ (5 - ay)=0.

In order that the values of x found from this quadratic may be real, the
expression
49 (1 - y)? -4 (a - 5y) (5 — ay) must be positive,

that is, (49 -20a) y*+2 (2a®+1) y + (49 — 20e) must be positive;

hence (2a?+ 1)? - (49 — 20a)? must be negative or zero, and 49 — 20« must be
positive,

Now (2a?+1)? - (49 — 20a)? is negative or zero, according as
2 (a?- 10a + 25) x 2 (a?+ 10a — 24) is negative or zero;
that is, according as 4 (a - 5)? (a + 12) (a — 2) is negative or zero.

This expression is negative as long as a lies between 2 and —12, and for
such values 49 — 20a is positive; the expression is zero when a=5, - 12, or 2,
but 49 — 20a is negative when a=>5. Hence the limiting values are 2 and
—12, and a may have any intermediate value.

EXAMPLES, IX. b,

1. Determine the limits between which #» must lie in order that
the equation
2ax (ax+nc)+ (2 —2) =0

may have real roots.

2. If 2 bereal, prove tha.t F5739 5 must lie between 1 and - ill_

B-z+1
22+ x+1

4, If 2 be real, prove that ™
5 and 9.

3. Shew that lies between 3 and % for all real values of z.

22434271

AT can have no value between

. . a
5. Find the equation whose roots are ;/-(é/;_:—b .
6. If a, B are roots of the equation 42 — p2+¢=0, find the value of
(1) a?(a8-1=B)+8" (Bt~ a),
@) (a—p)~*+(B-p)~*
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7. If the roots of lu? + nr+n=0 be in the ratio of p : ¢, prove that

\/P+\/‘1+\/——o

8. If & be real, the expresswn (@ -;7(1»)‘@ admits of all values
except such as lie between 2n and 2m.

9. If the rcots of the equation az?+42bx+c¢=0 be a and 8, and
those of the equation 42?+2Bx+C=0 be a+ 8 and B+ 8, prove that

b —ac B2-AC
Tt T 4%
pr®+3r—4

10. Shew that the expression Py will be capable of all

values when z is real, provided that p has any value between 1 and 7.
z+2
224+3x+6
12, Shew that if # is real, the expression
(#®-bc)(2xr—b—¢c)™?
has no real values between b and c.

13. If the roots of az?+2bx+c=0 be possible and different, then
tha roots of

11. Find the greatest value of for real values of z.

(@+c) (ax? + 2bz +c) =2 (ac - b%) (z%+1)
will be impossible, and vice versd.

14. Shew that the expression M will be capable of all

bx—a)(cx— dz]
values when « is real, if a? - 3 and c’— have the same sign.

*122. We shall conclude this chapter with some miscellaneous
theorems and examples. It will be convenient here to introduce
a phraseology and notation which the student will frequently
meet with in his mathematical reading.

DerFINITION. Any expression which involves x, and whose
value is dependent on that of x, is called a function of x.
Functions of z are usually denoted by symbols of the form f(zx),
F (), ¢ (2).

Thus the equation y =/ (x) may be considered as equivalent
to a statement that any change made in the value of z will pro-
duce a consequent change in y, and vice versd. The quantities
and y are called variables, and are further distinguished as the
independent variable and the dependent variable.
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An independent variable is a quantity which may have any
value we choose to assign to it, and the corresponding dependent
variable has its value determined as soon as the value of the inde-

pendent variable is known.

*123. An expression of the form
POW' +plx‘—l +]J’$._’ + ... +pu-|x +p-
where n i8 a positive integer, and the coefficients p,, p,, p,,...p, do
not involve z, is called a rational and integral a.lge‘i)ra.ical function
of 2. In the present chapter we shall confine our attention to
functions of this kind.

*124. A function is said to be linear when it contains no
higher power of the variable than the first ; thus ax + b is a linear
function of . A function is said to be quadratic when it
contains no higher power of the variable than the_second; thus

ax’+bx + ¢ is a quadratic function of #. Functions of the third,

th,... degrees are those in which the highest power of the
variable is respectively the third, fowrth,.... Thus in the last
article the expression is a function of « of the n'™ degree.

¥125. The symbol f(x, ) is used to denote a function of two
variables « and y; thus ax+ by + ¢, and ax’+ by + cy’+ dx + ey +f
are respectively linear and quadratic functions of x, y.

The equations f(x) =0, f(x, y) = 0 are said to be linear, quad-
ratic,... according as the jfunctions f(x), f(x, y) are linear, quad-
ratic,....

*126. We have proved in Art. 120 that the expression
ax’+bx+c¢ admits of being put in the form a(x-a)(x- B),
where a and B are the roots of the equation ax® +bx +¢=0.

Thus a quadratic expression ax’+dx+ ¢ is capable of being
resolved into two rational factors of the first degree, whenever
the equation ax®+ bx+c¢=0 has rational roots; that is, when
b* — 4ac is a perfect square. -

*127. To find the condition that a quadratic function of x, y
may be resolved into two linear factors.
Denote the function by f(x, ¥) where

S (2, y) = ax® +2hxy + by’ + 292+ 2y + c.
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‘Write this in descending powers of x, and equate it to zero;
thus
ax® + 2z (hy + g) +by* + 2fy +¢ = 0.

Solving this quadratic in & we have

oo =0y +9) = J by + gy —a by’ + %y + )
a ’

or  an+hy+g==+Jy O —ab)+ 2y (g — &)+ (5"~ ac).

Now in order that f(, y) may be the product of two linear
factors of the form px+qy + 7, the quantity under the radical
must be a perfect square ; hence

(hg - af )" = (B* — ab) (9" ~ ac).
Transposing and dividing by a, we obtain
abe + 2fgh—af* — bg* — ch*=0;
which is the condition required.

This proposition is of great importance in Analytical Geometry.

*128. To find the condition that the equations
ar*+bx+¢=0, a'a’+bx+c' =0
may have a common root.
Suppose these equations are both satisfied by x =a ; then
act+ba+c=0, |
a'a*+ba+cd =0;

.*. by cross multiplication

o’ a 1

b’ —bc¢ ca—ca ab'—ad’

To eliminate a, square the second of these equ;a,l ratios and
equate it to the product of the other two; thus

of o 1

(ca —day ~ (b ~bc) " (@' —ab)’
o (ca' = ca)* = (bc' - b'c) (ab’ — a'b),
which is the condition required.

Tt is easy to prove that this is the condition that the two
quadratic functions ax® + bay + cy* and a'z’ + b'zy + ¢'y* may have
a common linear factor.
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*EXAMPLES. IX. c.

1. For what values of m will the expression
¥+ 2xy+2r+my -3
be capable of resolution into two rational factors ?

2. Find the values of m which will make 2%+ may+3y* — by — 2
equivalent to the product of two linear factors.

3. . Shew that the expression
A (22—t -2y (B-C)
always admits of two real linear factors.
4. If the equations
B+pr+q=0, a*+pr+q¢g=0
have a common root, shew that it must be either
P{-Pq . 9-9
-9 ~ P-p
5. Find the condition that the expressions
2+ mry+ny?, U+m'zy+a'y?
may have a common linear factor.

6. If the expression
322+ 2Pxy + 2%+ 202 — 4y +1

can be resolved into linear factors, prove that P must be one of the
roots of the equation P%+4aP +2a%+6=0.

7. Find the condition that the expressions
ax®+2hey +by?, o'2?+ 20 xy+by?
may be respectively divisible by factors of the form y —mz, my + 2.
8. Shew that in the equation
28— 32y + 28— 2w — 3y — 35=0,

for every real value of x there is a real value of g, and for every real
value of y there is a real value of .

9. If z and y are two real quantities connected by the equation
922 + 2y +y% — 922 — 20y + 244 =0,
then will = lie between 3 and 6, and y between 1 and 10.

10. If (ar®+br+c)y+a'a?+b'w4+¢' =0, find the condition that a
may be a rational function of .



CHAPTER X.
MISCELLANEOUS EQUATIONS.

129. In this chapter we propose to consider some mis-
cellaneous equations; it will be seen that many of these can be

solved by the ordinary rules for quadratic equations, but others
require some special artifice for their solution.

Ezample 1. Solve 8 sa:'}n=
Multiply by z’i" and transpose; thus
Ba:.";—63.1:3l"— 8=0;
(a;’%‘ 8) (8:0;:_"+ 1)=0;

1
zﬁ =8, hor-g;

a:=(23)%‘, or ( )

m
. =2 or2

Ezample 2. Solve 2\/ +3\/a’=k+§‘f
Let d——y,then \/a_l;
z Yy

2aby? - 6aty — by + 8ab=0;
(2ay - b) (by — 3a)=0;
=2t ol
Y=22%%°
z b 9a?,
R 7 AR Tl
. b 9ad
that is, ¥= gz 0r e
H. H. A,
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Ezample 8. Solve (x-—5)(x-T7)(z+6) (z+4)=>504.
‘We have (? — x — 20) (22 — = — 42) =504 ;
which, being arranged as a quadratic in 2% -z, gives
(2 - 2)?- 62 (22— ) +336=0;
o (2 -2 - 6) (22— x—56)=0;
. x?-2-6=0, or 2?—x-56=0;

whence r=3, -2, 8, -1T.

130. Any equation which can be thrown into the form
at+be+c+p Jar' +bx +c=q

may be solved as follows. Putting y= J ax® + b + ¢, we obtain
Y'+py—gq=0.
Let a and B be the roots of this equation, so that
Jad T Toma, JaTiare=p;
from these equations we shall obtain four values of z.

‘When no sign is prefixed to a radical it is usually understood
that it is to be taken as positive; hence, if a and 8 are both
positive, all the four values of a satisfy the original equation.
If however a or B is negative, the roots found from the resulting
quadratic will satisfy the equation

ax +be+c—pJax' +bx + c=g,
but not the original equation.

Egzample. Solve z?—5z+2,\/71—5z+3=12.
Add 3 to each side ; then
2 - be+3+2./27- bz +3=15.
Putting /a* -5z + 3=y, we obtain y2+2y —15=0; whence y=3 or - 5.
Thus \/2? -5z +3=+3, or \/2%—bz+3= 5.

Squaring, and solving the resulting quadratics, we obtain from the first

5+,/113
g *

patisfies the given equation, but the second pair satisfies the equation

=6 or —1; and from the second z= The first pair of values

22— bz -2 \J2%- bz +3=12.
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131.  Before clearing an equation of radicals it is advisable
to examine whether any common factor can be removed by
division.

Egzample. Solve A/z* - Tax +10a? - \/2?+ az - 6a>=z - 2a.
‘We have

(@ =2a) (z - 5a) - A/ (z - 2a) (z+3a) == - 2a.
The factor \/z — 2a can now be removed from every term;
. JE—Ba- JiFBa=\Jz—2a;
z-5a+z+3a~-2 \/(z—ba) (z+3a)=2—2a;
z=2,/2"—2az - 15a7;
823 - 8ax — 60a2=0;
(z ~ 6a) (3z+10a)=0;
zr=6a, or — I?Ta .
Also by equating to zero the factor »/z — 2a, we obtain z=24.
On trial it will be found that =6a does not satisfy the equation: thus
the roots are — l—gf and 2a.

The student may compare a similar question discussed in the Elementary
Algebra, Art. 281,

132. The following artifice is sometimes useful.

Ezample. Solve \/3:2—4z+34+ /32 -4dz-11=9 ............ e ).

We have identically
(8~ 4x+34) - (322 -4z —11)=45................. (2).

Divide each member of (2) by the corresponding member of (1); thus

N7y vy VS v~ Juy vy § Y SO (3).

Now (2) is an identical equation true for all values of z, whereas (1) is an
equation which is true only for certain values of z; hence also equation (3)
is only true for these values of .

From (1) and (3) by addition

N3E— 4z +84=1;

h 5
whence =3, or -3 72
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133. The solution of an equation of the form
ax' = ba® &= cx’ &= b + a = 0, -
in whxch the coefficients of terms equidistant from the beginning
and end are equal, can be made to depend on the solution of a
quadratic. Equations of this type are known as reciprocal equa-
__tions, and are so named because they are not altered when z is

changed into its reciprocal i

For a more complete discussion of reciprocal equations the
student is referred to Arts. 568—570.

Ezample. Solve 12z4- 5623+ 8922~ 56z +12=0.
Dividing by «? and rearranging,

12 (xul,) 56 (z+ 1) +89=0.
x T

Put z+1$z; then 23 + L= -2;
T x?
‘e 12(2’—2)—562-1-89:0;
whence we obtain z=g,0t1§,
x+1 5 01'13
z 2%

QSIKO

By solving these equations we find that x=2, % ) g-,

134. The following equation though not reciprocal may be
solved in a similar manner.

Ezample. Solve 624 — 2528+ 1223 + 25+ 6=0.

‘We have 6(z’+l,) —25( —1)+12=0;
x z
1\2 1

whence 6(x-=)-25 (x—-)+24=0;
x x

2(:r:—l)—-13:0,01'3(:1:--1 -8=0;
x z

. 1 1
whence we obtain =2, -5 3, - 3

135. 'When one root of a quadratic equation is obvious by
inspection, the other root may often be readily obtained by
making use of the properties of the roots of quadratic equations
proved in Art. 114.
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Ezxample. Solve (1 - a?) (x+a)-2a(1l-2%)=0.
This is a quadratie, one of whose roots is clearly a.
Also, since the equation may be written

the product of the roots is - 1+a¥

2ax?+ (1 -a¥) z - a(l +a?)=0,

2

EXAMPLES. X a.

Solve the following equations :

1,
3.

5.

; and therefore the other root is —

101

1+a?

oa

1).

x-2-221=8, 2, 9+x~4=102x"2
21 3 1 1
2Jx+2x 2=5. 4, 62A=T24-22 4
] 1 1
a4 6=>5z" 6. 3.::2' 2% —2=0,
3 v
5\/;+7x/§=22§' 8. /\/1 =7 \/_—21’
1 4
6J/x=>52 2—13. 10, 1+82549¥23=0.
3%249=10. 3" 12. 5(5*+5)=26.
22””+1—32.2”. 14, 2%+3_57=65(2*—
3 Nex_,,
2% +72—-_2 16. N =55

(x="T) (z—3) (#+5) (z+1)=1680.
(+9) (x—3) (x - 7) (x+5)=385.
z(2v+1) (- 2) (22— 3)=63.
(22— 7) (a® - 9) (22 + 5)=91.

224 2./22 62=24— 6.

322 47+ /322 — 47— 6=18.
322743 /325 — 162 + 21 =162.
8+9.J/(@r—1) (& =2) =323 Tz.

e 2
—;2+J2z”—5x+3=—(x:l) :



102

g 8 8 s8RpERBEEBER

B

9

49.

51

HIGHER ALGEBRA.

7.1;—"/3—”2—-;—;?&4-—1 = (;/87” +Jx>’.

AR Tz =15 — \J22=3x=\[22-9.

222 =9z + 4432 — 1= /2024 21z — 11.

N2 +52— T+ A/3 (2~ T2+ 6) — A/72T— 62~ 1=0.
N + 20z - 322 — \Ja? + ax — 62%= \/2a? + Bax — 9.
2B 62— 2~ /223 +br—9=1.

N3P -2+ 9+ /327 - 2r—4=13.

N2E Tz 41—, /22— 9z +4=1.

322 —Tx-30— /222 Tz - 5= z-5.
A48 - 423+ 241=0.

43 a8+1=303+30, 3. 2A41-3(sd4a)=2"

10 (24 +1) — 637 (22— 1) + 5242 =0.

: 12a—x _Ja+1 © a+2z+\JaP—42® 4 bz .

z-A12a—2z Va-1' " a+2—Jai— 4zt

o1 _w-not-1_o oy

z—Af22-1 x+Jz¢-1

JErz+ NZ -, 43. x3+l +\/
N 2

974 ;928 : 1, 45. a*(a?41)=(a%*+a%)a.

8Jz—5 _ \J3z—T7 a 18(72-3) 250 /2x+1

3r—17 z-5 RN

(a +x)§+4 (a— x)§=5 (a? —ﬁ)%.

Nattax—1—f22+br—1=\/a - \'b.

2+ f2-1  z- N JA—1
=BT z+a/27-1

=98.

2t — 2084 2=380. 52, 272%42124+8=0
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136. We shall now discuss some simultaneous equations of

two unknown quantities.

Ezample 1. Solve z+2+y+3+,/(a+2) (y +8)=39.
(+2)2+(y+3)¥+ (z+2) (y +3) =T41.
Put 2+ 2=u, and y +3=v; then

u+v+~/ﬁ=39 .................................

wWvduv=T41................e

hence, from (1) and (2), we obtain by division,

u+tv- ,JQE =19
From (1) and (3), u+v=29;
and uv =10,
or : uv=100;
whence u=25, or 4; v=4, or 25;
thus £=23, or 2; y=1, or 22.
Ezample 2. Solve TAHY =82 i
T—Y=2 it
Put z=u+v, and y=u-v;
then from (2) we obtain v=1.

Substituting in (1), (u+1)4+(u—1)4=82;
<o 2 (ut+6ul+1)=82;

ut+46u-40=0;
whence u?=4, or —10;
and u==2, or :kN/Tld.
Thus z=38, -1,1+,/-10;

y=1, -3, -1 ,/-10.

2ty _z-y
Ezample 3. Solve 8z-y =ty
From (1), 16 (222 + 8zy +y? — 82% + 4zy — %) = 88 (322 + 22y - 9%);
. 12922 — 29zy - 38y3=0;
. (3z - 2y) (432 +19y) =0.
Hence
or

=28 e
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z_y_Tz+by
From (3), 3=3= 39
=1, by equation (2)
. z=2,y=3.
i z_ Yy _Tziby
Again, from (4), 198" _g2
29 .
=—§—2-,by equation (2),
. z= 551 1247
B R A
o weg. o 551 1247
Henoe z=2,y=8; orz= 2V -
Ezample 4. Solve 423+ 32% +y3=8,

228 - 2:c‘y + zy’ =1.
Put y =mz, and substitute in both equations. Thus

23(4+3m+mB)=8 ......cioiiiiiiiiiinens ).
B2-2m+md)=1 ...t (2).
. 44+3m+md

I gmrmi O
m3 - 8m?+19m -12=0;
that is, (m—-1) (m - 8) (m—4)=0;
: .. m=1,o0r3,or4,
(i) Take m=1, and substitute in either (1) or (2).
From (2), 23=1; ... z=1;
and y=mr=z=1.

(ii) Take m=3, and substitute in (2);

3/
thus 5z8=1; .-, .’E:Jg;
and y=mr=3x=3 ‘\a/é.

(ili) Take m=4; we obtain

1025=1 /1
= ,..Z:/Jﬁ,

d r=4, /1
an y=mr= "’=4\/ﬁ'
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Hence the complete solution is
LA
=5 \/ 5’ \/ 0
8
v=1,8,/% 4 /8.

Nore. The above method of solution may always be used when the
equations are of the same degree and homogeneous.

Ezample 5. Bolve 31z%?—Tyt-112ry+64=0 .......ccccocevriennnns (1),
22— T2y +4y2+8=0...ccccerrriiniirnns (2).
From (2) we have —8=22- Tzy +4y?; and, substituting in (1),
81a%? - Tyt + 1day (2% - Tzy + 49°) + (2% - Toy + 497)?=0;
o 3la%y? - Tyt + (22 — Tay +4y?) (142y + 22— Tay +4y?) =0;
< 3la%y3 —Tyd + (22 + 4923 ~ (Toy)?=0;

that is, 2410222 + 9y =00, (3).
o (2 -y (@2 - 9y?)=0;
hence z==%xy, or z=*3y.

Taking these cases in succession and substituting in (2), we obtain

rx=y= %2

2
r=—-yYy==% _g;

r==3, y==%1;

[ 4 [ 4
r==%3 "'1—71 Yy== —1—7'.

Nore. It should be observed that equation (3) is komogeneous. The
method here employed by which one equation is made homogeneous by a
suitable combination with the other is a valuable artifice. It is especially
useful in Analytical Geometry.

Divide each term of (1) by (2 - %)}, or (z+9)} (z-n)};

1 1

T - ¥

.. (z———+y) +2 (z———y =3.
-y z+y
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z+Yy 3
This equation is a quadratic in (a:_—y) , from which we easily find,

)
(’ﬁ}l) =2o0r1l; whence z+—g=8 orl;

z—y -

. < Tx=9y, or y=0.

Combining these equations with (3), we obtain
13

z=9, y=T; or T=3g, y=0.

EXAMPLES. X. b,

Solve the following equations :

1. 3z-2y=7, 2. bx-y=3, 3. 4z -3y=1,
2y=20. ¥~ 622=25, 122y +13y3 =25,
4. 2A+a%i4yt=081, 5. 2%+ xy +y?=84,
22— zy +32=19. z —nzy+y =6.
6. =+ zy+y =65, 7. 24y =T+ay,
22+ xy +y2=2275. 22+ y2=133 - zy.
8 3z%-5y2=T, 9. 5y%—-T2%2=17, 10. 3224165=16zy,
3zy—4y2=2. Sry—622=6, Txy+3y=132.
11. 322+ 2y +3=15, 12, 2%+y%-3=3azy,
3lay — 32— by?=45. 9242 — 6 +y2=0.
13. a2A4+y4=706, 14, A4+yr=272, 15, a%-—y5=992,
r+y=8. r—-y=2. z—-y=2.
4 22 9 9 x Yy
16. x+.17-—1, 17. ;"';—2, 18. §+5——5.
4 3 2. b6 5
y+—x‘—25. m=l. ;+§=é.
1 1 11
19. z+y=1072,  20. xy+y2?=20, 2L 2A4yi=5,

1 1 : -1 -
B +yi=16. 2t 4yi=65. 6(v 3+y B=5,
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2. Jrty+aSr—y=4, 23, Y+ 2 1=,
2% —y=9. Nr+l-Jz=1=yy.
\/ \/g 1o 95. NZ=WY  Jatdy 17
_1/ 3 Notdy T Jr=Jy~ 4’
z+y=10. 2% 4+y2="06.
2%+ 4y% - 152=10(3y — 8), xy=6.
2%2+400=412y, y*=>bxy—4a
4% + 5y =6+ 202y — 2592 + 22, Tx—1ly=17.
922+ 337 - 12=122y — 492+ 22y, 2%—xy=18,
(22 ~y") (v —y)=16ay, (2*—y*)(a®-y*)=6402%"
2% - zy+yt=2y, 222+ 4wy=>y.
Sty oS-y _43s
@y @=gr~ 8’
Y (@t —-3zy—22)+24=0, =x(y?-42y+222)+8=0.
33 -8zt + P +21=0, 2%(y—=)=1.
92 (422 - 108) = (43— 9%), 222+ 9zy +y2=108.
624+ 222+ 16 =22 (122 +3%), 22+ay—yi=4.
z(a+x)=y(b+y), ar+by=(z+y)*
ry+ab=2ax, 2%+ a?b2=20%2
s-a, y-b_1 1 __1
“at b 2-b y-a a->
ba®=10a%z+ 3a%y, ayd=10ab%y + 3b3.
2a(17—31>+4a2—4.z2+"1—"/—2=1

®

EEgBRIR

br—Ty=4.

=0.

!‘3.8.%8

137. Equations involving three or more unknown quantities
can only be solved in special cases. 'We shall here consider some
of the most useful methods of solution.

Ezample 1. 8olve z+y +2 =18 (1),
2y +22=65...... i, @),
ZY=10.......cccoiriiiiiinnriiiiiis 3)

From (2) and (3), (z+y)3+23=85.

Put u for z+y; then this equation becomes
u? + 22=856.
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Also from (1), u +z=13;
whence we obtain u=7 or 6; z=6 or 7.
Thus we have z+y= 1, and ZFY= 6,
zy=10 zy=10
Hence the solutions are
z=5, or 2, z=3+n "1,
y=2, or 5,\ or y=3=F\/:—1’
z2=6; =7
Ezample 2. Solve (z+y)(x +2)=30,
(y+2) (y+2)=15,

(z+z) (z+y)=18.
Write u, v, w for y+z, z+x, z+y respectively ; thus
vw=30, wu=15, uv=18 .............................. (1).

Multiplying these equations together, we have
utytw?=30 x 15 x 18=15? x 62;
. uvw= %90,

Combining this result with each of the equations in (1), we have

u=3, v=6, w=5; or u=-8, v=-6, w=-5;

. Y+z=38, y+2=-3,
z+:c=6,} or z+z=—6,}
z+y=5; z+y=-5,
whence z=4, y=1, 2=2; or z=-4, y=-1, 2=-2,
Ezample 8. Solve PHyz+23=49 ..o 1),
gtz =19 e, 2),
42y +Y?=389 .ot (3)
Subtracting (2) from (1)
yi-a22+2(y-2x)=30;
that is, (y—2)(z+y+2)=80 ...ovvvrrnniiinniinnnnnne (4).
Similarly from (1) and (3)
(z-2z)(@+y+2)=10 ............ooo (5).
Hence from (4) and (5), by division

whence y=3z-2a.



Substituting in equation (3), we obtain

From (2),
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23 - 3xz +822=138.

22+ zz+ 22=19.

109

Solving these homogeneous equations as in Example 4, Art. 136, we obtain
x=x2, z==+3; and therefore y= +5;

or

11 1 .19
x==!=w, z==!=~77-, and therefore y = *,77'

Ezample 4. Solve z3-yz=a?, y?-22=0%, 22—zy=c

Multiply the equations by y, 2,  respectively and add ; then

¢z +a%y +b%2=0

Multiply the equations by z, z, y respectively and add; then

bz +c%y +al2=0

From (1) and (2), by cross multiplication,

x

-9 ___*
at—bp3? Y -clad A-a®?

= k suppose.

Bubstitute in any one of the given equations; then
K2 (a8 + b8+ c8 - Ba?%c?) =1;

L

EXAMPLES.
Solve the following equations :

9r+y—82=0, 2.
4r—-8y+72=0,
yetar+xy=47.
r-y—-2=2, 4.
224yt —22=22,
xY=3.
2242 —2=21, 6.
3rz+3yz — 22y =18,
r+y—2z=35.
22+ 22y + 32=50, 8.

x

z

1

= Y = =z
Tat-Ue M-l A-a®® o881 o8- BaiE

2y%+3yz+yx=10,
322420+ 22y =10.

X c

3z+y—2:=0,

4z -y —32=0,
23+ y3+ 28 =467.
xr+2y—2=11,
22— 4yt +2=37,
rz=24.

2+ xy+22=18,
¥ +yi+yz+12=0,
22+ 2z 42y =30.
(y—2) (c+2)=22,
(s+2) (v-9)=33,
(#-¥) (y-2)=6.
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9. 2%htu=12, a%%u?=8, aly:tul=1, 3xyilut=4.
10. 2Py22=12, 2%yt =>54, 27y32="T2.

11. zy+x+y=23, 12, 2xy—4x+y=17,
rz+r+2=41, 3yz+y —62=>52,
yz+y+2=217. 622432+ 22=29.

13, xz4y="Ts yz+x=8z x+y+z=12

14 B+y3+5=dd a+y?+2=a? 2+y+z=a.

16, 2*+y24+Pl=yrtartay=a?, 3x-y+z=a./3.

16. 22+y2+22=21a% yz+ 2w —xy=6a?, 3r+y—2:=3a.

INDETERMINATE EqQUATIONS.

138. Suppose the following problem were proposed for solu-
tion :

A person spends £461 in buying horses and cows; if each
horse costs £23 and each cow £16, how many of each does he buy?

Let «, y be the number of horses and cows respectively ; then
23z + 16y = 461.

Here we have one equation involving two unknown quantities,
and it is clear that by ascribing any value we please to x, we can
obtain a corresponding value for y ; thus it would appear at first
sight that the problem admits of an infinite number of solutions,
But it is clear from the nature of the question that z and y must
be positive integers; and with this restriction, as we shall see
later, the number of solutions is limited.

If the number of unknown quantities is greater than the
number of independent equations, there will be an unlimited
number of solutions, and the equations are said to be indeter
minate. In the present section we shall only discuss the simplesi
kinds of indeterminate equations, confining our attention to posi
tive integral values of the unknown quantities; it will be seer
that this restriction enables us to express the solutions in a very
simple form.

The general theory of indeterminate equations will be foun¢
in Chap. xxv1.



INDETERMINATE EQUATIONS. 111

Ezample 1. Solve 7z + 12y =220 in positive integers.
Divide throughout by 7, the smaller coefficient ; thus

5% 3143,
z4+y+ 7 —31+7,

Since « and y are to be integers, we must have

i;_g =integer ;
and therefore 15y7— 9. integer ;
that is, 2 -1+ y_;_2 =integer;
and therefore —;? =integer=p suppose.
s y-2=Tp,
or Y=Tp+2 i (2).

Substituting this value of y in (1),

z+T7p+2+6p+1=31;
that is, T=28-12pD .ccvvriniiriiniiniiniiiii e (3).

If in these results we give to p any integral value, we obtain corresponding
integral values of z and y; but if p > 2, we see from (3) that z is negative;
and if p is a negative integer, y is negative. Thus the only positive integral
values of z and y are obtained by putting »p=0, 1, 2.

The complete solution may be exhibited as follows :
=0, 1, 2
=28, 16, 4, }
=2 9, 16.

Nore. When we obtained i"yT_3=integer, we multiplied by 8 in order

to make the coefficient of y differ gg unity from a multiple of 7. A sgimilar
artifice should always be employed before introducing a symbol to denote

the integer.
Ezample 2. Solve in positive integers, 14z -11y=29.................. 1).
Divide by 11, the smaller coefficient; thus

8z 7
T Y=2+1ys
. §3""-1—Il=2—:v:+y=integer;
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12z-28 .

hence ii =integer;
that is, $—2+:51—1‘5=int680r;
fl——1—=integer =p suppose;
‘. 2=11p+6 }
and, from (1), y=14p+5

This is called the general solution of the equation, and by giving to 3
any positive integral value or zero, we obtain positive integral values of :
and y; thus we have

p=0’ 1’ 2, 3,.. ..... }

=6, 17, 28, 89, ............
y=5, 19, 83, 47, ............
the number of solutions being infinite.

Ezample 8. In how many ways can £5 be paid in half-crowns and florins'
Let z be the number of half-crowns, y the number of florins; then
5z +4y=200;

Sty + Z: 50;

T .
Z:mteger:p suppose ;
and y=>50-5p.

Solutions are obtained by ascribing to p the values 1, 2, 8, ...9; an
therefore the number of ways is 9. If, however, the sum may be paid eithe
in half-crowns or florins, p may also have the values 0 and 10. If p=(
then =0, and the sum is paid entirely in florins; if p=10, then y=0, an(
the sum is paid entirely in half-crowns. Thus if zero values of x and y ar
admissible the number of ways is 11.

1]
&

Ezample 4. The expenses of a party numbering 43 were £5. 14s. 6d.; i
each man paid 5s., each woman 2s. 6d., and each child 1s., how many wer
there of each? :

Let z, y, z denote the number of men, women, and children, respectively
then we have
+y+z= 43 . 1),

10z + 5y + 22 =229.
Eliminating z, we obtain 8z 43y =143.
The general solution of this equation is
z=3p+1,
y=45-8p;
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Hence by substituting in (1), we obtain
Z= 5p -3.

Here p cannot be negative or zero, but may have positive integral values
from 1 to 5. Thus

nw g
nmnni
Spr
»

»

>

o

»

7
29, 21, 18, b5;
7

EXAMPLES. X. d.
Solve in positive integers:
1. 32+8y=103. 2. b5z+2y=>53. 3. Tx+12y=152.

4, 13z+1ly=414. b5, 232+25y=915. 6. 4lz+4Ty=2191.
Find the general solution in positive integers, and the least values
of x and y which satisfy the equations:
7. 5z-Ty=3. 8. 6z-13y=1. 9. 8z-21y=33,
10. 17y-13z=0. 1l. 19y-23x="T. 12, 77y —30x=295.

13. A farmer spends £752 in buying horses and cows ; if each horse
costs £37 and each cow £23, how many of each does he buy ?

14. In how many ways can £5 be paid in shillings and sixpences,
including zero solutions ?

15. Divide 81 into two parts so that one may be a multiple of 8
and the other of 5.

16. What is the simplest way for a person who has only guineas
to pay 10s. 6d. to another who has only half-crowns ?

17. Find a number which being divided by 39 gives a remainder 16,
and by 56 a remainder 27. How many such num are there ?

18, What is the smallest number of florins that must be given to
discharge a debt of £1. 6s. 6d., if the change is to be paid in half-crowns
only ?

19. Divide 136 into two parts one of which when divided by 5
leaves remainder 2, and the other divided by 8 leaves remainder 3.

20. I buy 40 animals consisting of rams at £4, pigs at £2, and oxen
at £17: if I spend £301, how many of each do I buy ?

21. In my pocket I have 27 coins, which are sovereigns, half-crowns
or shillings, and the amount I have is £5. 0s. 6d.; how many coins of
each sort have I? '

H. H. A. &
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CHAPTER XIL
PERMUTATIONS AND COMBINATIONS.

139. EacH of the arrangements which can be made by takin
some or all of a number of things is called a permutation.

Each of the groups or selections which can be made by takin
some or all of a number of things is called a combination,

Thus the permutations which can be made by taking tk
letters a, b, ¢, d two at a time are twelve in number, namely,
ab, ac, ad, be, bd, cd,
ba, ca, da, cb, db, dc;

each of these presenting a different arrangement of two letters.

The combinations which can be made by taking the lette
a, b, ¢, d two at a time are six in number: namely,

ab, ac, ad, be, bd, cd;
each of these presenting a different selection of two letters.

From this it appears that in forming combinations we are. onl
concerned with the number of things each selection contains
whereas in forming permutations we have also to consider t}
order of the things which make up each arrangement; for instanc
if from four letters a, , ¢, d we make a selection of three, suc
as abe, this single combination admits of being arranged in t}
following ways :

abe, ach, bea, bac, cab, cba,

and so gives rise to six different permutations.
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140. Before discussing the general propositions of this
chapter there is an important principle which we proceed to
explain and illustrate by a few numerical examples.

If one operation can be performed in m ways, and (when it
has been performed in any one of these ways) a second operation
can then be performed in n ways,; the number of ways of per-
Jorming the two operations will bem x n.

If the first operation be performed in any one way, we can
associate with this any of the » ways of performing the second
operation : and thus we shall have » ways of performing the two
operations without considering more than one way of performing
the first; and so, corresponding to each of the m ways of per-
forming the first operation, we shall have » ways of performing
the two; hence altogether the number of ways in which the two
operations can be performed is represented by the product
mxmn.

Ezample 1. There are 10 steamers plying between Liverpool and Dublin;
in how many ways can a man go from Liverpool to Dublin and return by a
different steamer?

There are ten ways of making the first passage; and with each of these
there is a choice of nine ways of returning &sinee the man is not to come back
by the same steamer); hence the number of ways of making the two journeys
is 10 x 9, or 90.

This principle may easily be extended to the case in which
there are more than two operations each of which can be per-
formed in a given number of ways.

Ezample 2. Three travellers arrive at a town where there are four
hotels; in how many ways can they take up their quarters, each at a
different hotel?

The first traveller has choice of four hotels, and when he has made his
selection in any one way, the second traveller has a choice of three; there-
fore the first two can make their choice in 4 x 3 ways; and with any one such
choice the third traveller can select his hotel in 2 ways; hence the required
number of ways is 4 x 3 x 2, or 24.

141. 7o find the number of permutations of n dissimilar things
taken r at a time.

This is the same thing as finding the number of ways in which
we can fill up » places when we have n different things at our
disposal.

The first place may be filled up in n ways, for any one ot the w
things may be taken; when it has been filled up In any one N8

*_I—2%
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these ways, the second place can then be filled up inn— 1 ways;
and since each way of filling up the first place can be associated
with each way of filling up the second, the number of ways in
which the first two places can be filled up is given by the product
n(n—1). And when the first two places have been filled up in
any way, the third place can be filled up in n -2 ways. And
reasoning as before, the number of ways in which three places can
be filled up is n (n — 1) (n - 2).

Proceeding thus, and noticing that a new factor is introduced
with each new place filled up, and that at any stage the number
of factors is the same as the number of places filled up, we shall
have the number of ways in which r places can be filled up
equal to

n(n-1)(n-2)...... to r factors;

and the #** factor is
n—(r—1), or n—r+1.
Therefore the number of permutations of n things taken » at

a time is

nn-1)(n-2)...... (n—r+1).

Cor. The number of permutations of n things taken all at

a time is
nn-1)(n-2)...... to n factors,

or n(n-1)(n-2).....3.2. 1.

It is usual to denote this product by the symbol |n, which is
read “factorial n.” Also n! is sometimes used for .

142. We shall in future denote the number of permutations
of » things taken r at a time by the symbol *P_, so that

"P=n(n-1)(n-2)..... (n—7r+1);
also "P = |n.
In working numerical examples it is useful to notice that the

suffix in the symbol "P, always denotes the number of factors in
the formula we are using.

143. The number of permutations of = things taken » at
a time may also be found in the following manner.

Let "F, represent the number of permutations of n things
taken r at a time.
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Suppose we form all the permutations of » things taken » -1
at a time ; the number of these will be “P_.

With each of these put one of the remaining 7 —# + 1 things.
Each time we do this we shall get one permutation of n things
r at a time ; and therefore the whole number of the permutations
of » things 7 at a time is *P,_ x (n —r + 1) ; that is,

"P="P_ x(n—r+1).

r

By writing # — 1 for » in this formula, we obtain
"P_ ="P,_ x(n-r+2),

r—1 r—8
similarly, "P,_ ="P_ x(n—r+3),

........................

Multiply together the vertical columns and cancel like factors
from each side, and we obtain
"P=n(n-1)(n-2)..... (n—r+1)
Ezample 1. Four persons enter a railway carriage in which there are six
seats; in how many ways can they take their places ?

The first person may seat himself in 6 ways; and then the second person
in 5; the third in 4; and the fourth in 8; and since each of these ways may
be associated with each of the others, the 1uquired answer is 6 x 5x 4 x 8,
or 360.

Ezample 2. How many different numbers can be formed by using six out
of the nine digits 1, 2, 38,...9?

Here we have 9 different things and we have to find the number of per-
mutations of them taken 6 at a time;

.*. the required result =?P
=9x8xTx6xbx4
=60480.

144. To find the number of combinations of n dissimilar
things taken r at a time.
Let *C, denote the required number of combinations.

Then each of these combinations consists of a group of »
dissimilar things which can be arranged among themselves in
|r ways. [Art. 142.]
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Hence "C, x |r is equal to the number of arrangements of n
things taken r at a time ; that is,
"C,x|r="P,
=n(n-1)(n-2)...(n-r+1);
L _nar-1)(n-2)...(n—r+1)
.*C,= n
Cor. This formula for "C, may also be written in a different

form ; for if we multiply the numerator and the denominator by
|n — 7 we obtain

nn-1)(n—-2)...(n—-r+1)x|n—r
lrin=r '

The numerator now consists of the product of all the natural
numbers from » to 1 ;

- (2).

It will be convenient to remember both these expressions for
"C,, using (1) in all cases where a numerical result is required,
and (2) when it is sufficient to leave it in an algebraical shape.

Nore. If in formula (2) we put r=n, we have
|» 1

RARITTNTE

but *C,=1, so that if the formula is to be true for »=n=, the symbol |i) mus$
be considered as equivalent to 1.

Ezample. From 12 books in how many ways can a selection of 5§ be
made, (1) when one specified book is always included, (2) when one specified
book is always excluded ?

(1) Since the specified book is to be included in every selection, we
have only to choose 4 out of the remaining 11.

Hence the number of ways=11C,
_11x10x9x8
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f) Since the specified book is always to be excluded, we have to
select the 5 books out of the remaining 11.
Hence the number of ways=1Cy

_11x10x9x8x7
T 1x2x3x4x5

=462.

145. The number of combinations of n things r at a time s
equal to the number of combinations of n things n—r at a time.

In making all the possible combinations of n things, to each
group of » things we select, there is left a corresponding group of
n —r things; that is, the number of combinations of n things
» at a time is the same as the number of combinations of n things
n—1r at a time;

- "C.="C

The proposition may also be proved as follows :
o . In
T n—rin—(n-1)
|
Tpe=rlr

="C.

r

[Art. 144]

Such combinations are called complementary.
Nore. Put r=n, then *C,="C,=1.

The result we have just proved is useful in enabling us to
abridge arithmetical work.

Ezample. Out of 14 men in how many ways can an eleven be chosen?
The required number=14C,,
=M4¢,

_14x18x12
T 1x2x3

=364.

If we had made use of the formula 14C;;, we should have had to reduce an
expression whose numerator and denominator each contained 11 factors.
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146. 7o find the number of ways in which m + n things can be
divided into two groups containing m and n things respectively.

This is clearly equivalent to finding the number of combi-
nations of m +mn things m at a time, for every time we select
one group of m things we leave a group of » things behind.

m+n

[

Nore. If n=m, the groups are equal, and in this case the number of
2m

Thus the required number =

different ways of subdivision is —TTg} for in any one way it is possible

to interchange the two groups ml'ihout obtaining a new distribution.
147, To find the number of ways in which m + n + p things can
be divided into three groups containing m, n, p things severally.
First divide m + n+ p things into two groups containing m
and n + p things respectively : the number of ways in which this

m + n +
can be done is —# .
[ nte
Then the number of ways in which the group of n + p things
can be divided into two groups containing n and p things respec-
n+p
e
Hence the number of ways in which the subdivision into three
groups containing m, n, p things can be made is

tively is

'm+n+p n+p 'm+n+p
e "R LLll’

Nore. If we put n=p=m, we obtam ; but this formula regards

a8 different all the possible orders in wh LGhLY:e “three groups can oceur in
any one mode of subdivision. And since there are |8 such orders cor-

responding to each mode of subdivision, the number o! dtferent ways in

LLWL

Ezample. The number of ways in which 15 recruits can be divided into
15

which subdivision into three equal groups can be made is

three equal groups is W, and the number of ways in which they

can be drafted into three different regiments, five into each, is -

LACHLY
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148. In the examples which follow it is important to notice
that the formula for permutations should not bé used until the
suitable selections required by the question have been made.

Ezample 1. From 7 Englishmen and 4 Americans a committee of 6 is to
be formed; in how many ways can this be done, (1) when the committee con-
tains exactly 2 Americans, (2) at least 2 Americans ?

(1) We have to choose 2 Americans and 4 Englishmen.

The number of ways in which the Americans can be chosen is 4C,; and
the number of ways in which the Englishmen can be chosen is 7C,. Each of
the first groups can be agsociated with each of the second ; hence
the required number of ways=4C,x7C,

17

=EX—

22 A3
S AT
121213

(2) The committee may contain 2, 3, or 4 Americans.

‘We shall exhaust all the suitable combinations by forming all the groups
containing 2 Americans and 4 Englishmen ; then 3 Americans and 3 English-
men; and lastly 4 Americans and 2 Englishmen.

The sum of the three results will give the answer. Hence the required
number of ways =40, x7C +3Cy x 7C3+4C x7C,
4 7 4 7 7
=,.|—__x.I;+I:x_L.-_+]_x_'—_.
212141373 1814 25
=210+140+21 =371 ,
In this Example we have only to make use of the suitable formuls for

combinations, for we are not concerned with the possible arrangements of the
members of the committee among themselves.

Ezample 2. Out of 7 consonants and 4 vowels, how many words can be
made each containing 3 consonants and 2 vowels?

The number of ways of choosing the three consonants is 7C,, and the
number of ways of choosing the 2 vowels is 4C,; and since each of the first
groups can be associated with each of the second, the number of combined
groups, each containing 3 consonants and 2 vowels, is 7Cy x 4C,.

Further, each of these groups contains 5 letters, which may be arranged
among themselves in |5 ways. Hence

the required number of words=7Cy x 4Cyx |5

7 4
=IJE—-—E><—|%-[—EX&
=5xlz

=25200.
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Ezample 3. How many words can be formed out of the letters article, so
that the vowels occupy the even places?

Here we have to put the 3 vowels in 3 specified places, and the 4 conso-
nants in the 4 remaining places; the first operation can be done in E ways,
and the second in |i Hence

the required number of words = E X tl
=144.

In this Example the formula for permutations is immediately applicable,
because by the statement of the question there is but one way of choosing the
vowels, and one way of choosing the consonants.

EXAMPLES XI. a.

1. In how many ways can a consonant and a vowel be chosen out of
the letters of the word courage?

2. There are 8 candidates for a Classical, 7 for & Mathematical, and
4 for a Natural Science Scholarship. In how many ways can the
Scholarships be awarded?

3. Find the value of 8P;, %P;, #C,, 19C,,.

4. How many different arrangements can be made by taking 5
of the letters of the word equation ?

5. If four times the number of permutations of » things 3 together
is equal to five times the number of permutations of n—1 things
3 together, find n.

6. How many permutations can be made out of the letters of
thehword triangle? How many of these will begin with ¢ and end
with e f

7. How many different selections can be made by taking four of
the digits 3, 4, 7, 5, 8, 17 How many different numbers can be formed
with four of these digits?

8. If n(; : »Cy=44 : 3, tind n.

9. How many changes can be rung with a peal of 5 bells ?

10. How many changes can be rung with a peal of 7 bells, the tenor
always being last ?

11,  On how many nights may a watch of 4 men be drafted from a
crew of 24, so that no two watches are identical ? On how many of these
would any one man be taken?

12. How many arrangements can be made out of the letters of the
word drauglt, the vowels never being separated ?
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13. In a town council there are 25 councillors and 10 aldermen ;
how many committees can be formed each consisting of 5 councillors
and 3 aldermen?

14. Out of the letters 4, B, C, p, ¢, » how many arrangements can
be I_ntg;a (1) beginning with a capital, (2) beginning and ending with a
capi

15. Find the number of combinations of 50 things 46 at a time.
16. If *C)y="Cy find *Cyy, 2C,.

17. In how many ways can the letters of the word wowels be
arranged, if the letters oe can only occupy odd places ?

18. From 4 officers and 8 privates, in how many ways can 6 be
chosen (1) to include exactly one officer, (2) to include at least one
officer?

19. In how many ways can a party of 4 or more be selected from
10 persons ?
20. If 18C,=18C,,,, find 7C;.

21. Out of 25 consonants and 5 vowels how many words can be
formed each consisting of 2 consonants and 3 vowels?

22. In a library there are 20 Latin and 6 Greek books; in how
many ways can a group of 5 consisting of 3 Latin and 2 Greek books be
placed on a shelf ?

23. In how many ways can 12 things be divided equally among 4
persons ?

24. From 3 capitals, 5 consonants, and 4 vowels, how many words
can be made, each containing 3 consonants and 2 vowels, and beginning
with a capital ?

25. At an election three districts are to be canvassed by 10, 15, and
20 men respectively. If 45 men volunteer, in how many ways can they
be allotted to the different districts?

26. In how many ways can 4 Latin and 1 English book be placed
on a shelf so that the English book is always in the middle, the selec-
tion being made from 7 Latin and 3 English books?

27. A boat is to be manned by eight men, of whom 2 can only row
on bow side and 1 can only row on stroke side; in how many ways can
the crew be arranged ?

28, There are two works each of 3 volumes, and two works each of
2 volumes ; in how many ways can the 10 books be placed on a shelf so
that volumes of the same work are not separated ?

29. In how many ways can 10 examination papers be arranged so
that the best and worst papers never come together %
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30. An eight-oared boat is to be manned by a crew chosen from 11
men, of whom 3 can steer but cannot row, and the rest can row but can-
not steer. In how many ways can the crew be arranged, if two of the
men can only row on bow side?

3l. Prove that the number of ways in which p positive and =
negative signs may be placed in a row so that no two negative signs shall
be together is 2+1(C,,.

32, If®P,,, :%P,,,=30800 : 1, find r.

33. How many different signals can be made by hoisting 6 differ-
ently coloured flags one above the other, when any number of them
may be hoisted at once?

34, If BC,, : #C,,. =225 : 11, find r.

149. Hitherto, in the formule we have proved, the things
have been regarded as unlike. Before considering cases in which
some one or more sets of things may be like, it is necessary to
point out exactly in what sense the words like and wnlike are
used. When we speak of things being dissimilar, different, un-
like, we imply that the things are wisibly unlike, so as to be
easily distinguishable from each other. On the other hand we
shall always use the term like things to denote such as are alike
to the eye and cannot be distinguished from each other. For
instance, in Ex. 2, Art. 148, the consonants and the vowels may
be said each to consist of a group of things united by a common
characteristic, and thus in a certain sense to be of the same kind;
but they cannot be regarded as like things, because there is an
individuality existing among the things of each group which
makes them easily distinguishable from each other. Hence, in
the final stage of the example we considered each group to
consist of five dissimilar things and therefore capable of |5

arrangements among themselves. [Art. 141 Cor.]

150. Suppose we have to find all the possible ways of arrang-
ing 12 books on a shelf, 5 of them being Latin, 4 English, and
the remainder in different languages.

The books in each language may be regarded as belonging to
one class, united by a common characteristic; but if they were
distinguishable from each other, the number of permutations
would be {12, since for the purpose of arrangement among them-

selves they are essentially different.
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If, however, the books in the same language are not dis-
tinguishable from each other, we should have to find the number
of ways in which 12 things can be arranged among themselves,
when 5 of them are exactly alike of one kind, and 4 exactly alike
of a second kind: a problem which is not directly included in any
of the cases we have previously considered.

151. To find the number of ways in which n things may be
arranged among themselves, taking them all at a time, when p
of the things are exactly alike of one kind, q of them exactly
alike of another kind, r of them exactly alike of & third kind, and
the rest all different.

Let there be n letters; suppose p of them to be a, g of them
to be b, r of them to be ¢, and the rest to be unlike.

Let = be the required number of permutations; then if the
p letters a were replaced by p unlike letters different from any
of the rest, from any one of the a2 permutations, without alter-
ing the position of any of the remaining letters, we could
form g) new permutations. Hence if this change were madé
in each of the z permutations we should obtain z x |p permuta-
tions.

Similarly, if the g letters b were replaced by ¢ unlike letters,
the number of permutations would be

xxlgxl_q_.

In like manner, by replacing the  letters ¢ by r unlike letters,
we should finally obtain « x |p x |g x [r permutations.

But the things are now all different, and therefore admit of |n
permutations among themselves. Hence -

Zxlpxlgx|r=|n;
thﬂ.t iﬁ = -——m—- .
’ Tt
which is the required number of permutations.

Any case in which the things are not all different may be
treated similarly.
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Ezample 1. How many different permutations can be made out of the
letters of the word assassination taken all together ?

‘We have here 13 letters of which 4 are s, 3 are a, 2 are i, and 2 are n.
Hence the number of permutations

|18
THBRE
=13.11.10.9.8.7.3.5
=1001 x 10800 =10810800.

Ezample 2. How many numbers can he formed with the digits
1, 2, 8, 4, 8, 2, 1, so that the odd digits always occupy the odd places?

The odd digits 1, 3, 8, 1 can be arranged in their four places in

Each of the ways in (1) ca!ll be associated with each of the ways in (2).
4 .
Hence the required number= = ——L=6 x3=18.

3
EIEANE]

152. To find the number of permutations of n things r at a
time, when each thing may be repeated once, twice,...... up o r
times in any arrangement.

Here we have to consider the number of ways in which r
places can be filled up when we have = different things at our
disposal, each of the » things being used as often as we please in
any arrangement.

The first place may be filled up in » ways, and, when it has
been filled up in any one way, the second place may also be filled
up in n ways, since we are not precluded from using the same
thing again. Therefore the number of ways in which the first
two places can be filled up is n xn or n’. The third place can
also be filled up in = ways, and therefore the first three places in
n® ways.

Proceeding in this manner, and noticing that at any stage the
index of n is always the same as the number of places filled up,

we shall have the number of ways in which the r places can be
filled up equal to »".
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Ezample. In how many ways can 5 prizes be given away to 4 boys, when
each boy is eligible for all the prizes?

Any one of the prizes can be given in 4 ways; and then any one of the
remaining prizes can also be given in 4 ways, since it may be obtained by the
boy who has already received a prize. Thus two prizes can be given away in
4 ways, three prizes in 4% ways, and 80 on. Hence the 5 prizes can be given
away in 45, or 1024 ways.

153. To find the total number of ways in which it is possible
to make a selection by taking some or all of n things.

Each thing may be dealt with in two ways, for it may either
be taken or left; and since either way of dealing with any one
thing may be associated with either way of dealing with each one
of the others, the number of ways of dealing with the n things is

2x2x2x2......to n factors.

But this includes the case in which all the things are left,
therefore, rejecting this case, the total number of ways is 2" -1.

This is often spoken of as ‘“the total number of combinations”
of n things.

Ezample. A man has 6 friends; in how many ways may he invite one or
more of them to dinner?

He has to select some or all of his 6 friends; and therefore the number of
ways is 26 -1, or 63.

This result can be verified in the following manner.

The guests may be invited singly, in twos, threes,...... ; therefore the
number of selections =8C, +8C, +8Cy+8C,+8C;s+8C,

=6+15+20+15+64+1=63,

154. To find for what value of v the number of combinations
of n things r at a time i8 greatest.

_nn-1)(n- 2) ...... (n r+2)(n— r+1)

Since

1.2.3....(r=D)r

. nn-1)(n-2) ..... (n—r+2)

and Crmr = 1.2.3.....(r=1) ;
-Cr I‘(}r—l n—:+l

The multiplying factor n—_:—+—1 may be written %1—]

which shews that il decreases as » increases. Tience as + vecdiver
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the values 1, 2, 3...... in succession, "C, is continually increased
until n_-:_l —1 becomes equal to 1 or less than 1.
Now ntl_yo,
r
n+1
so long as - > 2;
that is, zz%l > 7.

‘We have to choose the greatest value of 7 consistent with
this inequality.
(1) Let n be even, and equal to 2m ; then
n+l 2m+1 1

2 2
and for all values of + up to m inclusive this is greater than s

g, we find that the greatest number of

=m+3;

Hence by putting r=m =

combinations is "C..
3

(2) ILet n be odd, and equal to 2m + 1 ; then
n+l 2m+2

2 2

and for all values of » up to m inclusive this is greater than r;

but when »=m + 1 the multiplying factor becomes equal to 1, and
"Cui="C,; thatis, *C ,,="C,_,;

=m+1;

and therefore the number of combinations is greatest when the
n+1 n-1
2 "2

same in the two cases.

things are taken at a time; the result being the

155. The formula for the number of combinations of » things
r at a time may be found without assuming the formula for the
number of permutations. ’

Let "C, denote the number of combinations of n things taken
” ;t a time; and let the n things be denoted by the letters
@ b cd,...... .

td
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Take away a; then with the remaining letters we can form
*~1C,_, combinations of n—1 letters taken » — 1 at a time. With
each of these write a; thus we see that of the combinations
of n things » at a time, the number of those which contain
a is *7'C _,; similarly the number of those which contain
bis*"'C,_,; and so for each of the n letters.

Therefore n x*~'C,_, is equal to the number of combinations
r at a time which contain @, together with those that contain 5,
those that contain ¢, and so on.

But by forming the combinations in this manner, each par-
ticular one will be repeated r times. For instance, if =3, the
combination abc will be found among those containing a, among
those containing b, and among those containing ¢. Hence

n
n —n=1 _
Gr_ r=1 X r M

By writing #» — 1 and »—1 instead of n and r respectively,

- . n-1
lO'r-x = ’0'—’ X r—1°
Similarly, "0, ="""C,_, x : — 2 ’

n—r+10’ = u—r-HCIl X
and finally, HC =n—r+ 1

Multiply together the vertical columns and cancel like factors
from each side ; thus
nn-1)(n-2)...... (n—r+1)
rr-1)(r-2)...... 1 ’

uC' —

156. To find the total number of ways in which it is possible
to make a selection by taking some or all out of p+q+r+......
things, whereof p are alike of one kind, q alike of a second kind, r
alike of a third kind; and so on.

The p things may be disposed of in p+1 ways; for we may
take 0, 1, 2, 3, ...... p of them. Similarly the ¢ things may be
disposed of in ¢+1 ways; the » things in r+1 ways; and
80 on.

H. H A, 9
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Hence the number of ways in which all the things may be
disposed of is (p+1)(g+1)(r+1)...... .

But this includes the case in which none of the things are
taken; therefore, rejecting this case, the total number of
ways is

(p+1)(g+1)(r+1)...... -1

157. A general formula expressing the number of permuta-
tions, or combinations, of n things taken » at a time, when the
things are not all different, may be somewhat complicated ; but a
particular case may be solved in the following manner.

Ezample. Find the number of ways in which (1) a selection, (2) an ar-
rangement, of four letters can be made from the letters of the word
proportion. .

There are 10 letters of six different sorts, namelyo, 0,0; p,p; r,7;t;i; n.

In finding groups of four these may be classified as follows:

(1) Three alike, one different.

(2) Two alike, two others alike.

(3) Two alike, the other two different.
(4) All four different.

(1) The selection can be made in 5 ways; for each of the five letters,
P, 1, i, i, n, can be taken with the single group of the three like letters o.

(2) The selection can be made in 3C, ways; for we have to choose two out
of the three pairs o, 0; p, p; 7, r. This gives 3 selections.

(3) This selection can be made in 8 x 10 ways; for we select one of the
3 pairs, and then two from the remaining 5 letters, This gives 30 selections.

(4) This selection can be made in 8C, ways, as we have to take 4 different
letters to chopse from the 8ix o, p, 7, t, 7, n. This gives 15 selections.

Thus the total number of selections is 5 +3+30+15; that is, 53.
In finding the different arrangements of 4 letters we have to permute in
all possible ways each of the foregoing groups.

4
(1) gives rise to 5 x ||_§ , or 20 arrangements.

4
(2) givesriseto 3x I2;|2 » or 18 arrangements.
i

4
(8) gives rise to 30 x I% , or 360 arrangements.
(4) gives rise to 15 x |4, or 360 arrangements.
Thus the total number of arrangements is 20 +18 1360+ 360; that is, 758,
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EXAMPLES. XI. b.

1. Find the number of arrangements that can be made out of the
letters of the words
(1) independence, (2) superstitious,
(3) nstitutions.
2. In how ma:(f wa:.iys can 17 billiard balls be arranged, if 7 of
them are black, 6 red, and 4 white?

3. A room is to be decorated with fourteen flags; if 2 of them are
blue, 3 red, 2 white, 3 green, 2 yellow, and 2 purple, in how many ways
can they be hung? :

4. How many numbers greater than a million can be formed with
the digits 2, 3, 0, 3, 4, 2, 31

5. Find the number of arrangements which can be made out of the

letters of the word algebra, without altering the relative positions. of
vowels and consonants.

6. On three different days a man has to drive to a railway station,
and he can choose from 6 conveyances; in how many ways can he make
the three journeys ?

7. I have counters of n different colours, red, white, blue,...... ; in
how many ways can I make an arrangement consisting of  counters,
supposing that there are at least r of each different colour?

8. In a steamer there are stalls for 12 animals, and there are
cows, horses, and calves (not less than 12 of each) ready to be shipped;
in how many ways can the shipload be made?

9. In how many ways can n things be given to p persons, when
there is no restriction as to the number of things each may receive?

10. In how many ways can five things be divided between two
persons ?

11. How many different arrangements can be made out of the letters
in the expression a%b?c* when written at full length?

12. A letter lock consists of three rings each marked with fifteen
different letters ; find in how many ways it is possible to make an
unsuccessful attempt to open the lock.

13. Find the number of triangles which can be formed by joining
three angular points of a quindecagon.

14. A library has a copies of one book, b copies of each of two
books, ¢ copies of each of three books, and single copies of d books. In
how many ways can these books be distributed, if all are out at once?

15. How many numbers less than 10000 can be made with the
eight digits 1, 2, 3, 0, 4, 5, 6, 7?

16. In how many ways can the followll;gf prizes be given away to a
class of 20 boys: first and second Classical, first and second MaXoe-
matical, first Science, and first French

9—2
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17. A telegraph has 6 arms and each arm is capable of 4 distinct
positions, including the position of rest; what is the total number of
signals that can be made

18. In how many ways can 7 persons form a ring? In how many
ways can 7 Englishmen and 7 Americans sit down at a round table, no
two Americans being together?

19. In how many ways is it ible to draw a sum of money from
a bag containing a sovereign, a half-sovereign, a crown, a florin, a shilling,
& penny, and a farthing?

20. From 3 cocoa nuts, 4 apples, and 2 oranges, how many selec-
tions of fruit can be made, taking at least one of each kind ?

21. Find the number of different ways of dividing mn things into
n equal groups.

22. How many signals can be made by hoisting 4 flags of different
colours one above the other, when any number of them may be hoisted
at once? How many with b6 flags?

23. Find the number of permutations which can be formed out of
the letters of the word series taken three together?

24, There are ﬁ points in a plane, no three of which are in the same
straight line with the exception of g, which are all in the same straight
line; find the number (1) of straight lines, (2) of triangles which result
from joining them.

25. There are p points in space, no four of which are in the same

lane with the exception of ¢, which are all in the same plane; find
gow many planes there are each containing three of the points.

26. There are n different books, and p copies of each; find the
number of ways in which a selection can be made from them.

27. TFind the number of selections and of arrangements that can be
made by taking 4 letters from the word expression.

28. How many permutations of 4 letters can be made out of the
letters of the word exzamination #

29. Find the sum of all numbers greater than 10000 formed by
using the digits 1, 3, 5, 7, 9, no digit being repeated in any number.

30. Find the sum of all numbers greater than 10000 formed by
using the digits 0, 2, 4, 6, 8, no digit being repeated in any number.

31, If of p+gq+r things p be alike, and ¢ be alike, and the rest
different, shew that the total number of combin%,tions ise’

(p+1)(g+1)2r-1.
32. Shew that the number of permutations which can be formed

from 2n letters which are either a’s or b’s is greatest when the num
of a’s is equal to the number of b’s. ber

33, Ifthen+1 numbers g, b, ¢, d, ...... be all different, and each of
them a prime number, prove that the number of different factors of the
expression a™bcd...... is (m+1) 20 -1,



CHAPTER XII.
MATHEMATICAL INDUCTION.

158. MANY important mathematical formule are not easily
demonstrated by a direct mode of proof; in such cases we fre-
quently find it convenient to employ a method of proof known as
mathematical induction, which we shall now illustrate.

Ezample 1. Suppose it is required to prove that the sum of the cubes
2
of the first » natural numbers is equal to {7L";'i)} .

‘We can easily see by trial that the statement is true in simple cases, such
as when n=1, or 2, or 8; and from this we might be led to conjecture that
the formula was true in all cases. Assume that it is true when n terms are
taken ; that is, suppose

2
184284+3%4...... to nterms=gn—(n§+—l)§ .

Add the (n+ 1)t term, that is, (n+1)® to each side; then

]
13423488+ ...... ton+1 terms:%’in;—l)} +(r+1)8

=(n+1)2 (%2+n+1)

_(n+1) (0 +4n+4)
L e

_ ,(n+1) (r+2) %{
= 2 ;

which is of the same form as the result we assumed to be true for n terms,
n+1 taking the place of n; in other words, if the result is frue when we take
8 certain number of terms, whatever that number may be, it is true when we
increase that number by one; but we see that it is true when 3 terms are
taken; therefore it is true when 4 terms are taken; it is therefore true when
6 terms are taken; and 8o on. Thus the result is true universelly.
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Ezample 2. To determine the product of n binomial factors of the form
z+a.

By actual multiplication we have
(z+a) (z+D) (z+c)=2%+(a+b+c) 2*+(ab+ be+ca) z +abe;

(z+a) (z+d) (z+¢) (z+d)=a*+(a+b+c+d)2?
+ (ab + ac+ ad + be+ bd +cd) 2t
+ (abe + abd + acd + bed) z + abed.
In these results we observe that the following laws hold :

1. The number of terms on the right is one more than the number of
binomial factors on the left.

2. The index of z in the first term is the same as the number of
binomial factors; and in each of the other terms the index is one less than
that of the preceding term.

8. The coefficient of the first term is unity ; the coefficient of the second
term is the sum of the letters a, b, c,...... ; the coefficient of the third
term is the sum of the products of these letters taken two at a time;
the coeflicient of the fourth term is the sum of their products taken three at
a time; and 80 on; the last term is the product of all the letters.

Assume that these laws hold in the case of n— 1 factors; that is, suppose
(z+a) (x+b)...(2+h) =214+, 2" 3+ Pz 3+ Pz 4+ ... + P31y
where p=a+btc+..h;
py=ab+ac+...+ah+bc+bd+...... H
py=abc+abd+...... H

Maultiply both sides by another factor z + k; thus
(z+a) (z+b) ... (z+k) (z+k)
=2+ (p1+k) 214 (D2 + k) 22 + (py + Pok) 272+ .. + Py B
Now Dtk=(a+d+c+...+h)+k
=sum of all the n letters a, b, ¢,...k;

DPatpk=p,+k(a+b+..+h)

=sum of the products taken two at a time of all the
n letters a, b, ¢, ... k;

P+ pok=pg+k(ab+tac+...+ah+bc+...)
=gsum of the products taken three at a time of all
the n letters a, b, ¢, ... k;

Py—rk=product of all the n letters a, b, ¢,... k.
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If therefore the laws hold when n-1 factors are multiplied together,
they hold in the case of n factors. But we have seen that they hold in the
case of 4 factors; therefore they hold for 5 factors; therefore also for 6
factors; and so on; thus they hold universally. Therefore

(z+a) (z+b) (z+c) ... (B+Ek)=2"+ 82" 1+ S22+ Sya™ 3+ ... + 8,
where S, =the sum of all the n letters a, b, ¢ ... k; ’
S,=the sum of the products taken two at a time of these n letters.

Sy=the product of all the = letters.

159. Theorems relating to divisibility may often be esta-
blished by induction.

Ezample. Shew that z*-1 is divisible by z -1 for all positive integral
values of n. ,

2-1_ . a1-1

P R

if therefore z™1 -1 is divisible by z -1, then =z* -1 is also divisible by - 1.
But 22~ 1 is divisible by z—-1; therefore 23—1 is divisible by z—1; there-
fore x4 - 1 is divisible by z — 1, and 8o on ; hence the proposition is established.

Other examples of the same kind will be found in the chapter on the
Theory of Numbers.

By division

160. From the foregoing examples it will be seen that the
only theorems to which induction can be applied are those
which admit of successive cases corresponding to the order of
the natural numbers 1, 2, 3,...... n.

EXAMPLES. XII.

Prove by Induction :

1+3+6+...... +(2r—1)=n2
12422432+ ...... +n2=%n(n+l)(2n+ 1).

1 ! + ! + e tonterms:i

+ n+1"

1.272.3

L
2.
3. 2422424 ... +20=2(2"—1).
4.
5. Prove by Induction that z#—y» is divisible by #+y when n is

even.



CHAPTER XIIIL

BiNOMIAL THEOREM. PoOSITIVE INTEGRAL INDEX.

161. It may be shewn by actual multiplication that
(x+a)(@+b)(x+c)(z+d)
=a'+(a+b+c+d)x*+ (ab+ac+ad+be+bd +cd) '
+ (abc + abd + acd + bed) &+ abed ..............oeeiennlnn. 1).

‘We may, however, write down this result by inspection; for the
complete product consists of the sum of a number of partial pro-
ducts each of which is formed by multiplying together four
letters, one being taken from eack of the four factors. If we
examine the way in which the various partial products are
formed, we see that

(1) the term a* is formed by taking the letter x out of each
of the factors.

(2) the terms involving a® are formed by taking the letter =
out of any three factors, in every way possible, and one of the
letters a, b, ¢, d out of the remaining factor.

(3) the terms involving z* are formed by taking the letter
out of any two factors, in every way possible, and fwo of the
letters a, b, ¢, d out of the remaining factors.

(4) the terms involving « are formed by taking the letter =
out of any one factor, and three of the letters a, b, ¢, d out of
the remaining factors.

(5) the term independent of « is the product of all the letters
a, b, ¢, d.

Ezample 1. (2-2)(x+38) (z-5)(z+9)
=244 (- 248-5+9)2®+(-6+10- 18- 15+27—45) 2*
+(30 - 54+ 90 - 135) 2+270
=z4+ 528 - 472% - 69z + 270.
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Ezample 2. Find the coefficient of 22 in the product
(@-3)(z+5) (@-1) (z+2) (z-8).

The terms involving 2% are formed by multiplying together the z in any
three of the factors, and two of the numerical quantities out of the two re-
maining factors; hence the coefficient is equal to the sum of the products
of the quantities -3, 5, —1, 2, —8 taken two at a time,

Thus the required coefficient

=-1564+8-64+24-5+10-40-24+8-16
=-39.

162. If in equation (1) of the preceding article we suppose

b=c=d=a, we obtain
(z+ a)* =a* + 4aa’ + 6a’2" + 40’ + a'.

The method here exemplified of deducing a particular case
from a more general result is one of frequent occurrence in
Mathematics ; for it often happens that it is more easy to prove
a general proposition than it is to prove a particular case of it.

‘We shall in the next article employ the same method to prove
a formula known as the Binomial Theorem, by which any binomial
of the form x + @ can be raised to any assigned positive integral
power.

163. To find the expansion of (x+a)* when n is a positive
integer.
Consider the expression
(z+a)(x+b) (z+c)...... (z + &),

the number of factors being n.

The expansion of this expression is the continued product of
the n factors, x +a, x+ b, z+g¢, ...... z + k, and every term in the
expansion is of » dimensions, being a product formed by multi-
plying together = letters, one taken from each of these n factors.

The highest power of x is «*, and is formed by taking the
letter  from each of the n factors.

The terms involving &' are formed by taking the letter x
from any n—1 of the factors, and one of the lettersa, d, ¢, ... &
from the remaining factor; thus the coefficient of "' in the
final product is the sum of the letters q, b, ¢, ...... k; denote it
by S,.

The terms involving «"~* are formed by taking the letter
from any n—2 of the factors, and fwo of the letters a, b, ¢, ... &
from the two remaining factors; thus the coefficient of =*~* in
the final product is the sum of the products of the letkers
a, b, ¢, ... k taken two at a time; denote it by S,.
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And, generally, the terms involving 2*~" are formed by taking
the letter z from any n—r of the factors, and » of the letters
a, b, ¢, ... &k from the r remaining factors; thus the coefficient of
«*~" in the final product is the sum of the products of the letters
a, b, ¢, ... k taken r at a time; denote it by S..

The last term in the product is abc ... k; denote it by ..

Hence (z+a)(x+Dd)(z+c) ...... (x+k)
=2+ 8@+ S+ + 8T+ + S+ S,
In 8, the number of terms is n; in S, the number of terms is
the same as the number of combinations of n things 2 at a time ;
that is, *C,; in S, the number of terms is "C, ; and so on.

Now suppose b, ¢, ... k, each equal to a; then S, becomes
*C,a; S, becomes "C a’; S becomes "C,a*; and so on; thus-
(®+a)=a"+"Cax"" +"Cia’2"* +"Ca’c" "+ ... +"Ca";
substituting for "C,, *C we obtain

PYERN

(z+a)'=x"+nax""" + ﬁg’"’__;i) a’z" "+ 7%_——2) " P+ ..+ a”
the series containing n + 1 terms.

This is the Binomial Theorem, and the expression on the right
is said to be the expansion of ( + a)"

164. The Binomial Theorem may also be proved as follows :

By induction we can find the product of the = factors
z+a, x+b, x+c¢,...x+% as explained in Art. 158, Ex. 2; we
can then deduce the expansion of (x+ a)" as in Art. 163.

165. The coefficients in the expansion of (x +a)" are very
conveniently expressed by the symbols *C,, "C,, *C,, ... °C,.
We shall, however, sometimes further abbreviate them by Oll‘llttmg
n, and writing On C,, C,, ... C.. With this notation we have

(z+a)"=a"+Ciax""! +Ca’ T+ Ca% 7+ ... +Ca

If we write — a in the place of a, we obtain

(x—a)y'=a"+C,(—a)z" '+ C; (- a)’s" "+ C (- a)’x"* *+... 4+ C,(—a)"
=a"—Ciax"™" + C o’ ' - C @’ + ... + (- 1)"C a"

Thus the terms in the expansion of (z +a)* and (z—a)" are

numerically the same, but in (z-a)" they are alternately positive

and negative, and the last term is positive or negative according
a8 7 is even or odd.
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Ezample 1. Find the expansion of (z+y)®.
By the formula,
(z+y)8=2"+ 80, 2% +°C, 24y + °Cy *y® +8C 2%y * + *Cyxy® + *Coy®
=28+ 6% + 1524y + 2023y + 152%4 + 62y° + 8,
on calculating the values of 8C, , 6C,, 8Cs, ......... .

Ezample 2. Find the expansion of (a - 2z)7.
(a -2z =a7 —7C, a® (22) +7C, a¥ (2z)* —7Cy at (2 + ...... to 8 terms.
Now remembering that *C,.="C,,_,, after calculating the coefficients up to

7C}4, the rest may be written down at once; for 7C(=7Cj; 7Cs=7C,; and 8o on.
Hence

7.6.5
1.2.3
=a’ - Ta® (2z) + 21a® (22)* — 85a4 (22)% + 864® (22)4
—21a? (2)° + Ta (22)% — (2z)
=a’ - 14a°z + 844523 — 280a*z® + 560a3z*
. - 672a% + 448ax®— 12827,
Ezample 8. Find the value of

(a+ NB1)7 + (a- NJaP=T).

‘We have here the sum of two expansions whose terms are numerioa.llg
the same ; but in the second expansion the second, fourth, sixth, and eight!
terms are negative, and therefore destroy the corresponding terms of the first
expansion. Hence the value

=2 {a” +21a" (a® - 1) + 8543 (a? - 1)+ Ta (a® - 1)3}

=24 (64a8 — 112a% + 5642~ 7).

(a - 2z)7=a” - Ta8 (22) + ;’—g a® (2z)3 - at(2z)3+......

166. In the expansion of (z + a)", the coefficient of the second
term is "C, ; of the third term is *C,; of the fourth term is "C,;
and 8o on; the suffix in each term being one less than the
number of the term to which it applies; hence "C, is the co-
efficient of the (r+ 1) term, This is called the general term,
because by giving to r different numerical values any of the
coefficients may be found from "C,; and by giving to = and a
their appropriate indices any assigned term may be obtained.
Thus the (r + 1)* term may be written

"C ", or n(n-1)(n-2)..(n-r+1) g
) E . .
In applying this formula to any particular case, it should be

observed that the ¢ndex of a ts the same as the suffix of C, amd.
that the sum of the indices of x and a is n.




140 HIGHER ALGEBRA.

Ezample 1. Find the fifth term of (a +22%)",

The required term =10, al® (223)*
_ 171. lg . ;5 ;14 « 16413 713

=38b80¢“2n.

Ezxample 2. Find the fourteenth term of (3 — a)'.

The required term =150, (3)? (- a)®
=15C, x (- 9a") [Art, 145.]
= —945qa18,

167. The simplest form of the binomial theorem is the ex-
pansion of (1 +x)". This is obtained from the general formula
of Art. 163, by writing 1 in the place of x, and « in the place
of a. Thus

(l+2z)=1+"Cx+"Ca'+...+"Cx+ ... +"Cx"

=1+ne+ ’1(11";;1) 4. +x;
the general term being

n(n-1)(n-2)...... (n—'r+l)w,.

The expansion of a binomial may always be made to depend
upon the case in which the first term is unity; thus

@+or={a(1+ -’é)}

=a™(1 +2)", where B="-

Ezample 1. Find the coefficient of 21% in the expansion of (2* - 2z)'°,
We have (22 - 27)10=22 (1 - g)“;
and, since 2% multiplies every term in the expansion of (1 - g)xo’ we have in
this expansion to seek the coefficient of the term which contains g

Hence the required coefficient=10C, ( - 2)¢

10.9.8.7
=T.2.3.2%16

=3360.

In some cases the following method is simpler.
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Ezample 2. Find the coefficient of 2" in the expansion of ( 22+ :-cl—,)'
Suppose that 2™ occurs in the (p + 1)t term.

The (p+1)® term =Gy (23> (%)"
="Cp 2P,
But this term contains 2", and therefore 2n — 5p=r, or p =2n5— L

Thus the required coefficient="Cp="C,,_,.
. N
|

l‘]—i"(2n—r) é(3n+r) '

is a positive integer there will be no term containing z* in

Unless 2n,5— r

the expansion.

168. 1In Art. 163 we deduced the expansion of (z + a)" from
the product of n factors (z +a)(x+b) ... (x+£), and the method
of proof there given is valuable in consequence of the wide gene-
rality of the results obtained. But the following shorter proof of
the Binomial Theorem should be noticed.

It will be seen in Chap. xv. that a similar method is used
to obtain the general term of the expansion of

(a+b+ec+..... )~

169. To prove the Binomial Theorem.

The expansion of (z+ a)" is the product of = factors, each
equal to + a, and every term in the expansion is of » dimen-
sions, being a product formed by multiplying together n letters,
one taken from each of the n factors. Thus each term involving
2" "a" is obtained by taking a out of any r of the factors, and «
out of the remaining n—r factors. Therefore the number of
terms which involve #"~"a” must be equal to the number of ways
in which 7 things can be selected out of n ; that is, the coefficient
of #"~'a” is "C,, and by giving to r the values 0, 1, 2, 3, ... nin
succession we obtain the coeflicients of all the terms. Hence

(z+a)=2"+"Ca"'a+"Cax" "¢’ + ... +"Cx"7'a + ... +a",

since "C, and "C, are each equal to unity.
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EXAMPLES. XIIL a.

Expand the following binomials :

1 (z-3)%. 2. (3r+2y) 3 (z-yp

4 (1-3a?)e 5. (22+x) 6. (1—ay).

4 2\6 . z\"

7 (2-’-2‘f> . 8. (3.;_5) . 9. (1+§) :
1 8 _ 1\10

10. (sx—é—z 11 (§+a) : 12 (1-5) :

Write down and simplify :

13. The 4* term of (#-5)1%. 14, The 10" term of (1 - 2z)12,
15. The 12* term of (2z—1)!3, 16. The 28 term of (5x+ 8y)¥.

17. The 4% term of ( + 96)

8
18. The 5% term of (2a - g) .

19. The 7 term of (—~% ’

3 2
20. The 5% term of <£:—"L,> . .

Find the w)a.lue of
(@+/2)'+ (- V2O 2. (Vo' dt+2)— (Vi —ai- 2.
(V2+1y-(WV2-1)° 24, (2-V1-2) +(2+VI-2).
Find the middle term of (a x)m .

a

u
Find the middle term of (l _12_3) .

. . . 3a\16
Find the coefficient of %8 in x’+;

Find the coefficient of %18 in (ax* - bz)°.

16
Find the coefficients of 2% and #~17 in (x‘ - }3) .

3\ 9
Find the two middle terms of 3a—%—) .
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9
31. Find the term independent of  in (gz“‘— 3%‘) .
1 18
32, Find the 13* term of {9z — —~ ) .
3Jz
33. If #" occurs in the expansion of (x-{-%‘)" , find its coefficient.

3n
34. Find the term independent of x in (x - —l§> .
&
. . 1\ .
35, If #? occurs in the expansion of (x?+;) , prove that its co-

efficient is i2n

3 4n—p) |5 @0+ p)

170. In the expansion of (1 + X) the cocfficients of terms equi-
distant from the beginning and end are equal.

The coefficient of the (r + 1) term from the beginning is
*C,.

The (r+1)® term from the end has n+ 1-(r+1), or n—r
terms before it; therefore counting from the beginning it is
the (n—7+ 1) term, and its coefficient is "C__ , which has been
shewn to be equal to "C|,. [Art. 145.] Hence the proposition
follows.

171. To find the greatest coefficient in the expamsion of
(L xy

The coefficient of the general term of (1 + )" is *C,; and we
have only to find for what value of r this is greatest.

By Art. 154, when 7 is even, the greatest coefficient is "C;

H]
and when n is odd, it is " or " ; these tweo coeflicients

=1’ =t
2 2
being equal.
172.  To find the greatest term in the expansion of (x + a)°.
‘We have (z+a)y=x" (1 + ;) ;

therefore, since " multiplies every term in (1 + ;—t)-, it will be
sufficient to find the greatest term in this latter expansion.
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Let the * and (r+1)® be any two consecutive terms.
The (r+1)™ term is obtained by multiplying the s term by

n—-r+1 a . n+1 a
PS5 that s by (- 1)z [Art. 166.]
The factor n:—l — 1 decreases as r increases; hence the
(r+ 1) term is not always greater than the r* term, but only
until 7—":—1 - 1) ;—l becomes equal to 1, or less than 1.
Now (’il - 1) @ 1,
r x
so long as n+1_1 f,
r
that is, ’ ntl 2.y,
r a
or B e Q).
x
-+1
a

If il S be an integer, denote it by p; then if r =p the
f—: +1

multiplying factor becomes 1, and the (p + 1)** term is equal to the
p*; and these are greater than any other term.

If ;il- be not an integer, denote its integral part by ¢;

—+1

a
then the greatest value of r consistent with (1) is ¢; hence the
(g + 1)*™ term is the greatest.

Since we are only concerned with the numerically greatest
term, the investigation will be the same for (x-—a)"; therefore
in any numerical example it is unnecessary to consider the sign
of the second term of the binomial. Also it will be found best

to work each example independgntly of the general formula.
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.

1
Ezample 1. If z=3, find the greatest term in the expansion of (1+4z)8.

Denote the 7t and (r+ 1)** terms by T', and T, respectively; then

T,.+l=8—:+—1 .4z x T,
9-r 4 .
== Xg*In
hence Tppa>T1,,
- 4
8o long as 97; " x §>1;
that is 36 — 4r>3r,
or 36=>1Tr.

The greatest value of r consistent with this is 5; hence the greatest term
is the sixth, and its value

4\5 4\® 57344
—8 2) == 2} =20
= C“x(a) Cs (3) 243
. Ezample 2. Find the greatest term in the expansion of (3 —2x)? when

z=1,
9
- (8 —2x)°=39° (1 - 2;) H
9

thus it will be sufficient to consider the expansion of (1 - 2—:) .

9-7r+1 2z

Here Tpopy= — 3 X T,, numerically,
10-r 2
= XgX Ty
hence Ty >Ty,
long as 10-7 X -2-> 1;
80 long a - 3> 1
that is, . 20> br.

Hence for all values of r up to 3, we have T, >T£; but if r=4, then
Tp,=T,, and these are the greatest terms. Thus the 45" and 5t terms are
numerically equal and greater than any other term, and their value
3
=39x9Cy x (?—}) =36 x 84 x 8=489888.

H H A. R\
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173. To find the sum of the coefficients in the expansion
of (1 +x)
In the identity (1+x)"=1+Cz+Cax'+Ca’+...+C 2",
put =1; thus
2=1+C,+C,+C,+...+C,
=sum of the coefficients.

Cor. C,+C+C+...+0 =2"~1;

that is “the total number of combinations of m things” is 2" — 1.
[Art. 153.]

174. To prove that in the expansion of (1 +Xx)*, the sum of
the coefficients of the odd terms is equal to the sum of the cogfficients
of the even terms.

In the identity (1+)*=1+Cx+Cg'+C@+...+Ca",
put 2 =—1; thus
0=1-0,+C,-C,+C,—-C, + ...... H
140,40+ . =C,+ C+ Cy+ ...

=% (sum of all the coefficients)
= 2:— l.

175. The Binomial Theorem may also be applied to expand
expressions which contain more than two terms.
Ezample, Find the expansion of (z*+ 22— 1)3.
Regarding 2z - 1 as a single term, the expansion
=(a?)3+38 (22)? (22 - 1) + 3% (2z - 1)2+ (2w - 1)3
=28+ 625+ 9z — 423 — 923+ 62 — 1, on reduction.

176. The following example is instructive.

Ezample. If (L+z)*=co+c@+ce®+...... +c, 2%,
find the value of Co+20;+8cgtdegt .o +(mt1) Cpeeiiinininnnnnnnn. (1),
and ¢+ 2¢2+8ed+...... +nec,? ..., fevereesseninenns (2).

The series (1)=(co+cy+Cs+...... +6y)+ (0 + B¢y + Beg ... +7C,)
=2n4n {1+(n-1)+("“11)#+ ...... +1}

=24+n(l41)"1
=2"4n.2"1,
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To find the value of the series (2), we proceed thus:
6T+ 20373+ 8¢y + ... +nc, 2™
=nz {1+(n—1)a:+ (%(;—21':’4- ...... + z“"‘}
=nz (1+z)*1;
hence, by chauging z into ; , we have

¢; . 2, . 8¢ ne, N 1\»1
;’+x—,’+;;‘+ ...... +—"=-(1+—) ............ 3).
Cot+ 1T+ 62+ ..., +epan=(1+2z)*

If we multiply together the two series on the left-hand sides of (3) and (4),
we see that in the product the term independent of z is the series (2); hence

_— . . n 1\*1
the series (2) =term independent of z in s (1+4+z)» (1+;)

Also

. .n _
=term independent of z in ;;;(1 +z)m-1

=coefficient of z* in n (1 + z)™1
=nx™1C,
_ |2n-1

FIp-T

EXAMPLES. XIIL b.

In the following expansions find which is the greatest term:
1. (x-y)® when z=11, y=4.
2. (22 -3y)® when z=9, y=4.
3. (2a+0b) when a=4, b=>5.
4. (3+2x)15 when x=g.
In the following expansions find the value of the greatest term :

5. (1+z)* when x=§, n=6.
1 1
6. (a+2)* when a=z, =g, n=9.

\Q—2
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7. Shew that the coefficient of the middle term of (1+2)2 is
equal to the sum of the coefficients of the two middle terms of
(IT4z)em-1,

8. If 4 be the sum of the odd terms and B the sum of the
even terms in the expansion of (z+a)", prove that 42— B?=(22—a?)",

9. The 27, 3, 4' terms in the expansion of (z+y)* are 240, '720,
1080 respectively ; find z, ¥, n.

10. Find the expansion of (1+2%— 2?4
11. Find the expansion of (322 —2ax + 3a?)3.
12. Find the 7% term from the end in (x + a)*.
2m+1
13. Find the (p+2) term from the end in (.z'— }3) .
14. In the expansion of (14 )% the coefficients of the (2r+1)* and
the (r+2)* terms are equal; find 7.

15. Find the relation between » and » in order that the coefficients
of the 3% and (r+2)* terms of (1+x)** may be equal.

16. Shew that the middle term in the expansion of (14 )% is

1.3.5...(22n—1)

,1& AT

If ¢, 61y €3 ... ¢, denote the coefficients in the expansion of (1+x)»,
prove that

17. ¢, +2¢,+3c5+...... +nc,=n.2""1,

0_1 0—2 Cpn _2n+1_1
18. ctgtgto.. tarl w+l
19, G423, 0 _ntl)
T e ¢ C T Cpmy 2
€iCy...... Cp(mn+1)

20. (cot+¢y) (¢ +cy)...... (Ca-q1tc)="22 n

2, | %, | e gntle,  Z+l_]
BT e e N it B =
e A A T Atl . ntl
2n
22. e+ ef4clt+...... +c,.2=£
leln

23' cocr+010r+1+020,-+2+ ...... +6“_'£n=——__'— .



CHAPTER XIV.
BinoMIAL THEOREM. ANY INDE);.

177. In the last chapter we investigated the Binomial
Theorem when the index was any positive integer; we shall now
consider whether the formule there obtained hold in the case
of negative and fractional values of the index.

Since, by Art. 167, every binomial may be reduced to one
common type, it will be sufficient to confine our attention to
binomials of the form (1 + x)".

By actual evolution, we have

l+ay=vViza=l+io—lars Lo ;

(1+ax)'= =ltzz—ga'+tpa—...... R

and by actual division,
(1—z)"=—1—-,=1+2x+3x’+4x“+......;

(1-=)
[Compare Ex. 1, Art. 60.]

and in each of these series the number of terms is unlimited.

In these cases we have by independent processes obtained an

1

expansion for each of the expressions (1 + )’ and (1+x)™". We
shall presently prove that they are only particular cases of the
general formula for the expansion of (1 +x)", where = is any
rational quantity.

This formula was discovered by Newton.

178. Suppose we have two expressions arranged in ascending

powers of z, such as

m(m—1) m(m—-1)(m-2) ,
1+mx+ 12 x® + 1.2.3 x4+ ... (l),

n(n—1) n(n—1)(n-2) N
and 1+nx+ ) o + 193 F QN
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The product of these two expressions will be a series in as-
cending powers of ; denote it by

1+ Az +Ba®+Co®+ D' +...... ;

then it is clear that 4, B, C, ...... are functions of m and =,
and therefore the actual values of 4, B, C, ...... in any particular
case will depend upon the values of m and % in that case. But
the way in which the coefficients of the powers of « in (1) and (2)
combine to give 4, B, C, ...... is quite independent of m and » ;
in other words, whatever values m and n may have, A, B, C, ......
preserve the same invariable form. If therefore we can determine

the form of 4, B, C, ...... for any value of m and », we conclude
that 4, B, C, ...... will have the same form jfor all values of m
and n. '

The principle here explained is often referred to as an example
of “the permanence of equivalent forms;” in the present case we
have only to recognise the fact that in any algebraical product the
Jorm of the result will be the same whether the quantities in-
volved are whole numbers, or fractions ; positive, or negative.

‘We shall make use of this principle in the general proof of
the Binomial Theorem for any index. The proof which we
give is due to Euler.

179. To prove the Binomial Theorem when the index is a
positive fraction.

Whatever be the value of m, positive or megative, integral or
Jractional, let the symbol f(m) stand for the series

m (m - 1) m (m—1) (m—2) .
1+ mex+ 13 z* 4 19.3 2L+ ...

then f(n) will stand for the series

n(n—-1) n(n—-1)(n-2)
l+ne+ —— '+ 19.3 o+ ...

If we multiply these two series together the product will be
. another series in ascending powers of x, whose coeffictents will be
unaltered in form whatever m and n may be.

To determine this invariable form of the product we may give
to m and n any values that are most convenient; for this purpose
suppose that m and n are positive integers. In this case f(m)
1Is the expanded form of (1 + x)™, and f(n) is the expanded form of

(1 +z)"; and therefore
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S(m)xf(n)=1+a)" x (1 +x)"=(1+a)"*",
but when m and n are positive integers the expansion of (1 + z)™*"

is 1+ (m +n)x+(ﬁ’—+ﬁ)_1(ﬁ+_”_lzw|+

This then is the form of the product of f(m) xf(n) in all
cases, whatever the values of m and n may be; and.in agreement
with our previous notation it may be denoted by f(m + =) ; there-
fore for all values of m and n

S (m) x f(n) =f (m+mn).
Also JS(m) x f(n) x f(p)=f(m+n) xf(p)
=f(m + n +p), similarly.
Proceeding in this way we may shew that
J(m) x f(n) x f(p)...to k factors=f (m +n +p +...to k terms).

h

Let each of these quantities m, n, p, ...... be equal to 7

where h and k are positive integers ;

(QF o

but since 4 is a positive integer, /' (h) = (1 +x)*;

(1+a) = {f ;:)}';
1+ x);=f(;—:) ;
but f (’i) stands for the series

é({b_l)
1 +§x+k k

k 1.

A

3 h

b __ —
<1+x)—l+kx+j._2—x+ ...... )

which proves the Binomial Theorem for any positive fractional
index.
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180. To prove the Binomial Theorem when the index is any
negative quantity.

Tt has been proved that
S(m) x f(n) =f(m+mn)

for all valueg of m and n. Replacing m by —n (where n is
positive), we have

S(=n)xf(n)=f(—n+mn)
=f(0)
-1,

since all terms of the series except the first vanish ;
f@_f (=n);
but £ (n)=(1 + x)", for any positive value of n;
1
T+ar =f(-n),
or (1+z)"=f(~n).

But f(—mn) stands for the series

1+ (~mye+ ENE oas Cr Doy
(1+m)“'=1+(—n)w+~(j)l(T2—L—l—)w’+ ...... ;

which proves the Binomial Theorem for any negative index.
Hence the theorem is completely established.

181. The proof contained in the two preceding articles may
not appear wholly satisfactory, and will probably present some dif-
ficulties to the student. There is only one point to which we
shall now refer.

In the expression for f(m) the number of terms is finite when
m is a positive integer, and unlimited in all other cases. See
Art. 182. 1t is therefore necessary to enquire in what sense we
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are to regard the statement that f(m) x f(n) =f(m +n). It will
be seen in Chapter xxr., that when <1, each of the series f(m),
S (n), f (m + n) is convergent, and f (mn + n) is the true arithmetical
equivalent of f(m) x f(n). But when x>1, all these series are
divergent, and we can only assert that if we multiply the series
denoted by f(m) by the series denoted by f(n), the first » terms
of the product will agree with the first » terms of f(m +n),
whatever finite value r may have. [See Art. 308.]

3
Ezample 1. Expand (1 - z)? to four terms.

3/3 3/3 3
: 3 zla~1 5(5“1 (5‘2)
(l—$)2=1+§(—.t)+ 1.2 -

3 3 1
—1—§I+§$2+I—6'$3+ .....

Ezample 2. Expand (2+ 3z)~* to four terms.

—4
(2+32)4=2-4 (1+3§)

Lo (5) VUG ) LSRG 4 ]
. =%(l—6x+§§5x3—y§-z3+ ...... )

182. 1In finding the general term we must now use the
formula

nn-1)(n-2)...... (n—r+l)w,
I

written in full ; for the symbol "C. can no longer be employed
when = is fractional or negative.

Also the coefficient of the general term can never vanish unless
one of the factors of its numerator is zero; the series will there-
fore stop at the »* term, when n—r+1 is zero; that is, when
r=n+1; but since r is a positive integer this equality can never
hold except when the index = is positive and integral. Thus the
expansion by the Binomial Theorem extends to = + 1 terms when
n 1s a positive integer, and to an infinite number of terms in all
other cases.
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1

_ Ezample 1. Find the general term in the expansion of (1 + ).
L (11 (38 o (5 -r01)
The (r+1)* term= T

LD (=9 (=5)......(=2r+3)
r

The number of factors in the numerator is , and r — 1 of these are nega-

tive; therefore, by taking — 1 out of each of these negative factors, we may
write the above expression

1
Ezample 2. Find the general term in the expansion of (1 - nz)",

oo (e 1) torm j Gf 1) (5_2?1 ...... (11‘ —r-(-l) e
_1(1-n)(1-20) [_
o |r

=(_1)r1(1-7‘)(1—2n) ...... l-r-1.n)

(1—Fj.n)(_1),n,f

(=Y (-1 (n=-1)(2n-1).....~1.n-1)

_ (n-1)@n-1)...... (r-1.n-1) ,
= - lL z’,

since (=1 (-)™1=(-)™i=-1.

Ezample 3. Find the general term in the expansion of (1-z)-3,

The (r+ 1) tarm= (=84 (=8) oo (=8-741) 00

___(_1),”3 .14 25 3 (r-:2)z

r+1) (r+2)
1.2

by removing like factors from the numerator and denominator.

7,
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EXAMPLES. XIV. a.
Expand to 4 terms the following expressions:

1 ] 2

1 (1+2) 2 (142 3. (1-=p.
1 1

4 (1+29)°2 5. (1-3zp. 6. (1-32)8
3
7. (1+22)5, 8. (1+§)_’. 9. (1+2—;)2.
1\ H

10. (1+§a) . 1L @+ 12. (9+20).
2 ] -1
13, (8+12a). 4. (9-62) 3, 15, (4a-82) 3.

‘Write down and simplify :

-1

16. The 8% term of (1+2z) 2.
n
17. The 11* term of (1 — 229)%.

18. The 10* term of (1+ 3a“)l_;.
19. The 5% term of (3a — 2b)~1.
20. The (»+1)® term of (1 -2)~2
21. The (r+1)* term of (1 —-2)~%

22, The (r+1)* term of (1 +x)%.

23. The (r+1)® term of (1 +.z‘)l—31.

24, The 14t term of (219— 27.1:)?.

25. The 7% term of (3% + 64.'1:)%.

183. If we expand (1 —x)"* by the Binomial Theorem, we

obtain
(1-2)*=1+2z+32"+42>+ ...... H
but, by referring to Art. 60, we see that this result is only true

when « is less than 1. This leads us to enquire whether we are
always justified in assuming the truth of the statement

(1+w)"=1+m:+7—"(1n_21)x’+ ...... ,
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and, if not, under what conditions the expﬁnsion of (1 + )" may
be used as its true equivalent.

Suppose, for instance, that n=—1; then we have
(I-2)'=l+z+a’+2’+a'+............ 1);
in this equation put & = 2; we then obtain
(=D)7'=1+2+27+22+2+ ... .

This contradictory result is sufficient to shew that we cannot
take

l+rne+ ——— a2 +......

.2

as the true arithmetical equivalent of (1 + )" in all cases.

n(n-1) ,
1

Now from the formula for the sum of a geometrical pro-
gression, we know that the sum of the first » terms of the
ies (1 L=
series (1) "1

r

I
T1-2 1-2°
and, when « is numerically less than 1, by taking r sufliciently
x"
l-=
a sufficient number of terms the sum can be made to differ as

large we can make -

as small as we please ; that is, by taking

little as we please from

= But when z is numerically

r

greater than 1, the value of increases with 7, and therefore

x
1-z

no such approximation to the value of

T is obtained by taking

any number of terms of the series
lyz+a®+2°+...... .

It will be seen in the chapter on Convergency and Diver-
gency of Series that the expansion by the Binomial Theorem
of (1 +x)" in ascending powers of x is always arithmetically in-
telligible when « is less than 1.

But if 2 is greater than 1, then since the general term of
the series

-1
n(n-1) .

1+ nx+ 1o Tt
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contains «', it can be made greater than any finite quantity by
taking r sufficiently large; in which case there is no limit to the
value of the above series; and therefore the expansion of (1 + )"
as an infinite series in ascending powers of « has no meaning
arithmetically intelligible when « is greater than 1.

184. We may remark that we can always expand (x+y)*
by the Binomial Theorem ; for we may write the expression in
either of the two following forms:

x'(l +£>, y'<l+§);

and we obtain the expansion from the first or second of these
according as x is greater or less than y.

185. To find in its simplest form the general term in the
expansion of (1 —x)™™
The (r + 1)* term
_(=n)(=n-1)(-n=2)...(-n-7r+1)
r

(=)

nn+1)(n+2)... (n+r—1) vy
(-1 2 -1

=(- l)arn(n+ 1)(n+2)... (n-}-'r_]) .

l'r

nm+l)(n+2).. (n+r— l)a:'
= o .
From this it appears that every term in the expansion of
(1 —z)™" is positive.

Although the general term in the expansion of any binomial
may always be found as explained in Art. 182, it will be found
more expeditious in practice to use the above form of the general
term in all cases where the index is negative, retaining the
form

nn-1)(n-2)...(n—r+1) &
I

only in the case of positive indices.
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Ezample. Find the general term in the expansion of

1
J1-3z
1 1
e =(1-32) %
J1-3z ¢ )
The (r+ 1)t term

1) (o) e Gom)

- I
1.4.7....8r-2) o,
= 3'Lt 3ra
_1.4.7....6r-9) ,
= E .

-1 .
If the given expression had been (1 +3z) 3 we should have used the same
formula for the general term, replacing 3z by —3z.

186. The following expansions should be remembered :
(lI-2)'=l+z+a’+2°+...... +2+ e
Q-2)"=1+2z+3"+42+...... +(r+l)a+......

(1-2)" =14 30468+ 1028+ ...+ THDEXD oy

187. The general investigation of the greatest term in the
expansion of (1 +2)°, when n is unrestricted in value, will be
found in Art. 189 ; but the student will have no difficulty in
applying to any numerical example the method explained in
Art. 172.

Ezample. Find the greatest term in the expansion of (1+z)™ when
:l:=g , and n=20,

3
‘We have Tp,="3T= LI T,, numerically,
19+7 2
=——XgX T,
oo Tpy> Ty,
80 long as 2(1T—9:r)>1;
that is, 38>r.

Hence for all values of r up to 37, we have T, > T,; but if =38, then
7}4,=17,, and these are the greatest terms. Thus the 38 and 39*: terms
are equal numerically and greater than any other term.
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188. Some useful applications of the Binomial Theorem are
explained in the following examples.
Ezample 1. Find the first three terms in the expansion of

1 1
(1+82) (1-22)78.
Expanding the two binomials as far as the term containing z*, we have

(1 +§x—2x’—...) (1+gw+§z’+...)

8 382 9
3
_1+:o:(2 8) + 9+2 3 8) ......

18,66 ,
1+-€$+7—2$

If in this Example £='002, so that «?=°000004, we see that the third
term is a decimal fraction beginning with 5 ciphers. If therefore we were
required to find the numerical value of the given expression correct to 5 places

of decimals it would be sufficient to substitute 002 for z in 1+17? z, neglect-

ing the term involving 2.

Ezample 2. 'When z is so small that its square and higher powers may
be neglected, find the value of

(1+§ x)_5+ 4+ 2
N+

Since 2? and the higher powers may be neglected, it will be sufficient to
retain the first two terms in the expansion of ewh binomial. Therefore

the expression =Q+5’) +2 (‘1“5
()
(1——x)+2 (1.1.4 )
o)
z)*’
)

=1 (s—-— )(1+g
(s——z) (1 gz
050,

the term involving 2? being neglected.
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Ezample 3. Find the value of :/-1—7 to four places of decimals.

1 3 -3 1( 2\ 2

— = = —2 2=—— 1——-

= =(-2) =z (1-5
_1(, 1.8 1 .51
=7\Mtpta-uty-pt
_l1,1.381 .51
=gtmta-Etycpt

7Y TAZBT....voorerreenn, =$,
7) 020408 4
7) 002915 .........oovn..... =5
7) “000416 1
000059.....or oo = 35

and we can see that the term g 717 is a decimal fraction beginning with
5 ciphers.
1
. e = +002915 + -000088
T 142857 +°002915 +
=+14586,
and this result is correct to at least four places of decimals.

Example 4. Find the cube root of 126 to 5 places of decimals.

1 1
(126)5=(53+1)3

5

12 12 1 2
3°102 79105 R 1P T
04 _ 100032 _ 0000128

=5+-013333 ... — *000035 ... +...
=501329, to five places of decimals.
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EXAMPLES. XIV. b.

Find the (r4-1)*" term in each of the following expansions :

1 (1+x)'5. 2 (1-2)-85 3 (1+3z)3.

4, (1+x)'3. 5. (1+a%)-3, 6. (1—2x)'5.

7. (a+bz)-L 8 (2-7)-2% 9. V(@@=
1 1 ) 1

10- mo 11. J(l._=3‘7)3' 12. m‘.

Find the greatest term in each of the following expansions :

- -4
13, (1+)-7 when r=1z.

2

an
14. (1+2)? when w=3.

u 1
15, (1 —7x) ¢ when r=g.
16. (2z+5y)12 when x=8 and y=3.
17. (5-4x)~7 when .'c=% .
18. (322+4y% ™ when =9, y=2, n=15.

Find to five places of decimals the value of

19, V98 20. ~/998. 21, ¥1003. 22. ~'2400.
1 . 1 .3
— 1 3. 25. (630) 4. 26. ¥/3128,
23- ‘:/128 24‘ (2%0’) ( ) 8

If 2 be so small that its square and higher powers may be neglected,
find the value of

21. (1—7x);‘(1+2x)‘2. 28. Jm.(3—§)_l-
(8+3wv)g 30 <l+§”>_sx (43
@r3ni-bs ' P

H H A N
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S (148

l——z+(l+—x) 3 Y

3L, 57T\ 6T | g Bl
Ve z : :
Vit2r \/l“é (1+52)+ (4+§)

-1
33. Prove that the coefficient of 2" in the expansion of (1 —4x) ?

2
ls(E),.

. om ; n(n+l)
34, Prove that (1+2)*=2 {1— 1+.z> ...... }

1+2
35, Find the first three terms in the expansion of
N
QA +22NT+4a”
36. Find the first three terms in the expansion of
3
1+ 2+ V1+bs
(1-ap
37. Shew that the nth coefficient in the expansion of (1-—2)~"is
double of the (n—1)th,
189. To find the numerically greatest term tn the expamsion
of (1 +x)*, for any rational value of n.

Since we are only concerned with the numerical value of the
greatest term, we shall consider « throughout as positive.

Case I. Let n be a positive integer.
The (r+ 1) term is obtained by multiplying the r** term

by nor+l .x; that is, by n+l —1) «; and therefore the
terms continue to increase so long as

(”—*—1-1)x>1;
~

that is, (—"'—-’-Tl—)ﬁ >1+a,

or (n+])w>
l+z

y
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I (n+1)a

l+a
multiplying factor is 1, and the (p + 1)* term is equal to the
™, and these are greater than any other term,

If % be not an integer, denote its integral part by ¢;

be an integer, denote it by p; then if r=p, the

then the greatest value of » is ¢, and the (¢ +1)® term is the
greatest.

Case II. Let » be a positive fraction.
As before, the (r+ 1) term is obtained by multiplying the
n+1
78 term by (—7—— l)x.

(1) If x be greater than unity, by increasing » the above
multiplier can be made as near as we please to — ; so that after
a certain term each term is nearly = times the preceding term
numerically, and thus the terms increase continually, and there
is no greatest term.

(2) If = be less than unity we see that the multiplying
factor continues positive, and decreases until r>n + 1, and from
this point it becomes negative but always remains less than 1
numerically ; therefore there will be a greatest term.

As before, the multiplying factor will be greater than 1

(n+1)x
so long as T3z "
(n+ 1)z . . .
If Tra be an integer, denote it by p; then, as in Case L,

the (p + 1)™ term is equal to the p*:, and these are greater than
any other term.

If (il'%”f be not an integer, let ¢ be its integral part ; then

the (¢ + 1) term is the greatest.
Case IIL  Let n be negative.
Let n=—m, so that m is positive; then the numerical

value of the multiplying factor is 72%—_—1- .x; that is

(’n—l + l)a:.
i

N\—2%
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(1) If « be greater than unity we may shew, as in Case II,,
that there is no greatest term.

(2) If = be less than unity, the multiplying factor will be
greater than 1, so long as

("‘—‘1+1)x>1;
)

that is, “”_"rlﬂ >1—z,
or m-z_,
l-z
(m-1)z e . .
If B g be a positive integer, denote it by p; then the

(p +1)® term is equal to the p** term, and these are greater than
any other term.

If ——-(ml_ 1‘3‘” be positive but not an integer, let ¢ be its inte-

gral part; then the (g + 1)™ term is the greatest. -

If (_m—l)a:

== be negative, then m is less than unity; and by

writing the multiplying factor in the form (l -1 -’-.m) x, we

see that it is always less than 1: hence each term is less than
the preceding, and consequently the first term is the greatest.

190. 7o find the number of homogeneous products of r dimen-
sions that can be formed out of the n letters a, b, c, ...... and thewr
powers.

By division, or by the Binomial Theorem, we have

——1—=1+aw+a'z'+a‘a:‘+ ...... ,

l-ax

1 =1+ bz + b%" + b°%® +

[ = 1 +oe+ 82+ 02+ ... ,

11—=1+cx+c’a:'+c’a:"+ ...... y
- CX

------------------------
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Hence, by multiplication,

1 1 1
e T-Bs T—e "

=(l+az+ax+..)(1+bx+b'2"+...) (L +cx+c' +...) ...
=l4z(@+b+c+...)+2'(@" +ab+ac+d* +bec+c"+...) +...

=1+S8z+8a"+8z"+ ...... suppose ;

where §, S, S, ...... are the sums of the homogeneous pro-
ducts of one, two, three, ...... dimensions that can be formed of
a, b e ...... and their powers.

To obtain the number of these products, put a, b, ¢, ...... each
equal to 1; each term in §, §,, S;, ...... now becomes 1, and the
values of S, S, S,,...... 80 obtained give the number of the
homogeneous products of one, two, three, ...... dimensions.

1 1 1
Also T—az T-be " T—e "
1 -n
becomes a—aF or (1—=)™. .

Hence S, =coefficient of «” in the expansion of (1 —«
_nn+l)(n+2)...... (n+r—1)

I

p+r—1
NI=ES
191. 7o find the number of terms in the expansion of any
multinomial when the index 18 a positive integer.
In the expansion of

every term is of n dimensions ; therefore the number of terms is
the same as the number of homogeneous products of n dimensions
that can be formed out of the r quantities a,, a,, ... a,, and their
powers ; and therefore by the preceding article is equal to

V+n—l
B
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192. From the result of Art. 190 we may deduce a theorem
relating to the number of combinations of n things.

Consider n letters «, b, ¢, d, ...... ; then if we were to write
down all the homogeneous products of r dimensions which can be
formed of these letters and their powers, every such product
would represent one of the combinations, » at a time, of the n
letters, when any one of the letters might occur once, twice,
thrice, ... up to ~ times.

Therefore the number of combinations of » things r at a time
when repetitions are allowed is equal to the number of homo-
geneous products of » dimensions which can be formed out of »

n+r—1
letters, and therefore equal to % , or **IC .
I =1 ’
That is, the number of combinations of n things » at a time
when repetitions are allowed is equal to the number of com-

binations of n+7—1 things » at a time when repetitions are
excluded.

193. We shall conclude this chapter with a few miscel-
laneous examples.

(1-2z)
L+z)3°

The expression = (1 — 4z +423) (1 + 9,2 +p,z3+ ... +p,2" + ...) suppose.

Ezample 1. Find the coeflicient of 27 in the expansion of

it oL Sl et 01
the required coefficient=p, - 4p,._, + 4p,_,.
But Pe=(-1) ("Ll)z——(”'—m. [Ex. 8, Art. 182.]
Hence the required coefficient
:(_1)r('+1)_—2(""_2)_4(_1)r—1'l;_1)+4(_1)r-:("__21)r

= 1) 24 dr (1) dr - 1))

:%ﬂr(!}r’+3r+2).
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Ezample 2. Find the value of the series

ez tEpetee
. 8.5 1 8.5.7 1 8.5.7.9 1
The expression =2+T -gt 3 Bt L cgate
35 867 35739
9,2 22 2°2°3 2 2°3°3°9 2
1—2_ -3-’ B -3: I .‘.Ei .o
3 85 3 57
_142.2,23°3 (2\1 37273 (a\s
=tti-3t s B (3)+
2 3
2\ _/1\¢
-(+-5) =()
3
=33=38,/8.

Ezample 3. If n is any positive integer, shew that the integral part of
(3 +a/7)" is an odd number.

Suppose I to denote the integral and f the fractional part of (3+./7)".
Then  I+f=3"+C 8" \/T+Cy8% 2, T+Cy3" 3 (JT)2+ ..cee.oenees 1).

Now 8-,/7 is positive and less than 1, therefore (3 -,/7)* is a proper
fraction; denote it by f';

S =808 T4 Cy 8% B T—Cy 8% B (TP + v ).
Add together (1) and (2); the irrational terms disappear, and we have
I+f+f'=2(3"+Cy8% 2.7+ ...)
=an even integer.
But since f and f’ are proper fractions their sum must be 1;
. I=an odd integer.

EXAMPLES. XIV. c.

Find the coefficient of

1. 2% in the expansion of g:'_——%")'—g .

2. a'? in the expansion of 4;—?{5:—2 .
3. 2™ in the expansion of 3::_;3 .
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242423
(1+2) °

-=a/3

4, TFind the coefficient of 2* in the expansion of

5. Prove that
11,131 1.
2°2 2.472¢ 2.
6. Prove that
8=1+~

7. Prove that

2n 2n(2n+2) 2n (2n+2) (2n+4)

3t 3.6 3.6.9 U
n(n+l)+n(n+1)(n+2)

36 R .

1

3.5
1- 4623+

CDq

'il-' |
[CI

Obf.“

7

3 3.5+35
itistres et

1+

n
=on {1 +3+
8. Prove that

SRR )

7.14 714,21 T }

o n n(n+l) n(n+1)(n+2)
DA T YT T

9. Prove that approximately, when z is very small,

1 1
4\ 3 ,\3
3(s+3) (1-32) 1307
o142 T 256
(1+52

10, Shew that the integral part of (5+2./6)" is odd, if # be a
positive integer.

11, Shew that the integral part of (8+3./7)* is odd, if # be a
positive integer.

+

12, Find the coefficient of 2 in the expansion of
(1-22+4322-42*+...... ) ™

13, Shew that the middle term of (x + ;_) is equal to the coefficient

. . -(n+:—l)
of 2* in the expansion of (1—4x) “ ¥,
14. Prove that the expansion of (1 —23%)* may be put into the form
(1 —z)3+3nx (1 —x)™~ 2+3”(3“ 3)a,~"(1 —zPn-i L
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15, Prove that the coefficient of 2 in the expansion 72758 is
1, 0, —1 according as n is of the form 3m, 3m —1, or 3m+1.

16. In the expansion of (a+b+¢)8 find (1) the number of terms,
(2) the sum of the coefficients of the terms,

17. * Prove that if = be an even integer,

1 1 11 gt
Llz—1 " 3[r=3 " |5|n—-5" """ =1L Jn
18, If ¢oy ¢y Cay oecene ¢y, are the coefficients in the expansion of

(1+ ), when = 18 a positive integer, prove that
n—1
+(=1)yre,=(-1)" la=1

(1) co—c;+e3—cg+ e Thr—r=i’
(2) co—2¢y+3cg—4eg+...... +(=1*(n+1)c,=0.
(3) c?—ecl+elt—cl+...... +(=1)*c,2=0, or (— 1)’3"6’_‘,

according as 7 is odd or even.

19, If s, denote the sum of the first » natural numbers, prove that

(1) (A—x)"3=8,+87+852%+...... + 8214,
(2) 2(8,8om+838gn—1+ oeeee. + 88 4y) = E—%%—_:—il— .
W gt s o that
(1) gam+1+ @19+ oGon—yt+.ene +9n—19u+a+g,.q,.ﬂ=% .
() 2{¢zn—Qign-1+GaGon—2t ees H(— 1)* "1 gn_1Gu 1}

=q»+( - 1)’._ 191\2'

21, Find the sum of the products, two at a time, of the coefficients
in the expansion of (1+ #)*, when = is a positive integer.

22, If (7+4 3)*=p+B, where n and p are positive integers, and 8
a proper fraction, shew that (1-8) (»p+8)=1.

23, If ¢ ¢, cgy...n.. ¢, are the coefficients in the expansion of
(1+2)", where 7 18 a positive integer, shew that
1

_C3, 6 (=1)*, 1 1
Cl 2+ ...... +T—I+§+é+ ...... +;l.



CHAPTER XV.
MuLTINOMIAL THEOREM.

194. WE bhave already seen in Art. 175, how we may
apply the Binomial Theorem to obtain the expansion of a multi-
nomial expression. In the present chapter our object is not
so much to obtain the complete expansion of a multinomial as
to find the coefficient of any assigned term.

Ezample. Find the coefficient of a®b?c*d® in the expansion of
(a+d+c+d)H.

The expansion is the product of 14 factors each equal to a+b+c+d, and
every term in the expansion is of 14 dimensions, being a product formed by
taking one letter out of each of these factors. Thus to form the term a¢b%c3d®,
we take a out of any four of the fourteen factors, b out of any two of the re-
maining ten, ¢ out of any three of the remaining eight. But the number of
ways in which this can be done is clearly equal to the number of ways of ar-
ranging 14 letters when four of them must be a, two b, three ¢, and five d;
that is, equal to |14

LI

This is therefore the number of times in which the term a?%3d® appears
in the final product, and consequently the coefficient required is 26522520.

195. 7o find the coefficient of any assigned term in the ex-
pansion of (a+b+c+d+ ...)°, where p i8 a positive integer.

[Art. 151.]

The expansion is the product of p factors each equal to
a+b+c+d+..., and every term in the expansion is formed by
taking one letter out of each of these p factors; and therefore
the number of ways in which any term a%bfcvd® ... will appear
in the final product is equal to the number of ways of arranging
P letters when a of them must be a, 8 must be b, y must be c;
and so on. That is,

. p
the coefficient of  a°bBovd? ... is ~L“,
EERE-

where 4 a+B+y+d+ ... =p.
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Cor. In the expansion of
(@ +bx + cz® + d* + ...},
the term involving a*bferd? ... is
l2
— - a* (bx)B (ca’)Y (do’)d ...
EE R 0P = @
ovd? ... aftRy+38+..

2
EBLE-

where a+B8+y+8+...=p.

or

This may be called the general term of the expansion.

Ezample. Find the coefficient of 2° in the expansion of (a + bz + cz?).
The general term of the expansion is

where a+g8+y=9.

‘We have to obtain by trial all the positive integral values of g and v
which satisfy the equation 8+2y=5; the values of a can then be found from
the equation a+p+y=9.

Putting y=2, we have =1, and a=6;
putting y=1, we have =3, and a=5;
putting y=0, we have 8=5, and a=4.

The required coefficient will be the sum of the corresponding values of the
expression (1).

Therefore the coefficient required
= —g— a%he? + -[-2—— a®bc + —& adt®
B2 “** (518 7+ [4s
=252a%bc? + 504453 + 126a40°.
196. To find the general term in the expansion of
(a+bx+ex'+dx®+ ...)
where n 18 any rational quantity.
By the Binomial Theorem, the general term is
n(n-1)(n-2)... (n-p+1) a
I

where p is a positive integer.

" (b + cx” + da® + LY,
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And, by Art. 195, the general term of the expansion of
(b + cac* + da® + ...

2
L. peevds ... Byt
FEE-

where B, y, 8 ... are positive integers whose sum is p.

Hence the general term in the expansion of the given ex-
pression is

n(n—l)(ﬂ—2) cee (n_p+1) —— »
B8 a*PHRCYD ... PR

where B+y+8+..=p

197. Since (a+ bz + ca® + do® + ...)" may be written in the
form

a“(l +§x+£x’+§w"+ ),
a a a
it will be sufficient to consider the case in which the first term
of the multinomial is unity.
Thus the general term of
(1 +bx+cx*+da’+ ...)

nn-1)(n-2)...(n—-p+1)
0 PY ) poovdd ... af+v++..

where B+y+d+...=p.

is

Ezample. Find the coefficient of #? in the expansion of

H
(1 -8z — 22%+ 62%)3.
The general term is

2/2 2 2
5(5_1) (5'2)'"(5"'?"'1) 8 ¥ (g)8 S
-3)" (-2) (6
HE (-3 (-2)7(§)
We have to obtain by trial all the positive integral values of g, v, 8 which
satisfy the equation 8+2y+33=3; and then p is found from the equation
2=p+7y+6. Therequired coefficient will be the sum of the corresponding
values of the expression (1).
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In finding B, v, 3, ... it will be best to commence by giving to & successive
integral values beginning with the greatest admissible. In the present case
the values are found to be

Substituting these values in (1) the required coefficient

2 2 1 g '% '% ,vs
=(3) @+(5) (-5) -9 -9+ D=4 (-9

198. Sometimes it is more expeditious to use the Binomial
Theorem.

Ezample. Find the coefficient of #* in the expansion of (1 - 2z + 3z?)-3.

The required coefficient is found by picking out the coefficient of z¢ from

the first few terms of the expansion of (1-2z-382%)~% by the Binomial
Theorem; that is, from

1+ 3 (32 — 829 + 6 (2z ~ 32%)* + 10 (2z — 32%)3 + 15 (22 - 32%)4;
we stop at this term for all the other terms involve powers of z higher
than

e

The required coefficient=6.9+10. 8 (2)* (- 8)+15 (2)*
= -66.

EXAMPLES. XV.

Find the coefficient of

a?b3cAd in the expansion of (a—b—c+d)v.
a2b5d in the expansion of (a+bd—c~d).
a3b%¢ in the expmnsion of (2a¢+b+ 3c).
%% in the expansion of (ax - by +cz)°.

2% in the expansion of (143z—22%)°.

a4 in the expansion of (14 2z+ 32310,

2% in the expansion of (14 2z - %5

2% in the expansion of (1 - 2x+3x® — Aa¥)\,

N N
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Find the coefficient of
9. 2% in the expansion of (1 — 2x+ 322 — & — a%)5,
-1
10. 2% in the expansion of (1-2x+32%) 2,

1
11. 43 in the expansion of (1 - 2.r+3x’—4.z-3)§.

12. 28 in the expansion of- (l —'f + x‘)‘ .

13. 2% in the expansion of (2 — 4x+322)~2%

.3
14. 28 in the expansion of (1+ 422+ 102%+202%) 4.
15. 212 in the expansion of (3 — 1524 182%) 1.

1
16. Expand (1 — 27— 223)} as far as 22
2
17. Expand (1+ 32— 61%) 3 as far as 5.

n
18. Expand (8 —92%4 1824) as far as 28,
19, If Q+a+22+......+ 2P =ay+ a2z + a2+ ...... B B,
prove that
1) ag+a,+ay+...... +ap=(p+1)"

1
(2) ay+2a,+3ay+...... +np.a,.,,=§np(p+l)".

20. If ay, a;, ay, a;... are the coefficients in order of the expansion
of (1 +x+.z’)", prove that

al—ald+a?—al+...... +(—1)"‘1a,’,_1=%a,,{1—(—1)"a,.}.

21. If the expansion of (1 +z+2%)*
be Ayt ax+agz?+ ... +a,a" + ... + a2,
shew that
Ayt agtag+ ... =a,+a oyt .. =agt@;+agt ... =31




CHAPTER XVI.
LOGARITHMS.

199. DrriniTioN. The logarithm of any number to a given
base is the index of the power to which the base must be raised
in order to equal the given number. Thus if a*=/N, = is called
the logarithm of & to the base a.

Ezamples. (1) Since 3¢=81, the logarithm of 81 to base 8 is 4.
(2) Since 10'=10, 10*=100, 10*=1000,......

the natural numbers 1, 2, 8,... are respectively the logarithms of 10, 100,
1000,...... to base 10.

200. The logarithm of N to base a is usually written log, &,
so that the same meaning is expressed by the two equations

a*=N; z=logN.
From these equations we deduce
N =qal%%
an identity which is sometimes useful.
Ezample. Find the logarithm of 32,4 to base 2,/2.
Let z be the required logarithm; then,
by definition, (24/2)*=32¥/4;
- (2. 2“)&25 . 23;
R
27

s+§_
?
hence, by equating the indices, g z=

8-6.

. —18-—
Soz=p=
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201. When it is understood that a particular system of
logarithms is in use, the suffix denoting the base is omitted.
Thus in arithmetical calculations in which 10 is the base, we
usually write log 2, log 3,...... instead of log, 2, log, 3,......

Any number might be taken as the base of logarithms, and
corresponding to any such base a system of logarithms of all
numbers could be found. But before discussing the logarithmic
systems commonly used, we shall prove some ﬁenef'al propositions

which are true for all logarithms independently of any particular
base.

202. The logarithm of 1 48 0.

For a°=1 for all values of a; therefore log1 =0, whatever
the base may be.

203. The logarithm of the base itself is 1.

For a' = a; therefore log,a=1.

204. To find the logarithm of a product.

Let MN be the product ; let @ be the base of the system, and

suppose
xw=log M, y=log N;

so that a* =M, a’=N.
Thus the product MN=a"xa"
= ax+y;

whence, by definition, log MN =z +y
=log, M +log N.
Similarly, log, MNP =log, M + log, N + log, P;
and so on for any number of factors.
Ezample. log42=log (2x3x7)
=log 2+log 3 +1log 7.
205. To find the logarithm of a fraction.

Let f—‘{ be the fraction, and suppose

x = log, M, y=log,N;
80 that a*=M, a=N.
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" Thus  the fraction Jl_[= L
N o
=a* !

J
whence, by definition, log, %{: z—y
= log, M —log,N.
E 80 '
zample.  log (4§)=log W
=log 30 -log 7

=log (2x3x5)-log7
=log2+log3+1log 5-1log 1.

206. To find the logarithm of a number raised to any power,
integral or fractional.

Let log,(M*) be required, and suppose
x=log, M, so that a*= M ;

then M? = (a%)
=a",
whence, by definition, log,(M?) = px;
that is, log,(M?*) =plog, M.
1
Similarly, log, (M7) = ; log, M.

207. Tt follows from the results we have proved that

(1) the logarithm of a product is equal to the sum of the
logarithms of its factors ;

(2) the logarithm of a fraction is equal to the logarithm of
the numerator diminished by the logarithm of the denominator ;

(3) the logarithm of the p* power of a number is p times the
logarithm of the number;

(4) the logarithm of the +t® root of a number is equal to -}th

of the logarithm of the number.

Also we see that by the use of logarithms the operations of
multiplication and division may be replaced by those of addition
and subtraction ; and the operations of involution and evolution
by those of multiplication and division,

H, H. A, %
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EXAMPLES. XVLa
Find tihe cgavishme of
1. 18t base 2, andd ET2% to base 203
2. 125 0, Ve 55, and 25 v base 4.

2;‘ 5 heon 22, and 2 e hase 9.
4. 620 1 bamee 2, annk 1A 1y b D1
5, 1001 t base 0L and “i to base 9./3

s

YT e
6. P a % tnbane a
i

7. Find the value of
f 1
log 128, loggyo s Wngis logentd.
; Express the following seven logarithms in terms of loga, logd, and
oge.
8 log(VaFp. 9, log(¥a?x Jb). 10. log(Va=%).
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13.
15.

16.

17.
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log(Va~% x ¥/ ab-3). 12. log(Va T JB+NBJa).
VabTc? be=\ =3 (b-1g\b
IOg EE— U 14. log {(F"-‘_c’ - (ch—_fs) } .
(a-lb-ﬁc—l)ﬂ
J5.%2 1 2 2
4 8 —3
Simplify log \/ 7204 9-1,278,
75 5 32

Prove that log 6~ 2 log 3 +log o35 =log2.

Solve the following equations:

18,

a*=cb*. 19, a*.b%==cb.
a'“l—c“ 21, a*. b=mb
b as®, bW =m10f *

If log(a%®)=a, and log§= b, find log and logy.
If a3-=, b*=qa*+5, b3, shew that xlog (g) =loga.

Solve the equation
(0! — 20252+ b4 ~1=(a - b)*(a+b)-2

ComMON LOGARITHMS.

208. Logarithms to the base 10 are called Common Logar-
ithms ; this system was first introduced, in 1615, by Briggs, a
contemporary of Napier the inventor of logarithms.

From the equation 10°=J, it is evident that common logar-
ithms will not in general be integral, and that they will not
always be positive,

For instance 3154 > 10% and < 10*;

.. log 3154 =3 + a fraction.
A 2—%
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Again, ‘06 >10"% and <107';
.~ log ‘06 = — 2 + a fraction.

209. DeriniTiON. The integral part of a logarithm is called
the characteristic, and the decimal part is called the mantissa.

The characteristic of the logarithm of any number to the
base 10 can be written down by inspection, as we shall now shew.

210. To determine the characteristic of the logarithm of any
number greater than unity.

Since ' 10'=10,
10* =100,
10?=1000,

it follows that a number with two digits in its integral part lies
between 10' and 10°; a number with three digits in its integral
part lies between 10° and 10°; and so on. Hence a number
with n digits in its integral part lies between 10"~ and 10",

Let N be a number whose integral part contains n digits;
then
- fracti
N= lO(» 1)+a mctlon;

. log N = (n—1) +a fraction,

Hence the characteristic is » — 1 ; that is, the characteristic of
the logarithm of a number greater than unity 18 less by one than
the number of digits in its integral part, and ts positive.

211. To determine the characteristic of the logarithm of a
decimal fraction.

Since 10°=1,
1
10 =16 1,
1
oo
10 100 01,
10~ —1 =001,

............
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it follows that a decimal with one cipher immediately after the
decimal point, such as <0324, being greater than ‘01 and less
than ‘1, lies between 107* and 107'; a number with two ciphers
after the decimal point lies between 107 and 107*; and so on.
Hence a decimal fraction with » ciphers immediately after the
decimal point lies between 10-®*" and 107",

Let D be a decimal beginning with n ciphers ; then
D= 10—(n+1) + afmction;

.. log D=—(n+1) +a fraction.

Hence the characteristic is — (n + 1) ; that is, the characteristic
of the logarithm of a decimal fraction is greater by unity than the
number of ciphers tmmediately after the decimal point, and is
negative.

212. The logarithms to base 10 of all integers from 1 to
200000 have been found and tabulated ; in most Tables they are
given to seven places of decimals. This is the system in practical
use, and it has two great advantages :

(1) From the results already proved it is evident that the
characteristics can be written down by inspection, so that only
the mantissz have to be registered in the Tables.

(2) The mantissz are the same for the logarithms of all
numbers which have the same significant digits; so that it is
sufficient to tabulate the mantisse of the logarithms of ¢ntegers.

This proposition we proceed to prove.

213. Let N be any number, then since multiplying or
dividing by a power of 10 merely alters the position of the
decimal point without changing the sequence of figures, it follows
that & x 10%, and NV + 10%, where p and ¢ are any integers, are
numbers whose significant digits are the same as those of ¥.

Now  log (¥ x 10*)=log N + plog 10

=log N +peceveviiiiininn i, (1)
Again, log (& +10%)=1log N —glog10
=log N =g oo, 2).

In (1) an integer is added to log ¥, and in (2) an integer is-
subtracted from log &V ; that is, the mantissa or decimal pocthen
of the logarithm remains unaltered.
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In this and the three preceding articles the mantissse have
been supposed positive. In order to secure the advantages of
Briggs’ system, we arrange our work so as always to keep the
mantissa positive, so that when the mantissa of any logarithm
has been taken from the Tables the characteristic is prefixed
with its appropriate sign according to the rules already given.

214. In the case of a negative logarithm the minus sign is
written over the characteristic, and not before it, to indicate that
the characteristic alone is negative, and not the whole expression.

Thus 4£:30103, the logarithm of -0002, is equivalent to —4 + -30103,
and must be distinguished from — 4:30103, an expression in which
both the integer and the decimal are negative. In working with
negative logarithms an arithmetical artifice will sometimes be
necessary in order to make the mantissa positive. For instance,
a result such as —3:69897, in which the whole expression is
negative, may be transformed by subtracting 1 from the
characteristic and adding 1 to the mantissa. Thus

- 369897 = — 4 + (1 - *69897) = 4-30103.
Other cases will be noticed in the Examples.

Ezample 1. Required the logarithm of ‘0002432,

In the Tables we find that 3859636 is the mantissa of log2432 (the
decimal point as well as the characteristic being omitted); and, by Art. 211,
the characteristic of the logarithm of the given number is —4;

.. log ‘0002432 = 4-3859636.

Ezample 2. Find the value of ~/-00000165, given
log 165 =2:2174839, log 697424 = 5:8434968,
Let z denote the value required; then

1
log z=log (-00000165)F = % log (00000165)
1 -
=5 (6:2174830);

the mantissa of log -00000165 being the same as that of log 165, and the
characteristic being prefixed by the rule.

Now 1 @2174889) = | (T0.+ 42174839

=2-8434968
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and ‘8434968 is the mantissa of log 697424; hence x is a number consisting

of these same digits but with one cipher after the decimal point. [Art. 211.]
Thus z="0697424.

215, The method of calculating logarithms will be explained

in the next chapter, and it will there be seen that they are first

found to another base, and then transformed into common loga-
rithms to base 10.

It will therefore be necessary to investigate a method for
transforming a system of logarithms having a given base to a
new system with a different base.

216. Suppose that the logarithms of all numbers to base «
are known and tabulated, it is required to find the logarithms
to base b.

Let N be any number whose logarithm to base b is re-
quired.

Let ==log, XN, so that b'=XN;
log, (8*) =log,N;
that is, ylog,b = log V;

1
Y=Togd * log, ¥,

or log, N = x1og ¥ . ooviiiiiininnniinns ( 1).

1
log,b
Now since NV and b are given, log,N and log,b are known
from the Tables, and thus log, /' may be found.
Hence it appears that to transform logarithms from base a

1 .
to base b we have only to multiply them all by Togb ; this is a
constant quantity and is given by the Tables; it is known as the
modulus.

217. In equation (1) of the preceding article put a for &
thus

loga= 1 x log,a = 1

logb log.b;
log,w x logb =1,
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y This result may also be proved directly as follows :
" Let z=logpb, so that a"=b;
then by taking logarithms to base b, we have
xlog,a =log,b
=1;
log,b x log,a =1.

218. The following examples will illustrate the utility of
logarithms in facilitating arithmetical calculation ; but for in-
formation as to the use of Logarithmic Tables the reader is
referred to works on Trigonometry.

4 5

Ezample1. Given log 8=-4771218, find log {(2'7)® x (-81)3--(90)4}.

The required value =3 log %—Z + é log 1%) - g log 90

=3 (log 33 - 1)+§ (1033‘—2)—§(log3’+,1)

16 5 8 5
= (9+ 5 §) log3 - (3+5+Z)
97
=10 log 3 -54%
=4-6280766 — 585
=2-7780766.

The student should notice that the logarithm of 5 and its
powers can always be obtained from log 2 ; thus

Iog5=log%)=log 10-1log2=1-log 2.

Ezample 2. Find the number of digits in 875, given
' log 2 =-3010300, log 7= +8450980.
log (8751¢) =16 log (7 x 125)
=16 (log 7+ 3 log 5)
=16 (log 7+3-81log2)
=16 x 2:9420080
4 =47-072128;
[y Akence the number of digits is 48. [Art. 210.]
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Ezample 3. Given log2 and log3, find to two places of decimals the
value of z from the equation

634z 4x5=8,
Taking logarithms of both sides, we have
(3 —4x)log 6 + (z +5) log 4 =log 8;
‘. (3—4x) (log2+1log3)+ (z+5) 2log2=310g 2;
. x(-4log2-4log3+2log2)=3log2-3log2-38log3—-10log2;
=101032+3log 3
2log2+4log3

_ 44416639
= 25105452

=177...

EXAMPLES. XVIL b,

1. Find, by inspection, the characteristics of the logarithms of
21735, 238, 350, ‘035, ‘2, ‘87, ‘876.

2. The mantissa of log 7623 is ‘8821259 ; write down the logarithms
of 7'623, 762°3, *007623, 762300, ‘000007623,

3. How many digits are there in the integral part of the numbers
whose logarithms are respectively
4-30103, 1-4771213, 369897, 565151
4, Give the position of the first significant figure in the numbers
whose logarithms are
27781513, 6910815, 5'4871384.

Given log2='3010300, log 3="4771213, log'7="8450980, find the
value of

5. log64. 6. log84. 7. log-128.
8. log-0125. 9. logl44. 10. log43.
11, log#¥/12. 12, log \/;3—5 . 13. log#/*0105.

14. Find the seventh root of ‘00324, having given that
log 44092388 ="7-6443636.

16. Given log194:8445=2'2896883, find the eleventh rock ot ALY
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16. Find the product of 37-203, 3-7203, -0037203, 372030, having
given that

log 37-203=1-5705780, and log1915631 =6-2823120.
. 3 //3%
17. Given log2 and log 3, find log J 7—2‘) .

18. Given log 2 and log 3, find log (/48 x 108§-:—5’6).
19. Calculate to six decimal places the value of
42x32 /°
given log 2, log 3, log 7; also log 9076226 =3-9579053.
20, Calculate to six places of decimals the value of
(330+-49)* 22 % 70;
given log 2, log 3, log 7; also
log11=10413927, and log17814:1516=4-2507651.
21. Find the number of digits in 3'2x 28

21\100 ,
22. Shew that (2—0 is greater than 100.

23. Determine how many ciphers there are between the decimal
1000
point and the first significant digit in (%)

Solve the following equations, having given log 2, log 3, and log 7.

24 3*-2=35, 25, 5%*=103 26, 56-%x—=2%+3
21, 212=2%+1 5=, 28, 2%,6%-3=5%,71-%,
29, 2=+v=6v 30, 31-=v=4-v

3% =3.27+1}' 9dz—1 =3%-2 ¢

31. Given log;2="30103, find log,;200.
32, Given log;(2="30103, log;,7 = "84509, find log;»/2 and logye7.



CHAPTER XVIL

EXPONENTIAL AND LOGARITHMIC SERIES.

219. In Chap. xvi. it was stated that the logarithms in
common use were not found directly, but that logarithms are
tirst found to another base, and then transformed to base 10.

In the present chapter we shall prove certain formul® known
as the Exponential and Logarithmic Series, and give a brief ex-
planation of the way in which they are used in constructing a
table of logarithms.

220. 7o expand a* in ascending powers of x.
By the Binomial Theorem, if n>1,

o)

“nn Ly el L e L,
1 1 2
='1+x+x(w'g—ﬁ)+x( _al):i( m’_’)+ ................... ).

By putting =1, we obtain

1 N2
(1+%)u=1+1+1|%n+<1 n)‘gl n)+

N
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hence the series (1) is the '™ power of the series (2); that is,

D) ),

]+ 24 c——— ——— L

|2
ooy T

s ld )

= l+1+

and this is true however great » may be. If therefore n be
indefinitely increased we have

1+w+x’+£’+£‘+ —(1+1+L+l+l+ )’
I_'2 E L4—. ....... - lg |§ '_4 ------ .
: . 1 1 1
The series 1+1+ = + ......
At

is 'usually denoted by e; hence
3
a.
F=liat—+ e .
|2 e

Write cx for z, then

-_1 +’a:' ca:+
e =1+cx —E+'|—3'

Now let ¢'=a, so that c=loga; by substltutmg for ¢ we

obtain
2 2 3
x (lo2g,a) +w’(log,a) +

3

a=1+2zloga+

This is the Exponential Theorem.

Cor. When n is infinite, the limit of (1 + %): e

[See Art. 266.]
Also as in the preceding investigation, it may be shewn that
increased,
o o a
=l+e+ 5+ s ;

EANENNT!
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that is, when » is infinite, the limit of (l +§> ='e-l'.

By putting 3: - % , we have

(=3=0e) {0}
n m, m

Now m is infinite when # is infinite;
thus the limit of (1 o

Hence the limit of (1 - %): e,

221. In the preceding article no restriction is placed upon
the value of x; also since ;l—z is less than unity, the expansions we
have used give results arithmetically intelligible. [Art. 183.]

But there is another point in the foregoing proof which
-deserves mnotice. We have assumed that when = is infinite

1 2 r—1
o(3-3) (+-2) (%) »
the limit of z is —

Q I

Jor all values of r.
Let us denote the value of

by .
1 -\ =z 1 1
Then et =-(w_’ )=t
w_, r n r n nr
Since n is infinite, we have
u,
s = that is, u =-u,_,

It is clear that the limit of u, is La%; hence the limit of u, is
o«

. 4
E; that of u, is E:I ; and generally that of «, is o
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222. The series

1+1 1+1+1+
+EET‘I ...... s

which we have denoted by e, is very important as it is the base
to which logarithms are first calculated. Logarithms to this
base are known as the Napierian system, so named after Napier
their inventor. They are also called natural logarithms from the
fact that they are the first logarithms which naturally come into
consideration in algebraical investigations.

‘When logarithms are used in theoretical work it is to be
remembered that the base e is always understood, just as in
arithmetical work the base 10 is invariably employed.

From the series the approximate value of ¢ can be determined
to any required degree of accuracy ; to 10 places of decimals it is
found to be 2-7182818284.

Ezample 1. Find the sum of the infinite series

1+ +L+L_ ......
‘We have e= 1+l+i+ F13+l; ...... H
and by putting = -1 in the series for ¢,
el=1- 1+-__1+

CANCANC

soetel= 2(1+ 1 1+ ...... );

RTETE

hence the sum of the series is 5 (e+c“).

Ezample 2. Find the coefficiont of z" in the expansion of 1-az-

l_ae:—wz:(l—az-z’)e"

=(l-az-2% {1--:!:+:f - 'f-i- +L_]_)_r;,r'+ } .

e B Ir
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o (cUta (-1

The ooefficient requir:

N
=(——|IIX {1+ar-r(r-1)}.

223. To expand log, (1 + x) n ascending powers of x.
From Art. 220,

y*(log. )" v (log, a)’
+ +
|2 3
In this series write 1 + x for a; thus
(1 +2)
— 1+ ylog, (1 +2) + £ {log, (1 + )} + £ {loge (1 + &)+ ..(1).

E 3

Also by the Binomial Theorem, when « <1 we have

a¥=1+ylog,a+

(1+w)”=l+g/m+y(yé l)x,+y(y—1‘13(y—2)w,+ ...... (2).

Now in (2) the coefficient of y is

...... 5

), (12, (1)(=2)(-3)
ST ¥t T 93 Ct T1.9.8.4

1
. 2 o ot
that is, w—§+—3--—z+ ...... .
Equate this to the coefficient of y in (1) ; thus we have
@ L ot
log,(l+x)=w-—§+-§-—Z+.......

This is known as the Logarithmic Sertes.
Ezample. If z<1, expand {log, (1+2)}* in ascending powers of z.

By equating the coefficients of 2 in the series (1) and (2), we see that the
required expansion is double the coefficient of y2 in

(y-1 -1 (y-2 1) (y-2) (-3
yly.z)“"“y(yl.a?fys )””y(yl.);y.a.)iy ot

...... H

that is, double the coefficient of y in
y-1 ., W-1)@-2) , -1)@-2u-9
T35t 1.a.8 ©t 1.9.8.4 2t

1, 1, 1\ 4. 1(,.1.1
Thus {log, (1+2)}?=2 {Ez’—ﬁ(l+§)z‘+z(l+‘—z+ ;%\z‘— X
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224. Except when x is very small the series for log,(1 + )
is of little use for numerical calculations. We can, however,
deduce from it other series by the aid of which Tables of Logar-
ithms may be constructed.

By writing 71" for « we obtain log,r%l ; hence

1 1 1
log,(n + 1)--log,n=;" At g e 1)
By writing —”17‘ for « we obtain log by changing
signs on both sides of the equation,
1 1 1
log,n — log,(n — 1)-—,—‘ Gt gt e 2)
From (1) and (2) by addition,
log,(n + 1) — log,(n — 1) =2 ( S ) o3

From this formula by putting =3 we obtain log,4 — log,2,
that is log,2; and by effecting the calculation we find that the
value of log, 2= 69314718...; whence log,8 is known.

Again by putting n =9 we obtain log,lO—]og,S whence we
find log,10 = 2:30258509..

To convert Napierian logarithms into logarithms to base 10
which is the modulus [Art. 216] of the

1

2-30258509..
we shall denote this modulus by p.

we multiply by —— Tog ! 10’

common system, and its value is , or *43429448...;

In the Proceedings of the Royal Soczety of London, Vol. xxvir.
page 88, Professor J. 0. Adams has given the values of ¢, p,
log, 2, log, 3, log, b to more than 260 places of decimals.

225. 1If we multiply the above series throughout by u, we
obtain formule adapted to the calculation of common logarithms.

Thus from (1), ,ulog,(n+l)—p.log,n=£ —-2%,4- gf:?— e}
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that is,

B e
log,(n+1)-logm=E— Fop b (1).
Similarly from (2),
B
]ogwn—logw(n—-l)=7—h+ o+ 3%§+ ........... (2).

From either of the above results we see that if the logarithm
of one of two consecutive numbers be known, the logarithm of
the other may be found, and thus a table of logarithms can be
constructed.

It should be remarked that the above formulée are only needed
to calculate the logarithms of prime numbers, for the logarithm
of a composite number may be obtained by adding together the
logarithms of its component factors.

In order to calculate the logarithm of any one of the smaller
prime numbers, we do not usually substitute the number in either
of the formule (1) or (2), but we endeavour to find some value
of » by which division may be easily performed, and such that
. either n+ 1 or n—1 contains the given number as a factor. We

then find log(n+1) or log(n—1) and deduce the logarithm of
the given number.

Ezample, Calculate log 2 and log 3, given u=1'43429448.

By putting n=10 in (2), we have the value of log 10-1og 9; thus
1 -2 log 3=-043429448 + 002171472 + 000144765 +-000010857
++000000868 -+ 1000000072 - -000000006 ;
1 -2 log 8="045757488,
log 3="477121256.

Putting #=80 in (1), we obtain log 81 —log 80; thus
4 log 3 - 3log 2 - 1 ="005428681 — -000033929 + 000000283 — 000000003 ;

3 log 2 =+908485024 - 005395032,
log 2=+301029997.

In the next article we shall give another series for
log, (n+1) —log,n which is often useful in the construction of
Logarithmic Tables. For further information on the subject the
reader is referred to Mr Glaisher’s article on Logarithms in the
Encyclopaedia Britannica.

H. H. A, R
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226. In Art. 223 we have proved that
«
log, (1 + )= T—g g

changing x into — x, we have
« o
lOg.(l —w>=—x—§ -— g -
By subtraction,
1+ £
log,——=2 (x+§ +E+ )

o l-x
Put l_ﬁ”=7b_ﬂ' so that ac=—l—; wethusobt;z.in
l1-2 n+1

1 1 1
log,(n+l)—log,n=2{2n+1 + 3@n 1) +5(2n+ 1),+ } .

Nore. This series converges very rapidly, but in practice is not always
80 convenient as the series in Art, 224.
227. The following examples illustrate the subject of the
chapter.
Ezample 1. If a, B are the roots of the equation az3+bz+c¢=0, shew

a?+p8? , at4p
2 24+ 3 E o

that  log (a-bz+ca?)=loga+ (a+p)z—

Since a+p=—%, uﬂ:%, we have
a-br+cxd=a {1+ (a+B) z+apz?}

=a (1+axz) (1+pz).
.. log (a — bz + cz?) =log a +log (1 + ax) + log (1+ Br)
_ a¥z? a2 -l il
=logataz—"3~ + 5~ —..+fr-5+ g~
3 3
=loga+(a+p)z—§;—ﬁaz’+£—.3ig’z'—...

Ezample 2. Prove that the coefficient of z® in the expansion of
log (1+z422) is —?L or ’1‘ according a8 n is or is not a multiple of 3.

log (1 +z +z%) =log %:—:’_-_log(l—a;’) —-log(1-2)

S A S Y (FRS aF S
= 3= T T D) 3+... r+"' .
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If n is a multiple of 3, denote it by 3r; then the coefficient of z*» is—%_
from the first series, together with §l; from the second series; that is, the
coefficient is —§+-]3, or —?.

n'n n

If n is not & multiple of 3, 2™ does not occur in the first series, therefore

the required coefficient is }‘ .

228. To prove that e 18 tncommensurable.

For if not, let e=”£, where m and n are positive integers ;

then =14145+ 4.+ —

ERERRMTAITED B
multiply both sides by |n ;

m 1 1 1 1
n

1 1
Y D) @me2) T ) med)(ne3) T

1 1 1
a1l i)+ 2) T mr e 2)(ms3)

1
. —1=i
m|n integer + pow|

But

is a proper fraction, for it is greater than n-lk—l and less than the

geometrical progression

1, 1 1 )
nrl i)y (nelpt s

that is, less than '1‘ ; hence an integer is equal to an integer plus

a fraction, which is absurd ; therefore ¢ is incommensurable.

EXAMPLES. XVIIL

1. Find the value of

1 1 1
*t576

1 i +....

1
2
2. Find the value of
1 1 1 1 1
"ot Tatse

w—2
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3. Shew that

a3 a’
log,(n+a) ~log.(n-a)=2 (% + oy + oy + .. )
' at a3 ot
4 If y=r-g+5 -7+,
2
shew that = y+y ‘I/; +..

5, Shew that
aab 1 (a b) < +_"=log‘a,—log,b.

6. Find the Napierian logarithm of lgg correct to sixteen places
of decimals.

7. Provethat ¢ —2(L+,5+IZ+ )

8. Prove that
2 '
14201 _ Nz &£ x 28
log,(1 +2)1*=(1 —2)1-= 2(—].2+3_.4+_5.6+"">‘

9. Find the value of
1
-r'—y’+T§ (A -+ é (@ -y +....

10. Find the numerical values of the common logarithms of 7, 11
and 13; given p='43429448, log 2="30103000.

11. Shew that if a2? and ;2 are each less than unity

a (xﬂ+;—3) - %’ (“4"'.@14) +(§<x‘3+:7,>—...=log, (1+ax3+a’+%>.
12. Prove that
log.(1+32+22%)= 3x— - +9;4 - 111'4 +ae;
and find the general term of the series.
13. Prove that
1 g.}+3w 5z —§§+3§—ﬁ—6?+...;

and find the general term of the series.

14, Expand 66:,:&’ in a series of ascending powers of .
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15. Express %(e‘z+e"’) in ascending powers of z, where 1=/ = 1.

16. Shew that
log. (@ + 2k) =2log, (& + ) —log,x -{

P At 7
wrip T ewran T 3@rayp }

17. If a and B be the roots of z% - pa'+¢=0, shew that
2 3498
log.(1+p-v+qz’)=(a+ﬂ)z—‘%Egzu“—:;E as—
18. If <1, find the sum of the series
1,.2,.8,.4,
é:v’+ 51"'*' Z-l'.'f' 51: +....

19. Shew that

1oz (1+ 1)* PR S 1 _ 1 _
°g'( 2) T T2 2.3+ IR FA(n+1)pP
1 . . .
20. If ]og,m3 be expanded in a series of ascending
powers of z, shew that the coefficient of a* is —}‘ if » be odd, or of

the form 4m+2, and i—i if n be of the form 4m.

21. Shew that
33

1+L2+ + +
22. Prove that
1 1 1
2 log, n—log, (n+1) ~log, (n~1)=_3 + g3 + g+
23. Shew that 1 + LS + 1 +
n+l " 2(n+1)2 3(n+1)
1 1 1
=;—2—n,+m—....

24, If log, %= -a, log, 3—:= —b, log, g—(l)=c, shew that

log,2="7a—2b+ 3¢, log,3=11a—3b+5¢c, log, 5=16a —4b+"c;
and calculate log, 2, log, 3, log, 5 to 8 places of decimals.



CHAPTER XVIIIL .

INTEREST AND ANNUITIES.

229. IN this chapter we shall explain how the solution of
questions connected with Interest and Discount may be simplified
by the use of algebraical formule.

‘We shall use the terms Interest, Discount, Present Value in
their ordinary arithmetical sense; but instead of taking as the
rate of interest the interest on £100 for one year, we shall find it
more convenient to take the interest on £1 for one year.

230. To find the interest and amount of a given sum in a
given time at simple interest.

Let P be the principal in pounds, » the interest of £1 for one
year, n the number of years, / the interest, and M the amount.

The interest of P for one year is Pr, and therefore for » years
is Pnr; that is,

J AT o 1).
Also M=P+1;
that is, M=P4+nr)..ciiiinninininnns (2).

From (1) and (2) we see that if of the quantities P, n, 7, 1,
or P, n, r, M, any three be given the fourth may be found.

231. To find the present value and discount of a given sum
due in a given time, allowing simple interest.

Let P be the given sum, V the present value, D the discount,
7 the interest of £1 for 6ne year, n the number of years.
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Since V' is the sum which put out to interest at the present
time will in » years amount to P, we have

P=V(1+nr);
_ P
“14nr’
P
1 +nr
-~ p= P
1+nr

Nore. The value of D given by this equation is called the true discount.
But in practice when a sum of money is paid before it is due, it is customary
to deduct the interest on the debt instead of the true discount, and the
money so deducted is called the banker’s discount; so that

Banker’s Discount = Pnr.

Pnr
1+nr®

True Discount=

Ezample. The difference between the true discount and the banker’s
discount on £1900 paid 4 months before it is due is 6s. 8d.; find the rate
per cent., simple interest being allowed.

Let r denote the interest on £1 for one year; then the banker’s discount
1900r
is }2‘3’9_" , and the true discount is — .
1+57r

3
1900
1900 "3 1
SR R it
14=7r
3
whence 1900r3=3+r;
' . 1x,/122800 _ 1151
< T=TTT8800 0 3800

—_ . 152 1
Rejecting the negative value, we have r= 3800 =25

.. rate per cent.=100r=4.
232. To find the interest and amount of a given sum in a
given time at compound tnterest.

Let P denote the principal, R the amount of £1 in one year,
n the number of years, I the interest, and M the amount.
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The amount of P at the end of the first year is PR ; and, since
this is the principal for the second year, the amount at the end of
the second year is PR x R or PR’. Similarly the amount at the
end of the third year is PR’ and so on; hence the amount in
n years is PR" ; that is,

M= PR";
I=P (R"-1).
Nore. If r denote the interest on £1 for one year, we have
R=1+r.

233. In business transactions when the time contains a
fraction of a year it is usual to allow simple interest for the
fraction of the year. Thus the amount of £1 in § year is

reckoned 1 +%; and the amount of P in 4% years at compound

interest is PR* (1 +§r). Similarly the amount of P in

n+Lyea.rs is PR" (1 +1).
m m

If the interest is payable more than once a year there is a

- distinction between the nominal annual rate of interest and that

actually received, which may be called the true annual rate; thus

if the interest is payable twice a year, and if » is the nominal
r

§ )

H
and therefore in the whole year the amount of £1 is (1 +%) ,

or 1+'r+1:; so that the #rue annual rate of interest is

annual rate of interest, the amount of £1 in half a year is 1 +

r+ .

4

234. If the interest is payable ¢ times a year, and if r is
the nominal annual rate, the interest on £1 for each interval is

g, and therefore the amount of P in » years, or gn intervals, is

P(l + Z),,. .
q

In this case the interest is said to be “converted into principal”
@ times a year.



< INTEREST AND ANNUITIES. 201
If the interest is convertible into principal every moment,
then ¢ becomes infinitely great. To find the value of the amount,

put 2: ;:, so that ¢ =7z ; thus

r\ l anr 1 zyNr
tho smount = # (1+7) = P (14 ) -r{(1 +2)}
q x x
= Pe™, [Art. 220, Cor.,]
since « is infinite when ¢ is infinite.
235. To find the present value and discount of a given sum
due in a given time, allowing compound interest.

Let P be the given sum, V the present value, D the discount,
R the amount of £1 for one year, » the number of years.

Since V is the sum which, put out to interest at the present
time, will in » years amount to P, we have

P=VR";
P .
V=>;=PR™
Rn )
and D=P(1-R™).

Ezample. The present value of £672 due in a certain time is £126; if
compound interest at 43 per cent. be allowed, find the time; having given

log 2="30103, log 3="47712.

1 2
T=j00 =24’ **d B=35-
Let n be the number of years; then

25\"
672=126 (2—4) H

25 672
.. nlog 2_4=1°31'% ,

100 16
or n log % =log?;

Here

.+« n (log 100 —log 96) =log 16 - log 3,
4log2-log3
"=y Blog2-logs
_ 72100
01778
thus the time is very nearly 41 years.

n =41, very nearly;
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EXAMPLES. XVIIL a.

‘When required the following logarithms may be used.
log 2="3010300, log 3='4771213,
log 7="8450980, logll=1-0413927.

1. Find the amount of £100 in 50 years, at 5 per cent. compound
interest; given log114'674 =2:0594650.

2. At simple interest the interest on a certain sum of money is
£90, and the discount on the same sum for the same time and at the
same rate is £80 ; find the sum.

3. In how many years will a sum of money double itself at 5 per
cent. compound interest

4, Find, correct to a farthing, the present value of £10000 due
8 years hence at 5 per cent. compound interest; given

log 6768394 =4-8304856.

5. In how many years will £1000 become £2500 at 10 per cent.
compound interest ?

6. Shew that at simple interest the discount is half the harmonic
mean between the sum due.and the interest on it.

7. Shew that money will increase more than a hundredfold in
a century at 5 per cent. compound interest.

8. What sum of money at 6 per cent. compound interest will
amount to £1000 in 12 years? Given

log106=2-0253059, log 49697 =4-6963292.

9. A man borrows £600 from a money-lender, and the bill is
renewed every half-year at an increase of 18 per cent.: what time will
elapse before it reaches £60007 Given log118=2071882.

10. What is the amount of a farthing in 200 years at 6 per cent.
compound interest? Given log106=20253059, log115°1270 =2-0611800.

ANNUITIES.

236. An annuity is’'a fixed sum paid periodically under
certain stated conditions; the payment may be made either once
a year or at more frequent intervals. Unless it is otherwise
stated we shall suppose the payments annual.

An annuity certain is an annuity payable for a fixed term of
years independent of any contingency; a life annuity is an
annuity which is payable during the lifetime of a person, or of
the survivor of a number of persons.



INTEREST AND ANNUITIES. 203

A deferred annuity, or reversion, is an annuity which does
not begin until after the lapse of a certain number of years; and
when the annuity is deferred for n years, it is said to commence
after n years, and the first payment is made at the end of n +1
years.

If the annuity is to continue for ever it is called a perpetuity ;
if it does not commence at once it is called a deferred perpetuity.

An annuity left unpaid for a certain number of years is said
to be forborne for that number of years.

237. To find the amount of an annuity left unpaid for a given
number of years, allowing simple interest.

Let A be the annuity, » the interest of £1 for one year, n the
number of years, M the amount.

At the end of the first year 4 is due, and the amount of this
sum in the remaining n» — 1 years is 4 + (n —1) 4 ; at the end of
the second year another 4 is due, and the amount of this sum in
the remaining (n—2) years is 4 + (n—2)74 ; and so on. Now
M is the sum of all these amounts ;

S M={Ad+(n-1)rd}+ {4+ (n-2)rd}+...... +(4d+74)+ 4,
the series consisting of » terms;
o M=nd+(1+2+3+...... +n—1)rd

n(n—1)
D) rd.

238. To find the amount of an annuity left
given number of years, allowing compound interest.

=nd +

id for a

4

Let 4 be the annuity, R the amount of £1 for one year, n
the number of years, M the amount.

At the end of the first year 4 is due, and the amount of this
sum in the remaining n—1 years is AR"™'; at the end of the
second year another 4 is due, and the amount of this sum in the
remaining n — 2 years is AR"™*; and so on.

c M=AR"'+ AR *+ ...... + AR+ AR+ A
=AQ1+R+R+...... to n terms)

R -1
=.A.R——_l-.
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239. In finding the present value of annuities it is always
customary to reckon compound interest; the results obtained
when simple interest is reckoned being contradictory and un-
trustworthy. On this point and for further information on the
subject of annuities the reader may consult Jones on the Value
of Annuities and Reversionary Payments, and the article Annuities
in the Encyclopedia Britannica.

240. To find the present value of an annuity to continue for
a given number of years, allowing compound interest.

Let A be the annuity, B the amount of £1 in one year, n
the number of years, V the required present value.

The present value of 4 duein 1 yearis AR™';
the present value of 4 due in 2 years is AR™¥;
the present value of 4 due in 3 years is AR™?;
and so on. [Art. 235.]

Now V is the sum of the present values of the different
payments;

. V=AR"'"+ AR *+ AR*+...... to n terms

1-R—
— -
=AR™ [T
1-R
=477

Nore. This result may also be obtained by dividing the value of M,
given in Art. 238, by R, [Art. 232.]

Cor. If we make n infinite we obtain for the present value
of a perpetuity
A4 V|

V=f1" 7

241. If mnd is the present value of an annuity 4, the annuity
is said to be worth m years’ purchase.
In the case of a perpetual annuity md = é ; hence

100

1
™= ~ rate per oent, ’
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that is, the number of years’ purchase of a perpetual annuity is
obtained by dividing 100 by the rate per cent.

As instances of perpetual annuities we may mention the
income arising from investments in irredeemable Stocks such as
many Government Securities, Corporation Stocks, and Railway
Debentures. A good test of the credit of a Government is fur-
nished by the number of years’ purchase of its Stocks; thus the
23 p. c. Consols at 96} are worth 35 years’ purchase; Egyptian
4 p. c. Stock at 96 is worth 24 years’ purchase; while Austrian
5 p. c. Stock at 80 is only worth 16 years’ purchase.

242, To find the present value of a deferred annuity to
commence at the end of p years and to continue for n years, allow-
ing compound interest.

Let 4 be the annuity, R the amount of £1 in one year, V the
present value.

The first payment is made at the end of (p+ 1) years,
[Art. 236.]

Hence the present values of the first, second, third ... pay-
ments are respectively

AR ARG+ gR-t®
v VAR P AR L AR 4 ... to n terms

1-R~—
—_ (p+1)
= AR o

_ AR AR
“R-1 R-1°
Cor. The present value of a deferred perpetuity to commence
after p years is given by the formula
V_AR"
“R-T°
243. A freehold estate is an estate which yields a perpetual

annuity called the ren¢; and thus the value of the estate is equal
to the present value of a perpetuity equal to the rent.

It follows from Art. 241 that if we know the number of years’
purchase that a tenant pays in order to buy his farm, we obtain
the rate per cent. at which interest is reckoned by dividing 100
by the number of years’ purchase.
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Ezample. The reversion after 6 years of a freehold estate is bought for
£20000; what rent ought the purchaser to receive, reckoning compound
interest at 5 per cent.? Given log 1-05="0211893, log 1-340096 =-1271358.

The rent is equal to the annual value of the perpetuity, deferred for 6
years, which may be purchased for £20000,

Let £4 be the value of the annuity; then since R=1-05, we have
_Ax(1:08)~¢
- 05 ’
.o A x(1:05)7¢=1000;
log A - 6log 1:05=3,
log A =3-1271358 =log 1340-096.
.. 4=1340:096, and the rent is £1340. 1s. 11d.

20000

244. Suppose that a tenant by paying down a certain sum
has obtained a lease of an estate for p + ¢ years, and that when
g years have elapsed he wishes to renew the lease for a term
p+n years; the sum that he must pay is called the fine for
renewing n years of the lease.

Let 4 be the annual value of the estate; then since the
tenant has paid for p of the p +n years, the fine must be equal
to the present value of a deferred annuity 4, to commence after
p years and to continue for n years ; that is,

AR* AR
_ _ A 9
the fine G Gy - Jow it [Art. 242.]

EXAMPLES. XVIIL b.

The interest is supposed compound unless the contrary is stated.

1. The amount of an annuity of £120 which is left unpaid for
5 years is £672; find the rate per cent. allowing simple interest.

2. Find the amount of an annuity of £100 in 20 years, allowing
compound interest at 44 per cent. Given
log 1045="0191163, log 24:117=1-3823260.
3. A freehold estate is bought for £2750; at what rent should it
be let so that the owner may receive 4 per cent. on the purchase money?

4. A freehold estate worth £120 a year is sold for £4000; find the
rate of interest,
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5. How many years’ purchase should be given for a freehold
estate, interest being calculated at 3} per cent.?

6. If a perpetual annuity is worth 25 years’ purchase, find the
amount of an annuity of £625 to continue for 2 years.

7. If a perpetual annuity is worth 20 years’ purchase, find the
. annuity to continue for 3 years which can be purchased for £2522.

8. When the rate of interest is 4 per cent., find what sum must
be paid now to receive a freehold estate of £400 a year 10 years hence;
having given log 104=20170333, log 675565 = "8296670. -

9. Find what sum will amount to £500 in 50 years at 2 per cent.,
interest being payable every moment; given ¢-1=-3678.

10. If 25 years’ purchase must be paid for an annuity to continue
n years, and 30 years’ purchase for an annuity to continue 2r years,
find the rate per cent.

11. A man borrows £5000 at 4 per cent. compound interest; if the
grincipa.l and interest are to be repaid by 10 equal annual instalments,
nd the amount of each instalment; having given

log 1:04="0170333 and log 675565 ="5-829667.

12. A man has a capital of £20000 for which he receives interest
at 5 per cent.; if he s?ends £1800 every year, shew that he will be
ruined before the end of the 17** year; having given

log 2="3010300, log 3="4771213, log 7="8450980.

13. The annual rent of an estate is £500; if it is let on a lease
of 20 years, calculate the fine to be paid to renew the lease when 7 years
have elapsed allowing interest at 6 per cent.; having given

log106=20253059, log4:688385="6710233, log3:118042="4938820.

14, If a, b, ¢ years’ purchase must be paid for an annuity to con-
tinue n, 2n, 3n years respectively; shew that

a?—ab+bi=ac.

15. What is the present worth of a perpetual annuity of £10
payable at the end of the first year, £20 at the end of the second,
£30 at the end of the third, and so on, increasing £10 each year;
interest being taken at 5 per cent. per annum ?



CHAPTER XIX.
INEQUALITIES.

245. ANY quantity a is said to be greater than another
qua.ntlty b when a -b is positive; thus 2 is greater than —3,
because 2~ (-3), or 5 is positive. Also b is said to be less
than @ when b—a is negative; thus —5 is less tha.n —2, because
—5—(—2), or — 3 is negative.

In accordance with this definition, zero must be regarded as
greater than any negative quantity.

In the present chapter we shall suppose (unless the contrary
is directly stated) that the letters always denote real and positive
quantities.

246. If a > b, then it is evident that
a+c>b+c;
a-c>b-c;
ac > be;
a b
gy
that is, an tnequality will still hold after each side has been
increased, diminished, multiplied, or divided by the same positive
quamtity.
247, If a—c>b,
by adding ¢ to each side,
a>b+c;
which shews that in an inequdlity any term may be transposed
JSrom one side to the other if its sign be changed.
If « > b, then evidently b <a;

that is, ¢f the sides of an mequalzty be transposed, the sign of
sneguality must be reversed.
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If a > b, then a—b is positive, and b—a is negative ; that -
is, —a—(- b) is negative, and therefore :
—a<-b;
hence, if the signs of all the terms of an inequality be changed,
the sign of tnequality must be reversed.
Again, if a > b, then —a < —b, and therefore
—ac <=bec;
that is, if the sides of an inequality be multiplied by the same
negative quantity, the sign of inequality must be reversed.

248. If a,>0, a,> b, a,>b, ...... a ,>b_, it is clear
that
a+a,+a+...+a,>b+b +b+...+b,;

and aga ...a >bbb ...b,

249 If a>b, and if p, ¢ are positive integers, then Ja> b,
e
or a' > b' ; and therefore af > b" that is, a" > 5", where n is any
positive quantity.

Further, -1— b"’ that isa™ < b™".

250. The square of every real quantity is positive, and
therefore greater than zero. Thus (a— b)* is positive;
@’ —2ab+b">0;
a® + b* > 2ab.

Similarly z + ht A ,\/xy H

that is, the arithmetic mean of two positive quantities 18 greater
than their geometric mean.

The inequality becomes an equality when the quantities are
equal.

251. The results of the preceding article will be found very
useful, especially in the case of inequalities in which the letters
are involved symmetrically.

H H A A
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Ezample 1. If a, b, ¢ denote positive quantities, prove that

a4+ b+ c2>bc+ca+ab;
and 2 (a3 +b3+c3)>be (b+c)+ca(c+a)+ab(a+d).
For BE42>2DC ovvnnniiiiiiii (1);
c?+a?>2ca;
a?+b*>2ab;
whence by addition a?+ 0¥ +c?>be+ ca+abd.

It may be noticed that this result is true for any real values of a, b, c.

Again, from (1) V2—be+e2>bC .oovvnnennnnrnnninnieiiiiinnn

. B3+c3>be(b+c)

By writing down the two similar inequalities and adding, we obtain
2 (a®+b*+c%)>be (b+c¢) +ca (c+a)+ab(a+D).

It should be observed that (3) is obtained from (2) by introducing the
factor b+c, and that if this factor be negative the inequality (3) will no
longer hold.

Ezample 2. If x may have any real value find which is the greater,
28+ 1 or 22 +2.

a?+1- (z’+:c)=x3—::2—(a:— 1)
=(22-1) (x-1)
=(z-1)(z+1).
Now (z — 1) is positive, hence
2+l > or <2?42z
according as z +1 is positive or negative; that is, according as £ > or < — 1.
If 2= -1, the inequality becomes an equality.

252. Let a and b be two positive quantities, § their sum
and P their product; then from the identity

4ab = (a + b)* — (a —b)?,
we have

4P =8~ (a-b), and §*=4P+(a—b).

Hence, if § is given, P is greatest when a=50; and if P’ is
given, § is least when

a=b;

that is, if the sum of two positive quantitics s given, their product
18 greatest when they are equal ; and if the product of two positive
guantities i8 given, their sum is least when they are equal.
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253. To find the greatest value of a product the sum of whose
Jactors is constant.

Let there be n factors a, b, ¢, ... k, and suppose that their
sum is constant and equal to s. i

Consider the product abe ... k, and suppose that @ and b are
any two unequal factors. If we replace the two unequal factors

a, b by the two equal factors %—b s ‘—"—;—b the product is increased

while the sum remains unaltered ; hence so long as the product
contains two unequal factors it can be increased without altering
the sum of the factors; therefore the product is greatest when all
the factors are equal. In this case the value of each of the n
factors is ;‘ , and the greatest value of the product is (;;) , or
(a+b+c+...+k)'
n

Cor. If a, b, ¢, ... k are unequal,

(‘ﬂ'”T*_“*k >abe ... k;

that is,
1
‘_“'_I”'_‘;'b‘"';*f > (abe ... k).

By an extension of the meaning of the terms arithmetic mean
and geometric mean this result is usually quoted as follows:

the arithmetic mean of any number of positive quantities is greater
than the geometric mean.

Ezample. Shew that (17+27+3"+... +a")" > n*(|n)";
where » is any real quantity.

1" 4+2 4+ 8"+ ...+0"
n

. (1"+ 24+8"+...+
n

Since > (lr.2r.8"...... )"

whence we obtain the result required.
W2
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254. To find the greatest value of a™b"c®... when a+b+c+ ...
18 constant; m, n, p,... being positive integers.
Since m, n, p,... are constants, the expression a™b"c?... will
- » ?
be greatest when (’%) (2) (%) ... is greatest. But this last
expression is the product of m + %+ p + ... factors whose sum is
a b c
m(ﬁ) +n(;l) +p(=)+..,0r a+b+c+..., and therefore con-
stant. Hence a™b%”... will be greatest when the factors
a b e
m b n b p E Al

are all equal, that is, when

a_b_c_ _atbtc+..
m n p | min4tp+..
Thus the greatest value is

P a+b+c+ )"‘*"*”*
\m4+n+p+...

Ezample. Find the greatest value of (z+2)3 (a—z)¢ for any real value
of z numerically less than a.
a+z\%fa-z\*

The given expression is greatest when 5 ) e ) is greatest; but

the sum of the factors of this expression is 8 a+a; (a z) or 2a;

hence (a.+:c)'(a ~z)* is greatest when t;—”_. 41_41; orz= —7

63,84
Thus the greatest value is 7

255. The determination of maximum and minimum values
may often be more simply effected by the solution of a quad-
ratic equation than by the foregoing methods. Instances of
this have already occurred in Chap. 1x.; we add a further
illustration.

Ezample. Divide an odd integer into two integral parts whose product
is a maximum.

Denote the integer by 2n+13 the two parts by « and 2n+1-2; and
the product by y; then (2n+1) x~2®=y; whence

22=(2n4-1) = \/@r+ I - dy:
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but the quantlty under the radical must be positive, and therefore y cannot
be greater than — (2n+1)’ or n’+n+1 and since y is integral its greatest

value must be n’+n in which cue:c_n+1 or n; thus the fwo parts are n
and n+1.

256. Sometimes we may use the following method.

Ezample, Find the minimum value of W—:)%) .
Put ¢+z=y; then
_(a-ct+y) (d-c+y)

y

=(a—c) (b-c¢)

the expression
+y+a-ct+d-c
(J(a c) (b—c) ,,/y)’+a—c+b—c+2.\/(“a—c)(b-c)'.

Hence the expression is a minimum when the square term is zero; that
is when y=,/(a-¢) (b—c).
Thus the minimum value is
a-c+b-c+2a/(a-c) (b-c);

and the corresponding value of z is \/(a—c¢) (b—c) -

EXAMPLES. XIX, a.

1. Prove that (ab+ zy) (ax+ by)>4abzy.
2. Prove that (b+c)(c+a)(a+b)>8abe.

8. Shew that the sum of any real positive quantity and its
reciprocal is never less than 2.

4, If a®+b2=1, and 23+y%=1, shew that ax+by<1.

5 If a’+b’+c’ 1, and 2%+y%+22=1, shew that
az+by+ez<l.

6. If a>b, shew that a*b? > abb®, and logs <log i%z.

7. Shew that (2% +y% + 222) (zy?+yz2 + 2v2) > 9xy%l,
8. Find which is the greater 3ad?® or a®+203
9. Prove that a’+ab®<at+ b
10. Prove that B8abe < be(b+c)+ca(c+a)+ab (a+bd).
11. Shew that b2+ c?a®+ a?b? > abe (@ +bA-6).
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12. Which is the greater 23 or 22+x+2 for positive values of 2?
13. Shew that 23+ 13a32z > 5ax?+9d8, if 2> a.

14. Find the greatest value of « in order that 722411 may be
greater than 23+417z.

15, Find the minimum value of 22 —-122+40, and the maximum
value of 24v—8—922

16. Shew that ([n)>n", and 2.4.6...2¢ <(n+1)"

17. Shew that (r+y+2)°> 27xye.

18. Shew that »*>1.3.5...(2n—1).

19. If » be a positive integer greater than 2, shew that
2n > 140 A28,

20, Show that (jn)<n~("32)".

21. Shew that
(1) (z+y+20>27(y+2-2)(+x-y) (z+y-2)
(2) =zyz>(y+z-2)(z+x -y)(x+y—2).

. 23 Find the maximum value of (7 — )4 (2+ )5 when x lies between
and —2.

23. Find the minimum value of %W) .

+x

*257. To prove that if a and b are positive and unequal,
am+b™ /a+b\® : , s .
— > (T , except when m 18 a positive proper fraction.

We have a"+b"‘=(a_;'_b+“_;_b) “"_'2."_6_“;b ; and
since a; is less than q-;—_b’ we may expand each of these

expressions in.ascending powers of 9%6 . [Art. 184.]

(e e (oY
O EonG
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(1) If m is a positive integer, or any negative quantity,
all the terms on the right are positive, and therefore

a™ + b @+ b\™
2 ’( 2 ) :

(2) If m is positive and less than 1, all the terms on
the right after the first are negative, and therefore

a”+b"  fa+b\"
2 <( 2 ) '
(3) If m>1 and positive, put m:':}z where 12 <1; then
11
a"+b"‘)”‘_ a” +b"\"
SERS P
1

() (a'l')";(b%)', by 2

4

1
. fan +b"‘)"7 a+b
. < 2 )72
L at+b"  fa+b\"
o ——2— > '—2—' .
Hence the proposition is established. If m =0, or 1, the
inequality becomes an equality.

*258. If there are n positive quantities a, b, c,...k, then

a®+b®+c®+...+k™ sa+b+c+... +k)‘“
2 - (5

unless m 18 a positive proper fraction.
Suppose m to have any value not lying between 0 and 1.

Consider the expression @™ +b™+c¢™+... +%&", and suppose
that a and b are unequal ; if we replace a and b by the two equal

. G+b a+bd .
quantities ——, ——, the value of a+b+¢+ ... + % remains un-

2 2
altered, but the value of a™ + ™ +¢™+ ... + £™ is diminished, since

@ +b">2 (“—f,’—b) .
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Hence s0 long as any two of the quantities a, b, ¢,...k are unequal

the expression a™+b™ +c¢™+...+%™ can be diminished without

altering the value of a+b+¢+...+%; and therefore the value

of a"+b"+c™+ ...+ k™ will be least when all the quantities

a, b, ¢c,...k are equal. In this case each of the quantities is equal
a+b+c+..+k

to —g

and the value of ¢™ + 0™ +¢™ + ... + k™ then becomes

(a+b+c+...+lc>"
n| ————m—m .

n

Hence when a, b, c,...k are unequal,

ar+b0"+c"+...+k a,+b+c+...+k)"‘
n >( n )

If m lies between 0 and 1 we may in a similar manner prove
that the sign of inequality in the above result must be reversed.

The proposition may be stated verbally as follows :

The arithmetic mean of the m*™ powers of n positive quantities
8 greaier than the m™ power of their arithmetic mean in all cases .
except when m lics between 0 and 1.

*259. If a and b are positive integers, and a>b, and if x be a

o . x\* x\*
Dpostwe quantity, (1 + ;) > (1 + E) .

For
(1+2) =1+a4(1 _2)L§+ (-H( —2)%...(1),

the series consisting of « + 1 terms; and

x\? 1\ 2* 1 2\ «°
(l +3) ——l+x+(1 —3)—'2+ (l —17>(1 - I—,>|§+ e(2)s
the series consisting of 5+ 1 terms. -

After the second term, each term of (1) is greater than the
corresponding term of (2); moreover the number of terms in (1)

s greater than the number of terms in (2) ; hence the proposition
is established,
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*260. To prove that ) g> ’ i~i———§,
if X and y are proper fractions and positive, and x > y.
For : E>or < /l+y
) 1-y’
according as llg—}i’”> or <llog}tz.
But élog—}%: (1 +§+%‘+...),[Art. 226];
and %log—i%=2(l+%’+%—‘+...>. |
}vl }+x>:’%logl+y,

and thus the proposition is proved.

#261. To prove that (1+x)'*(1—x)'"*>1, ¢f x<Il, and o
a+b
deduce that a'b">(%y) .

Denote (1 +x)'** (1 —x)'™* by P; then
log P=(1+x)log (1 +x)+ (1 —z)log (1 — =)
=g {log (1 +w)—log(l—w)}+log(l+x)+log(1 — )
=2 (x + €n+ 26+ ...)—2 (£‘+ i‘+ i'f+ )
3 5 2 4 6
=2(i +-i+i +)
1.2 3.4 5.6
" Hence log P is positive, and therefore P>1;
that is, A +a)y*(1-=z)"">L
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In this result put w::Z, where u>z; then

(-2
U U,

uts — 3
<u__+ z) u___z) >1% or 1;

u u
oo (w2 (u—2) T > u™,
Now put u+2=a, u—2=2>, so that u=a%1’;

at+bd
.. a’b”>(a—-2té> .

*EXAMPLES. XIX.b.
1. Shew that 27 (a*+b*+ct)> (a+b+c)t
2, Shew that n (n+1)3<8(13+23+3%+...+u3).

3. Shew that the sum of the m*™ powers of the first 2 even num-
bers is greater than n (n+ 1), if m > 1.

4. If a and B are positive quantities, and a > 8, shew that

(3 ()"

»n
Hence shew that if n>1 the value of 1+,’l—l) lies between 2 and
2'718...

5. If a, b, ¢ are in descending order of magnitude, shew that

(“.i”)‘ < (”_tc_)"_

a-c b—c

(a+b+c+...+b>¢+b+°+---+*
n

6. Shew that < abbes,. B

7. Prove that %‘log 1+am™) < ,’1—" log (1 +a®), if m>n.

8. If = is a positive integer and < 1, shew that
T—an+l 1 _g»
< .
n+1 n
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9. If @, b, carein H.P. and n > 1, shew that a*+c*> 25~
10. Find the maximum value of 23 (4a — )8 if x is positive and less
1 1

than 4a; and the maximum value of #3(1-2)? when « is a proper
fraction.

r
1+2°

12, If x+y+2=1, shew that the least value of ;’+."1l+% is 9;

and that (1-2)(1-y) (1 -2)>8zy=.
13, Shew that (a+b+c+d)(a®+ b3+ 3+ d°) > (a®+ b2+ 2+ d?)2
14. Shew that the expressions
a(a-bd)(a—c)+b (b—c)(db—a)+c (c—a)(c—b)
and ad(a-b)(a—c)+b2(b—-c)(b-a)+cE(c—a)(c—D)
are both positive,

11. If x is positive, shew that log (1+x) <z and >

15, Shew that (2™+y™)* < (z8+y%)™, if m > n.

16. Shew that a®b® < (ﬂé)a”

2

17. If @, b, c denote the sides of a triangle, shew that

1) @ (p-9@-nN+¥@g-n@g-p)+S(r-p)r-9)
cannot be negative; p, g,  being any real quantities;
(2) alyz+ bz +c3zy cannot be positive, if x+y+2=0.

18. Shew that |13 |5......... |27—1> (|n)*
19. If a,b,¢, d,...... are p positive integers, whose sum is equal
to n, shew that the least value mpos ’
212 [e]d ceeoener is (|97 (|g+1)

where ¢ is the quotient and r the remainder when n is divided by p.



CHAPTER XX,

LIMITING VALUES AND VANISHING FRACTIONS.

262. Ir a be a constant finite quantity, the fraction gca.n
be made as small as we please by sufficiently increasing «; that
is, we can make g approximate to zero as nearly as we please
by taking x large enough ; this is usually abbreviated by saying,

“when  is infinite the limit of % is zero.”

Again, the fraction g increases as x decreases, and by making
« as small as we please we can make g as large as we please;
thus when z is zero g has no finite limit; this is usually ex-
pressed by saying, “when « is zero the limit of Z is infinite.”

263. When we say that a quantity increases without limit
or i8 infinite, we mean that we can suppose the quantity to become
greater than any quantity we can name.

Similarly when we say that a quantity decreases without
limit, we mean that we can suppose the quantity to become
smaller than any quantity we can name.

The symbol « is used to denote the value of any quantity
which is indefinitely increased, and the symbol 0 is used to
denote the value of any quantity which is indefinitely dimi-

nished.
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264. The two statements of Art. 262 may now be written
symbolically as follows :

. . a .,
if x is o0, then 2 s 0;

e s a
if xis O, then:;]s .

But in making use of such concise modes of expression, it
must be remembered that they are only convenient abbreviations
of fuller verbal statements.

265. The student will have had no difficulty in understanding
the use of the word limit, Wherever we have already employed it;
but as a clear conception of the ideas conveyed by the words
limit and limiting value is necessary in the higher branches of
Mathematics we proceed to explain more precisely their use and
meaning.

266. DeriNitioN. If y =/f(x), and if when x approaches a
value @, the function f(x) can be made to differ by as little as
we please from a fixed quantity b, then b is called the limit of
y when z=a.

For instance, if § denote the sum of n terms of the series

1 1 1
1+2+2,+23+. then S = 2—2—"_—" [Al‘t. 56.]

Here § is a function of %, and ;= can be made as small

2
as we please by increasing = ; that is, the limit of § is 2 when
n is infinite. .

267. We shall often have occasion to deal with expressions
consisting of a series of terms arranged according to powers of
some common letter, such as

a,+ax+ax’ +ax’+ ...

where the coefficients a,, @, a,, a,, ... are finite quantities
independent of , and the number of terms may be limited or
unlimited.

Tt will therefore be convenient to discuss some propositions
connected with the limiting values of such expressions undet
certain conditions.
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268. The limit of the series
a, +ax+ax’+ax’+. ...
when x 18 indefinitely diminished 1s a.,.
Suppose that the series consists of an infinite number of terms.

Let b be the greatest of the coefficients a,, a,, a,, ...; and
let us denote the given series by a, + S; then

S<bx+ba’ +b2+...;

and if x <1, we have S<1L_x;.
Thus when « is indefinitely diminished, S can be made as
small as we please ; hence the limit of the given series is a,.

If the series consists of a jfinite number of terms, S is less
than in the case we have considered, hence a fortiori the pro-
position is true.

269. In the series
a,+ax+ax’+ax’+...,
by taking x small enough we may make any term as large as we
please compared with the sum of all that follow it; and by taking
x large enough we may make any term as large as we please
compared with the sum of all that precede it.
The ratio of the term a " to the sum of all that follow
it is
azx" a,

E3) 3 y OT .
e o +a + ... a . xta, o+ ...

‘When z is indefinitely small the denominator can be made
as small as we please ; that is, the fraction can be made as large
as we please.

Again, the ratio of the term ax" to the sum of all that
precede it is
ax" a

- 'n - , or () o
a_x ' +a_x 0+ ... a_y+a _y+..°

where y=wl.
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‘When « is indefinitely large, ¥ is indefinitely small; hence,
as in the previous case, the fraction can be made as large as
we please.

270. The following particular form of the foregoing pro-
position is very useful.

In the expression
ax+a,_ &+ +ax+a,,
consisting of a finite number of terms in descending powers of ,
by taking « small enough the last term @, can be made as large
as we please compared with the sum of all the terms that precede
it, and by taking « large enough the first term a 2" can be made
as large as we please compared with the sum of all that follow it.

Ezample 1. By taking n large enough we can make the first term of
nd—bn® - Tn+9 as large as we please compared with the sum of all the other
terms; that is, we may take tﬁe first term 74 as the equivalent of the whole
expregsﬁion, with an error as small as we please provided n be taken large
enough.

823 - 223 -4

Ezample 2. Find the limit of 5@ 4278

zero.

when (1) z is infinite; (2) = is

(1) In the numerator and denominator we may disregard all terms but

the first; hence the limit is = 5

(%) When z is indefinitely small the limit is . , or ~1.

Ezample 3. Find the limit of ,;/ g when 2 is zero.
havlget P denote the value of the given expression; by taking logarithms we
log P=; {log (1 +z) —log (1-=z)}
=2(1+§+:;—‘-+...). [Art. 226.]

Hence the limit of log P is 2, and therefore the value of the limit
required is e,



224 mGHEk ALGEBRA.

VANISHING FRACTIONS.

271. Suppose it is required to find the limit of
«* + ax — 2a°
«* —a’
when z=a.

If we put x=a+hA, then % will approach the value zero as x
approaches the value a.

Substituting a + A for «,
o' +ax—2a" 3ah+ 1’ _ 3a+h
P-a b+l Za+h’

and when % is indefinitely small the limit of this expression
. 3 A
ls -—

3
There is however another way of regarding the question; for

o' +ax—2" _(x—a)(x+20) _ a:+2a,
z'-a (x—a)(x+a) x+a’

and if we mow put x=a the value of the expression is

3
5 88 before.

If in the given expression :L:’%a: p e

simplification it will be found that it assumes the form 9, the

we put x=a before

value of which is indeterminate; also we see that it has this
form in consequence of the factor x—a appearing in both
numerator and denominator. Now we cannot divide by a zero
Jactor, but as long as x is not absolutely equal to a the factor
«—a may be removed, and we then find that the nearer
approaches to the value @, the nearer does the value of the

fraction approximate to 3»Or in accordance with the definition of
Art. 266,
o +ax~2a°, 3

when = a, the limit of P Py is 3
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272. If f(x) and ¢ (x) are two functions of 2, each of which
becomes equal to zero for some particular value a of x, the

fraction S{a) takes the form (—), and is called a Vanishing

%@ 0
Fraction.
Ezample 1. If =3, find the limit of
23 - 523+ T2-38
28-22-b6r-8 °

‘When z=3, the expression reduces to the indeterminate t‘orm o’ ; but by
removing the factor -8 from numerator and denominator, the fraction
becomes"a 2o+1 ‘When z=3 this reduces to i, which is therefore the

B+224+1°
required limit,

E:mmple 2. The fraction ___—__'W becomes g when z=a.

To find its limit, multiply numerator and denominator by the surd con-
jugate to A/3z Jx+a, the fraction then becomes

8z - a) - (z+a) " 2

— e, O ——— ;
(z-a)(fBz—a+ufz+a)’ A\Bz-a+izta
whence by putting z=a we find that the limit is :/12:
a
. 1=
Ezxample 8, The fraction i "é: becomes g when z=1.

To find its limit, put 2=1+% and expn.nd by the Binomial Theorem.
Thus the fraction

1,1
aamt 1—(1+§h—§h’+...)
T1- (1+h)* 1- (1+%h—§25h’+...)

Now k=0 when z=1; hence the required limit is g

273. Sometimes the roots of an equation assume an in-
determinate form in consequence of some relation subsisting
between the coefficients of the equation.

H, H. A \%
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For example, if ax +b=cx +d,
(a—c)x=d-b,

d-b

r=——"0H.

a—c

But if ¢=a, then & becomes

, or o ; that is, the root of
a simple equation is indefinitely great if the coefficient of x is
indefinitely small.

274. The solution of the equations

ax+by+c=0, az+by+cd =0,
bc’ —-be ca' —ca

18 i s S s Yy

If ab’'—a'b=0, then 2 and y are both infinite. In this case

%=%= m suppose; by substituting for a', ¥, the second

7/
equation becomes ax + by + :—’—. =0.

If :75 is not equal to ¢, the two equations ax+by +c¢=0 and

ax + by + ;%:0 differ only in their absolute terms, and being
tnconsistent cannot be satisfied by any finite values of = and y.

’ ’ J

J . c .
If w8 equal to ¢, we have it el and the two equations

are now identical.

Here, since b¢’—b'c = 0 and ca’—c'a=:0 the values of « and y
each assume the form (9)’ and the solution is indeferminate, In
fact, in the present case we have really only one equation
involving fwo unknowns, and such an equation may be satisfied
by an unlimited number of values. [Art. 138.]

The reader who is acquainted with Analytical Geometry will
have no difficulty in interpreting these results in connection with
the geometry of the straight line.
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275. We shall now discuss some peculiarities which may
arise in the solution of a quadratic equation.

Let the equation be

ax’ +bx+¢=0.
If ¢=0, then
ax® + be = 0;
whence xz=0, or—ég
a

that is, one of the roots is zero and the other is finite.

If =0, the roots are equal in magnitude and opposite in
sign. [Art. 118.]

If a=0, the equation reduces to bx+¢=0; and it appears
that in this case the quadratic furnishes only one root,

namely — But every quadratic equation has two roots, and in

¢

5

order to discuss the value of the other root we proceed as follows.
‘Write % for x in the original equation and clear of fractions;

thus

cy'+by+a=0.
Now put a=0, and we have
ey’ +by=0;
the solution of which is ¥ = 0, or ——f ; that is, & = oo, or — % .

Hence, in any quadratic equation one root will become infinite
if the coefficient of x* becomes zero.

This is the form in which the result will be most frequently
met with in other branches of higher Mathematics, but the
student should notice that it is merely a convenient abbreviation
of the following fuller statement :

In the equation ax® + bz + ¢ = 0, if a is very small one root is
very large, and as a is indefinitely diminished this root becomes
indefinitely great. In this case the finite root approximates

to -% ag its limit.

The cases in which more than one of the coefficients vanish
may be discussed in a similar manner,

15—
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EXAMPLES. XX,
Find the limits of the following expressions,

(1) when r=w, (2) when x=0.
1 (8x—38) (3—52) 9 (322—1)2
782 -6x+4 © o at49
3 (3+243) (- 5) 4 (x—3)(2-52) (3z+1)
© (@5 -9)(1+z)" @z—1)y :
5. 1-a3 _1:1: 6. (3—x)(z+6)(2—7x).
228-1 " 24% (Tz-1)(z+1)
Find the limits of
1. f—%—t——}, when 2= -1. 8. a*- , when z=0.
9, r%g_;—;-, when £=0, 10. eﬂ::::m , when z=a.
1. Jx—‘\/::'*"::‘f—za,when z=2a.
12. %2, when 2=0.
13, ;———:—'/%%, when z=1.

14, (c.z’—x’)i~+ (a.—.z')%

1) when z=a.
R

Varart+ai—Aai—az+a

15. ~VatsVa-z , When z=0.
16. {(n_;l;l)" - Q%fl}_n, when n=wo.

17. nlog $ emey , When n=c0,
il+;;

18, J 242, when 2=0.



CHAPTER XXI.
CONVERGENCY AND DIVERGENCY OF SERIES.

276. AN expression in which the successive terms are formed
by some regular law is called a series; if the series terminate at
some assigned term it is called a finite series; if the number of
terms is unlimited, it is called an infinite series.

In the present chapter we shall usually denote a series by
an expression of the form

Uy + U+ U+ e FUF e

277. Suppose that we have a series consisting of n terms.
The sum of the series will be a function of n; if % increases
indefinitely, the sum either tends to become equal to a certain
finite limit, or else it becomes infinitely great.

An infinite series is said to be convergent when the sum
of the first » terms cannot numerically exceed some finite
quantity however great » may be.

An infinite series is said to be divergent when the sum of
the first  terms can be made numerically greater than any finite
quantity by taking » sufficiently great.

278. If we can find the sum of the first » terms of a given
series, we may ascertain whether it is convergent or divergent
by examining whether the series remains finite, or becomes in-
finite, when n is made indefinitely great.

For example, the sum of the first #» terms of the series

1-2

li+z+af+a®+ ... is
l-2
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-

If « is numerically less than 1, the sum approaches to the
finite limit

i 1 2 and the series is therefore convergent.

If 2 is numerically greater than 1, the sum of the first

n terms is , and by taking n sufficiently great, this can

-1
be made greater than any finite quantity; thus the series is
divergent.

If 2 =1, the sum of the first » terms is n, and therefore the
series is divergent.
If &= -1, the series becomes
1-14+1-1+1-1+......

The sum of an even number of terms is 0, while the sum
of an odd number of terms is 1; and thus the sum oscillates
between the values 0 and 1. This series belongs to a class
which may be called oscillating or periodic convergent series.

279. There are many cases in which we have no method
of finding the sum of the first n terms of a series. 'We proceed
therefore to investigate rules by which we can test the con-
vergency or divergency of a given series without effecting its
summation. :

280. An infinite series tn which the terms are alternately
positive and megative 18 convergent if each term 48 mumerically
less tham the preceding term. '

Let the series be denoted by
U, = Uy + Uy — Uy + Uy — Ug + ...
where Uy > Uy > Uy > U, > Uy oennnn

The given series may be written in each of the following
forms : '

(w, —w,) + (w,—u) + (W, —w) + ..ooen oennn. (1),

w — (u,—u) — (w, —w,) — (Ug—w,)— ............ (2).

From (1) we see that the sum of any number of terms is
a positive quantity ; and from (2) that the sum of any number
of terms is less than u,; hence the series is convergent.
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281. For example, the series
1 N 1 1 . 1 1 N
- E 3‘ - I ‘5‘ - '6 ------

is convergent. By putting =1 in Art. 223, we see that its
sum is log, 2.

1

Again, in the series

2 3,4 5 67 +
1°3%37% + 5T )
each term is numerically less than the preceding term, and the

series is therefore convergent. But the given series is the sum of

1 1 1 1 1
1—§+~3—z+3—6+ ...... g eeesescan (1),
and 1-141-141-T4 0oy e, ).

Now (1) is equal to log, 2, and (2) is equal to 0 or 1 according
as the number of terms is even or odd. Hence the given series
is convergent, and its sum continually approximates towards
log, 2 if an even number of terms is taken, and towards 1 + log, 2
if an odd number is taken.

282. An infinite series in which all the terms are of the same
sign is divergent if each term is greater than some finite quantity
however small.

For if each term is greater than some finite quantity a,
the sum of the first n terms is greater than na; and this, by
taking » sufficiently great, can be made to exceed any finite
quantity.

283. Before proceeding to investigate further tests of con-
vergency and divergency, we shall lay down two important
principles, which may almost be regarded as axioms.

I. If a series is convergent it will remain convergent, and
if divergent it will remain divergent, when we add or remove
any fintte number of its terms; for the sum of these terms is
a finite quantity.

II. If a series in which all the terms are positive is con-
vergent, then the series is convergent when some or all of the
terms are negative; for the sum is clearly greatest when all
the terms have the same sign.

‘We shall suppose that all the terms are positive, unless the
contrary is stated.
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284. An infinite series is convergent if from and after some
Sixwed term the ratio of each term to the preceding term is nummally
less than some gquantity which 18 itself numerically less tham unity.

Let the series beginning from the fixed term be denoted by
U+ U+ U+ U F e ;

u, u, Y,
and let By, 2o, 2ar ... ,
ul 2 8
where » < 1.
Then u, +u, U, +u, +
w, w, u, U,
=u, (1+ i T B B T S )
u, u o ow, w, Y,
<wu, (L+r+0r"+r*+...... );
. U, .
that is, <1 ’r,smce'r<l.

Hence the given series is convergent.

285. In the enunciation of the preceding article the student
should notice the significance of the words ‘“from and after a
fixed term.”

Consider the series

142243 +4a®+...... +n " L
Here Ya =ﬁ=<l+—l~)w;
u,_, n-—1 n—-1

and by taking n sufficiently large we can make this ratio ap-
proximate to x as nearly as we please, and the ratio of each term
to the preceding term will ultimately be . Hence if <1 the
series is convergent.

But the ratio —x will not be less than 1, until —1 <1;

that is, until n>_—.
Here we have a case of a convergent series in which the terms
may increase up to a certain point and then begin to decrease.

For example, if a:_%)%, then —1—1— =100, and the terms do not

begin to decrease until after the 100* term.
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286. An infimite series in which all the terms are of the same
sign 8 divergent if from and after some fixed term the ratio of each
term to the preceding term is greater than unity, or equal to unity.

Let the fixed term be denoted by u,. If the ratio is equal to
unity, each of the succeeding terms is equal to u,, and the sum
of n terms is equal to nu, ; hence the series is dlvergent

If the ratio is greater than unity, each of the terms after the
fixed term is greater than u,, and the sum of » terms is greater
than nu, ; hence the series is divergent.

287. In the practical application of these tests, to avoid
having to ascertain the particular term after which each term is
greater or less than the preceding term, it is convenient to find

the limit of Y when n is indefinitely increased ; let this limit
be denoted by X

If A <1, the series is convergent. [Art. 284.]

If A>1, the series is divergent. [Art. 286.]

If A=1, the series may be either convergent or divergent,
and a further test will be required; for it may happen that

u“- <1 but continually approaching to 1 as its limit when n is
n—l

indefinitely increased. In this case we cannot name any finite
quantity » which is itself less than 1 and yet greater than A
Hence the test of Art. 284 fails, If, however, uu_

tinually approaching to 1 as its limit, the series is ld.ive;rgent by
Art. 286.

‘We shall use “Lim Y » a3 an abbreviation of the words

-—l

(n+ l)i

Ezample 1. Find whether the aenes whose n‘t term is is con-

vergent or dwergent

Uy _(t1)at  nal  (n+l) (-1)°
Upy W3 (n-1p3" n3

Here

. U,
Lim—2-=z;
Up—1
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hence if <1 the series is convergent;
if z>1 the series is divergent.
If =1, then Lim ;’—‘—: 1, and a further test is required.
-1
Ezample 2. Is the series
1342224 3223+ 4323+ ...
convergent or divergent?

v in 8 —Lim T
Here Lim = Lim R z.
Hence if £ <1 the series is convergent;

if z>1 the series is divergent.
If =1 the series becomes 13+22+ 33+ 43+ ..., and is obviously divergent.

Ezample 8. In the series
at(a+d)r+(a+2d)r*+...+(a+n-1.d)r 14,

. Uy . a+(n-1)d
Lim — lea+(n—2)d'r_

thus if r <1 the series is convergent, and the sum is finite. [See Art. 60, Cor.]

r

288. If there are two infinite series in each of which all the
terms are positive, and if the ratio of the corresponding terms in
the two series 38 always finite, the two series are both convergent,
or both divergent.

Let the two infinite series be denoted by

Uy + U+ Uy U A e ,

and V0, +V U, F s
The value of the fraction
U U U +u,
Y+ O+ Ve +v,
lies between the greatest and least of the fractions
Z— 2‘— ...... :}i [Art. 14

and is therefore a finite quantity, L say ;
U+ U U+ U, =L(0, 0, 40+ D))

_Hence if one series is finite in value, so is the other; if one
series is infinite in value, so is the other; which proves the
proposition.
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289. The application of this principle is very important, for
by means of it we can compare a given series with an auwiliary
series whose convergency or divergency has been already esta-
blished. The series discussed in the next article will frequently
be found useful as an auxiliary series.

290. The infinite series

1 1 + 1 . 1,
I + FrtHtp + eee
8 always divergent except when p is positive and greater than 1.
Case L. Letp>1.
The first term is 1; the next two terms together are less than

2, the following four terms together are less than 4. the fol-

r’ &’
lowing eight terms together are less than gs; ; and so on. Hence
the series is less than 1+§25+Z45+8_8'+'";

that is, less than a geometrical progression whose common ratio

227 is less than 1, since p > 1; hence the series is convergent.

CaseII. Let p=1.

. 1 1 1 1
The series now becomes 1 tg gttt
The third and fourth terms together are greater than % or 3;

the following four terms together are greater than % or %; the

following eight terms together are greater than 1% or % ; and so

on. Hence the series is greater than

1 1+1 1+1+
+*2' §+—2‘ § cery

and is therefore divergent. [Art. 286.]

Case IIL. Let p <1, or negative.

Each term is now greater than the corresponding term in
Chase IL., therefore the series is divergent.

Hence the series is always divergent except in the case when
p is positive and greater than unity.
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Ezample. Prove that the series

2 3 4 n+l
ftatet -t t-
is divergent.
11 1
Compare the given series with 1+ gt + o+

Thus if u, and v, denote the n* terms of the given series and the
auxiliary series respectively, we have

hence Lim ; =1, and therefore the two series are both convergent or both

dlvergent. But the auxiliary series is divergent, therefore also the given
series is divergent.

This completes the solution of Example 1. Art. 287.

291. In the application of Art. 288 it is necessary that the
limit of —2 o * ghould be finite ; this will be the case if we find our
auxiliary series in the following way :

Take u,, the n™® term of the given series and retain only the
hlghest powers of n. Denote the result by v,; then the limit of

® is finite by Art. 270, and v, may be taken as the n'h term of
the auxiliary series.

3/ 3 __
Ezample 1, Bhew that the series whosen"‘termisTLis
3+t 5
divergent. ’
As n increases, u,, approximates to the value
Y g1
Yomd» O B2

Hence, if v.._l, we have Lun——‘/z. which is a finite quantity;
'!
nt
therefore the series whose n'® term is '}f may be taken as the auxiliary
w3
d'!anu. t.But this series is divergent [Art. 290]; therefore the given series is
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Ezxample 2. Find whether the series in which

U= N +1-n
is convergent or divergent.

: 1
Here u,.=n(\/1+173—-1)

1 1
=n 1+W—-97L6+...—1)
_1 1,
Tt g
If we take v,,=nl,,we have
v _1_ 1
n=3 et
. LimY=1
'L""v,‘_ti'
But the auxiliary series
1 1 1 1

F+?’+3T+ ...7‘5+...
is convergent, therefore the given series is convergent.

292. To shew that the expansion of (1 +x)° by the Binomial
Theorem is convergent when x < 1.

Let u,, u,,, represent the 7** and (r+1)" terms of the ex-
pansion ; then
w, n-r+l
=—— 2
% r

‘When 7>n+1, this ratio is negative; that is, from this
point the terms are alternately positive and negative when z
is positive, and always of the same sign when & is mnegative.

Now when 7 is infinite, I/im,;:—” =a numerically ; therefore

since & < 1 the series is convergént if all the terms are of the
same sign ; and therefore a fortiori it is convergent when some of
the terms are positive and some negative. [Art. 283.]

293. To shew that the expansion of a* in ascending powers
of x i8 convergent for every value of x.

u, «loga

w
Here —= L

; and therefore Lim <1 whatever be

n—1

the value of « ; hence the series is convergent.



238 HIGHER ALGEBRA.

294. To shew that the expansion of log (1 +x) in ascending
powers of x i8 convergent when X i8 numerically less than 1.
n=1 . which in the limit
is equal to #; hence the series is cc';x-llvergent when ¢ is less than 1.

If =1, the series becomes l—l+—1——l+ ..., and is con-

2 3 4
vergent. [Art. 280.]
If x=—1, the series becomes —1—-— = - - — ...y, and is

divergent. [Art. 290.] This shews that the logarithm of zero is
infinite an negatlve, a8 is otherwise evident from the equation
e =0,
295. The results of the two following examples are important,
~ and will be required in the course of the present chapter.

Ezample 1. Find the limit of 282 log £ when z is infinite,
Put z=e¥; then

lgz _y _
v 1+y+y—E+’|’—3+...
—-— 1 —
- y ¥
+1+
vt

also when z is infinite y is infinite; hence the value of the fraction is zero.
Ezample 3. Shew that when n is infinite the limit of nz®=0, when z <1,
Letz=%, so that y>1;

also let y™=2, so that nlogy=1log z; then
n_llogz_ 1 logs

¥ z ‘logy logy z
Now when n is infinite # is infinite, and 1‘"%20; also logy is finite;
therefore Lim na™=0.

296. It is sometimes necessary to determine whether the
product of an infinite number of factors is finite or not.
Suppose the product to consist of n factors and to be denoted by
U YUY ...... u,;
then if as n increases indefinitely u_ <1, the product will ulti-
mately be zero, and if u >1 the product will be infinite ; hence in
order that the product may be finite, w_must tend to the limit 1.
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‘Writing 1 + v, for »_, the product becomes
1+9) (Q+v)(1+v,)...... (1+9,).
Denote the product by P and take logarithms ; then
log P=log (1 +v)+log(l+v,) +...+ log(1+9) ...... (1),

and in order that the product may be finite this series must be
convergent.

Choose as an auxiliary series

U HV Ut e, FU, e (2)
1
v, — 5o+
Now Lim log (:,+ %) _ Lim ( 2 ) =1,

since the limit of v_ is Olwhen the limit of «_is 1.

"Hence if (2) is convergent, (1) is convergent, and the given
product finite.

Ezample. Shew that the limit, when % is infinite, of
1838355617 2n-1 2n+1

2.2.4.4.6.6 ...... '—2n—. on

is finite.

The product consists of 2n factors; denoting the successive pairs by
4, %y, t,... and the product by P, we have

=U Ug Uy ... Uy,
2n-1 2n+1 1
where Y= gn  Bm =17 g
but log P=logu, +logu,+logu,+... +logu, ......... (1),
and we have to shew that this series is finite.
1 1 1
Now logu,,:log(l-i—n, Rl =~ S

therefore as in Ex, 2, Art. 291 the series is convergent, and the given product
is finite.

297. In mathematical investigations infinite series occur so
frequently that the necessity of determining their convergency or
divergency is very important ; and unless we take care that the
series we use are convergent, we may be led to absurd conclusions.

e Axk. AU
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For example, if we expand (1—z)~* by the Binomial Theorem,
we find .

(1-2)"=1+2zx+3x"+42"+ ......

But if we obtain the sum of n terms of this series as ex-

plained in Art. 60, it appears that
-2 na”
-l——‘.——_,_'
1+42x+3c"+ ... +na” “0=ep 1o’

whence

1 —t " nx”
m,=l+2m+3w‘+...+m' +'(—1—_——x-)—,+1—-_x.

By making n infinite, we see that ﬁ;—, can only be re-

garded as the true equivalent of the infinite series
1+22+3a"+42+.....

when (Ta:—a:)' + in_f_x vanishes.

If » is infinite, this quantity becomes infinite when x=1,
or #>1, and diminishes indefinitely when x<1, [Art. 295], so
that it is only when 2 <1 that we can assert that

1 .

(m59=1+2x+3w’+4zn+ ...... tomf.;
and we should be led to erroneous conclusions if we were to use
the expansion of (1 —x)™* by the Binomial Theorem as if it were
true for all values of x. In other words, we can introduce the
infinite series 1 + 2%+ 32*+ ... into our reasoning without error
if the series is convergent, but we cannot do so when the series
is divergent.

The difficulties of divergent series have compelled a distinction
to be made between a series and its algebraical equivalent. For
example, if we divide 1 by (1-=z)°, we can always obtain as
many terms as we please of the series

1+2x+30"+42°+ ......

whatever 2 may be, and so in a certain sense ﬁ; may be

called its algebraical equivalent ; yet, as we have seen, the equi-
valence does not really exist except when the series is con-
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vergent. It is therefore more appropriate to speak of (l—la:)'
as the generating function of the series
142¢+30"+ ...

being that function which when developed by ordinary alge-
braical rules will give the series in question.

The use of the term generating function will be more fully
explained in the chapter on Recurring Series.

EXAMPLES. XXI, a.

Find whether the following series are convergent or divergent:

1 1 ., 1 __7~1_+
z z+a 2+2a x+3a’ T ’

2 and a being positive quantities.
1 1 1 1

2 yetgstsatast -

1 1 1 1
3. @D @+D @ @+ @+I) GFy T
2 and y being positive quantities.

2 22 x3 x4
rgtestsatist
x 2 23 a2t

Tet3.atEet7.8T

3 4
6.1+++

FRE] ]4+ ......

1. \/§+ \/§+ \/§+\/§+ ......

8. 1+3z+522+723+924+......

4,

5.

2 3 4 5
9 Gtgptegtpt
x a2 a8 an
10. 1+‘2 5+ 0+ +n’+l+ ......
L o+da B St Pttt iy “Lomy
1.‘ 5 + + <+ .. n2+1 ..... .
H H A. AS
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2 6, 14, ?-2 .,
12 14= .z+ x‘+ﬁa, -|-..+2»_|_1 +onene

13. +3p+ +7;,

i)
14, 2:v+3—1"+4i+ G L
27 n3

92  9\-1 33 3\2 44 4\ -3
15. <l—§—i> + 2—3—§> +(3—‘—5) +.o

1,98 3 4
16 l+gm+5n+ats

......

+..

17. - Test the series whose general terms are
(1) Je+l-n () rtl-Jat-1

18. Test the series

1 1 1
1) 1’_+x——+l+x+2+$+3+ ...... ,

1 1 1 1 1
(2) —+—1'+m+x 3 .'L'+Z+ ......
« being a positive fraction.
19. Shew that the series
2r 3¢
1+ 54— + + ......
[

is convergent for all values of p.

20. Shew that the infinite series
Uy + Uy + Ug+ Uy o
is convergent or divergent according as Lim J/u,is <1, or >1.

21. Shew that the product
2 2 4 4 6 2n—-2 2n-2 2n
1°3°3'5°5""" -3 2n—-1" 2n-1

is finite when 7 is infinite.

22, Shew that when x=1, no term in the expansion of (1 4a)
infinite, except when n is nega.hve and m\met\ca.l{; greater than unit;



CONVERGENCY AND DIVERGENCY OF SERIES. 243

*298. The tests of convergency and divergency we have
given in Arts. 287, 291 are usually sufficient. The theorem
proved in the next article enables us by means of the auxiliary
series

1 + ! + 1 + o F !

F 2_' ? see 77’ + oo
to deduce additional tests which will sometimes be found con-
venient.

*299. If u,, v, are the general terms of two infinite series
in which all the terms are positive, then the u-series will be con-
vergent when the v-series is convergent if after some particular term
Yo _ Y8 . and the u-series will be divergent when the v-series is

un_ 1 vll— 1

un>vn

Up; Voo

divergent if

Let us suppose that , and v, are the particular terms.

uw, v, u, 9
Case I, Let 2<%, 2<c-2 ; then
u, v’ w v,
w, U+ U
u, u, u
=u (1+-24+-2, 24 )
1 ug ul

. U,
that is, < ;‘ (v, +v,+9, + ...).
)

Hence, if the v-series is convergent the u-series is also con-
vergent, °

CaseIL Let Y5 Y%.% ; then
1 ] u’ ‘vl

1&—2
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that is, >—— (vl+v +v, + ...)

Hence, if the v-series is divergent the wu-series is also di-
vergent.

*300. We have seen in Art. 287 that a series is convergent
or divergent according as the limit of the ratio of the n™* term
to the preceding term is less than 1, or greater than 1. In the
remainder of the chapter we shall find it more convenient to use
this test in the equivalent form :

A series is convergent or divergent according as the limit of
the ratio of the n'* term to the succeeding term is greater than 1,

or less than 1; that is, according as Lim o 1,or <1.

n+l
Similarly the theorem of the preceding article may be
enunciated :
The u-series will be convergent when the v-series is convergent

= ; and the w-series will be di-

vergent when the v-series is divé;éent provided that

. w )
Lim — < Lim —*

ntl n+1

*301. The sertes whose general term is u, is convergent or di-

>}>l, or <1,

Let us compare the given series with the auxiliary series

vergent according as In,m{ (

whose general term v, is ot

When p>1 the auxiliary series is convergent and in this
case the given series is convergent if

—>(n+,l),, or (1 +—);

ul+l
that is, if e 1+p pp- 1) + .03
nt1 n
u, p(p-1)
or — .
n(un+l 1) >p+ o .3

that is, if im {n (e — )
at is, i Lim \n <'"',m 1)t>p.
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But the auxiliary series is convergent if p is greater than 1
by a finite quantity however small ; hence the first part of the
proposition is established.

‘When p<1 the auxiliary series is divergent, and by proceed-
ing as before we may prove the second part of the proposition.

Ezample. Find whether the series

z 12 1.32° 1.3.5 a7
itesta i st e 7T
is convergent or divetgent

Here Lim 2 = ;,,
Unt1
the series is divergent.

hence if <1 the series is convergent and if z>1

If =1, Lim —2% =1. In this case
Uns1

1.3.5....(20-3) 1
Un=9 4.6, (2n—-2)"2n-1"

Uy _2n(2n+1) ;
Unt1 (2”’ 1) (2"' - 1)

. Uy _n(bn-1)
il v 1) = @n-1p’

. Lim —“—1)2 3’

hence when x=1 the series is convergent.

and

*302. The series whose general term is u, 13 convergent or di-

vergent, according as Lim (n log —%‘) >1,0r <1.

+1
Let us compare the given series with the series whose general

|
term 1s —.
n

When p>1 the auxiliary series is convergent, and in this
case the given series is convergent if

u 1\

u.+,>(1+77)’ [Art. 300.]
hat is, if log = >p1 1+1—)-
that 1s, 1 ogu”“>p og( 2
or if log-u—" >E——}i+...;
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"M. ) >p
u-(-l

Hence the first part of the proposition is established.

‘When p<1 we proceed in a similar manner ; in this case the
auxiliary series is divergent.

that is, if Lim (nlog

Ezample. Find whether the series
223 333 44z¢ 552

TETETETE”

is convergent or divergent.
Hoe e WOt (rlptie w1
T N T
o Lim Y =1, [Art. 220 Cor.].

Unt1 €T
Henoe if z<% the series is convergent, if .1:>e1 the series is divergent.

1 u, e
If z==-, then L e e
e Upt1 1+}_ d
n
- log "_~=10ge-nlog(1+1)
Ut
=1l-n L + a3
n 2n’ 3n’
11
2n—3n’+" H
R nlog—u'l-=;_3ln+ 3

hence when z=% the series is divergent.

*303. 1f Lim =1, and slso Zim {n (% 1)} =1, the
tests given in Arts, 3b0 301 are not applicable. e

To discover a further test we shall make use of the auxiliary
(logn)" In order to establish

the convergency or divergency of this series we need the theorem
proved in the next article,

series whose general term is
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*304. If ¢ (n) ts positive for all positive integral values of n
and continually diminishes as n increases, and if a be any positive
integer, then the two infinite series

(1) +¢(2)+(3) +...+p(n) + ...,
and ap(a) +a'p(a’) +a’p(a”) + ... +a'p(a’) + ...,
are both convergent, or both divergent.
In the first series let us consider the terms
o(a*+1), ¢(a'+2), d(a*+3), ..... Y (k) T (1)
beginning with the term which follows ¢ (a").

The number of these terms is a**'—a’, or a'(a —1), and each

of them is greater than ¢(a**'); hence their sum is greater than

a*(a—-1) $(a**'); that is, greater than a,;_l x at*' ¢ (a**).
By giving to % in succession the values 0, 1, 2, 3,... we have

b(2) +(3)+d(4) +...... + ¢(a)> x ap(a);

a-1
a

d@+1)+p(a+2)+Pp(a+3)+...... +¢(a’)>a—;1xa'¢(a’ H

therefore, by addition, S, - ¢(1)> a%l S,

where S|, S, denote the sums of the first and second series respec-
tively; therefore if the second series is divergent so also is the
first.

Again, each term of (1) is less than ¢(a*), and therefore the
sum of the series is less than (a - 1) x a'¢p(a’).

By giving to % in succession the values 0, 1, 2, 3... we have
b(2) + () +p(4) +...... +¢(a) <(a—1)x ¢(1);
dla+l)+d(a+2)+Pp(a+3)+...... +'¢(a’)<(a—l)xa¢(a);

......................................................

therefore, by addition
8, - ¢(1) <(a-1) {Ss +¢(1)};

hence if the second series is convergent so also is the first.

Nore. To obtain the general term of the second series we take ¢ (r\ the
general term of the first series, write a® instead of n smd uMiphy by
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*305. The series whose general term 8 8 convergent

if p > 1, and divergent if p=1, or p<1.

By the preceding article the series will be convergent or
divergent for the same values of p as the series whose general
term is

1
n (log n)®

. 11
@ X F(loga) ° (nlogay’ (loga)y’ * v

The constant factor (loﬁ’ is common to every term ; there-
fore the given series will be convergent or divergent for the same
values of p as the series whose general term is 7%. Hence the

required result follows. [Art. 290.]

*306. The series whose general term is u, i3 convergent or di-
vergent according as Lim [{n (uu, - 1) - l} log n:| >1,or <1,

n+1

Let us compare the given series with the series whose general
term is W.
When p>1 the auxiliary series is convergent, and in this
case the given series is convergent by Art. 299, if
u, (n+1){log(n+1)}?
—r
u n (log n)*

atl

Now when = is very large,
log (n + 1) =logn + log (1 +’1;) =logn+}z, nearly ;
Hence the condition (1) becomes
%>(1 +}‘)(1 +nl§?)’;

that ig, _u___>(1+1)(1+ P );
u n n logn

ntl

U
n

. 1 p
that is, m>_1+;z+nlogn’
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or n(—u—“ —-1)>l+
Yty logn
(e
or n

Hence the first part of the proposition is established. The
second part may be proved in the manner indicated in Art. 301.

- l}logn>p.

Ezample. Is the series
22 22,4 92.42,62
1+32 + 37, 5,+3—,. N 7,+ ......
convergent or divergent?

(@n+1) 1

Here u’H—l = (271«)’ —1+7_l + 41—15 ........................ (1)
. Lim 2» — 1, and we proceed to the next test,
Unty
1
From (1), n (’Z;l -1)=1 +4— .............................. (2).

.. Lim {n (ll"— - 1)} =1, and we pass to the next test.
Un+r

e b e
rom (2) 'u,.ﬂ gn= —

. Lim [{ (——— 1) l}log n]=0,
since Lim ———_0 [Art. 295]; hence the given series is divergent.

*307. We have shewn in Art. 183 that the use of divergent
series in mathematical reasoning may lead to erroneous results.
But even when the infinite series are convergent it is necessary to
exercise caution in using them.

For instance, the series
_Z L=,
RN E AT INE
is convergent when z=1. [Art. 280] But if we multiply the
series by itself, the coefficient of «* in the product is

) 1 1 1
,’/2n +:/271,_—_1 * ,:/2.~'/2n—2+ o Jr. :]‘2.'!\.—'\'+ ."*T.F;-a:'\{-

1x+
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Denote this by a,_; then since
1 o 1
T Jan—r  (ny J ’

, and is therefore infinite when  is infinite,

y OF >——

2n+1
a, > Jn
If =1, the product becomes

Q=G + A= Q+ ...+ —

F U= s

out1? Bansg --- &0 infinite, the series has

2-+l
and since the terms a,, a,
no arithmetical meaning,

This leads us to enquire under what conditions the product
of two infinite convergent series is also convergent.

#308. Let us denote the two infinite series
a,+rax+ax’+ax’+ .. +a x"+
by +bx+ba® +ba’+ ... +b,a™+

by 4 and B respectively.

If we multiply these series together we obtain a result of
the form

aobo + (albo + anbl) z+ (aibo + albl + aobl) x’ + ..

Suppose this series to be continued to infinity and let us
denote it by C; then we have to examine under what conditions
C may be rega.rded as the true arithmetical equivalent of the
product 4B,

First suppose that all the terms in 4 and B are positive.

Let 4., B,,, denote the series formed by taking the first
9n +1 terms of 4 b C respectively.

If we multiply together the two series 4, , B, , the coefficient
of each power of @ in their product is equaf to the coefficient of
the like power of « in C as far as the term «™; but in 4 B,
there are terms containing powers of x higher than «*, whilst
«** is the highest power of 2 in C, ; hence

4.8, >C,.

If we form the product 4, B, the last term is abx™; but
C,, includes all the terms in the product and some other terms
besides ; hence

C,>4B,
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Thus C,, is intermediate in value between 4 B, and 4 B, ,
whatever be the value of n.

Let A and B be convergent series ; put
A =4-X, B=B-7,
where X and Y are the remainders after n terms of the series

have been taken; then when « is infinite X and Y are both
indefinitely small,

. AB =(A-X)(B-Y)=AB-BX-AY + XY;
therefore the limit of 4 B, is AB, since 4 and B are both finite.
Similarly, the limit of 4, B, is 4B.

Therefore C which is the limit of C, must be equal to 4B
since it lies between the limits of 4 B, and 4,B,.

Next suppose the terms in 4 and B are not all of the same
sign.

In this case the inequalities 4, B, > C, >4 B, are not
necessarily true, and we cannot reason as in the former case.

Let us denote the aggregates of the positive terms in the
two series by P, P’ respectively, and the aggregates of the
negative terms by N, N’; so that

A=P-N, B=P-N.

Then if each of the expressions P, P, N, N’ represents a con-
vergent series, the equation

AB=PP - NP'—PN'+ NN,

has a meaning perfectly intelligible, for each of the expressions
PP, NP, PN', NN’ is a convergent series, by the former part
of the proposmon and thus the product of the two series 4 and
B is a convergent series.

Hence the product of two series will be convergent provided
that the sum of all the terms of the same sign in each 18 a con-
vergent series.

But if each of the expressions P, N, P, N’ represents a
divergent series (as in the preceding article, where also P'=P
and N'=2N), then all the expressions PP, NP, PN', NN’ are
divergent series. 'When this is the case, a careful investiga-
tion is necessary in each particular example in order to ascertain
whether the product is convergent or not.
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*EXAMPLFES. XXI. b.

Find whether the following series are convergeﬁt or divergent :

1 22 1.3.5 24 1.3.5.7.9 af

L l43.5+5 76 8t e.4.6.8.10" 12"

3 3.6, 3.6.9 3.6.9.12
2 1452+ 6%t 0. 13% T 7.10. 13, 16°

2 3 2 2 2
—2—434+ D47 oy LHE e

3 2+ 34.5.6°73.4.5.6.7.8

B3 | 4% 5
+3—+ 2

3
2x
4 1 +—
TBTETETE
1
2

B L2

5. 1+~x+Lx”+ .z4+ ......

12 12,32 12,32,52
! 2——-’. 4’E+2——2.4,.6QZ'2+ ......

=]

a(l a) (1+a)a(1 a) (2—a)

T 1+ 12,92
(2+a)(l+a)a(1 a) (2 - a)(34)
.or.38 —  teeen
a being a proper fraction.
a+x , (a+2z) (a+32)
8. 'T'l' E_ + B +.ee
9. 1428 a(a+l)ﬁ(ﬁ+l)

1. 7 L.2.y(y+1)
a(a+1)(a+2)B(B+1)(B+2)
+ 1.2.3. 70+ D)7 +2) 234,

10. a2 (log 2)2+a3 (log 3)¢+ 2% (log 4)¢+......

a(a+l) a(a+l)(a+2)
11. 14a+ T T 1.2.3 ‘o
k k—1 k-2 k-3 .
12, If e " +An* 7+ B i+ Ont 2 4. =, where £ is a positive

Upsy W+ an T +lmk—s+ 3.,
integer, shew that the series Uy +Ug+ U+ ..o is convergent if
4 —a—1 is positive, and divergent if A —a—1 is negative or zera



CHAPTER XXIIL

UNDETERMINED COEFFICIENTS.

309. In Art. 230 of the Elementary Algebra, it was proved
that if any rational integral function of = vanishes when z=a,
it is divisible by  —a. [See also Art. 514. Cor.]

Let P +pa T +pat Tt 4L +p,

be a rational integral function of x# of n dimensions, which
vanishes when « is equal to each of the unequal quantities

a, Ggy Gy, ..... o

Denote the function by f(x); then since f(x) is divisible
by ¢ —a,, we have ‘
JS@)=(x-a) (@ +...... )
the quotient being of n—1 dimensions. - :

Similarly, since f(z) is divisible by = —a,, we have

PR = (®—a,) (P + ...... )
the quotient being of n — 2 dimensions ; and
puwu—! F o = (x _ a,a) (poa:.-a + .o )-

Proceeding in this way, we shall finally obtain after n di-
visions

S@)=p,(x—-a)(x-a)(x—a)..... (z—a).

310. If a rational integral function of n dimensions vanishes
Jor more than n values of the variable, the coefficient of each power
of the variable must be zero.

Let the function be denoted by f (x), where
S(@) =pa"+px "t +px" T+ ... P
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and suppuse that f(«) vanishes when z is equal to each of the
unequal values a, a, a, ...... a,; then
S(@)=p,(x—-a,)(x-a)(x-a,)...... (z—a,).

Let ¢ be another value of  which makes f(x) vanish; then

since f(c) = 0, we have
Py (=) (=) (=) ... (6= 1) = 05
and therefore p =0, since, by hypothesis, none of the other
factors is equal to zero. Hence f(x) reduces to
. pE +pat Tt patt 4Ll +p,.

By hypothesis this expression vanishes for more than n values’

of «, and therefore p, = 0.

In a similar manner we may shew that each of the coefficients
Dys Dy wvoees p, must be equal to zero.

This result may also be enunciated as follows:

If a rational integral function of n dimensions vanishes for
more than n values of the variable, it must vanish for every valus
of the variable.

Cor. If the function f(x) vanishes for more than n values
of «, the equation f (x) = 0 has more than n roots.

Hence also, if an equation of n dimensions has more than n
roots it 18 an identity.

Ezample. Prove that

(z-b) (x—c) , (x—c)(x—a) , (z—-a) (:::—b)__=1
@-Y@=o) -0 6-a) e -5 -
This equation is of two dimensions, and it is evidently satisfied by each
of the three values a, b, ¢ ; hence it is an identity.

311. If two rational integral functions of n dimensions are
equal for more than n values of the variable, they are equal jfor
every value of the variable.

Suppose that the two functions
P+ +p Tt L +p.,
g+ gt + L +4q.,
are equal for more than n values of «; then the expression

@ —2) "+ (p,—q) &+ (Pa—q) ™+ s +(p.—4.)
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vanishes for more than n values of x; and therefore, by the
preceding article,
Po=0=0,-9,=0, p,—¢,=0, ... p,~¢,=0;
that is, .
Po=90» P1=9n p!=qs) """ pn=qn'

Hence the two expressions are identical, and therefore are
equal for every value of the variable. Thus
if two rational integral functions are identically equal, we may
equate the coefficients of the like powers of the variable.

This is the principle we assumed in the Elementary Algebra,
Art. 227.

Cor. This proposition still holds if one of the functions is
of lower dimensions than the other. For instance, if

PE+PE T+ p T+ p T L +p,
=qa" P+ + ... +q,,

we have only to suppose that in the above investigation g,= 0,
¢,=0, and then we obtain

2,=0, ,=0, py=q,, Py;=¢; ---... p,=q,

312. The theorem of the preceding article is usually referred
to as the Principle of Undetermined Coefficients. The application
of this principle is illustrated in the following examples.

Ezample 1. Find the sum of the series
1.242.8343.44.cceuuueee +n(n+1).

Assume that
1.242.343.4+...+n(rn+1)=4A+Bn+Cn?®+Dnd+ Ent+ ...,
where 4, B, C, D, E,... are quantities independent of n, whose values have

to be determined.
Change n into n+1; then
1.242.3+...4+n(n+1)+ (n+1) (n+2)
=A+B(n+1)+C(n+1)*+D (n+1p3+E (n+1)*+
By subtraction,
(n+1) (n+2)=B+C(2n+1)+D (3n?+3n+1)+ E (403 + 603+ dn+1)+ ...
This equation being true for all integral values of n, the coefficients of the

respective powers of n on each side must be equal; thus E and all succeeding
coefficients must be equal to zero, and
8D=1; 3D+2C=3; D+C+B=2;
1 2

whence D=§, Cc=1, B='§$'
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1
Hence the sum =A+ 23"' +n¥4 3 nd.

To find 4, put n=1; the series then reduces to its first term, and
2=A+2, or A=0.

Hence 1.2+2.3+3.4+...+n(n+1)=%n(n+1)(n+2).

Nore. It will be seen from this example that when the n*: term is a
rational integral function of n, it is sufficient to assume for the sum a
function of n which is of one dimension higher than the n* term of the
series.

Ezxample 2. Find the conditions that 2*+ p«? + gz + r may be divisible by

z+azx+b.

Assume o3 +pa?+ qr+r=(x+k) (2*+az+b).

Equating the coefficients of the like powers of z, we have

k+a=p, ak+b=gq, kb=r.

From the last equation k.. ;- ; hence by substitution we obtain
r +a=p, and T +b=gq;
b =D, '3 =q5
that is, r=b(p-a), and ar=>b (g -b);
which are the conditions required.

EXAMPLES. XXII. a.
Find by the method of Undetermined Coefficients-the sum of
124324524724 ...to n terms,
1.2.342.3.443.4.5+...to n terms.
1.2242.3%243.42+4.52+...to » terms.
13433+ 5%+ 73 +...to » terms.
. 14424434+ 444 to n terms.
Find the condition that 23— 3px+2¢ may be dlvmble by a
factor of the form #%+2az + a2,
7. Find the conditions that a3+ ba?+ cx + d may be a perfect cube.

8. Find the conditions that a?r*+bax3+ca?+dax+f2 may be a
perfect square.

9. Prove that ax?+ 2bzy+cy?+2dz+2ey+f is a perfect square,
if ¥=ac, d*=af, e=cf.

oo

o o>
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10. If aa8+ba?+cx+d is divisible by 22 + A3, prove that ad=be.
11, If 2%—5¢z+4r is divisible by (z —c)?, shew that g=14,
12, Prove the identities:
a?(x—b)(xz—-c) bx—c)(x—a) K AF(x—a)(x-b)
O @@= T -90-a * Cc-a@e-b
@ @=b)(@=c)(@=d) (z=0)(z—d)(z—a)
(a-bd)(a-c)(a—d) " (b-c)(b—d)(b-a)
L @=D@=a)(@=b)  (z—a)(@=b)(x=c) _;
T e=d)Cc=a)(c=b) T (d—a)(d=b)(d-0)
13. Find the condition that
ax?+ 2hzy + by? + 292+ 2fy +¢
may be the product of two factors of the form
prtgy+r, pPrtgy+r.

14. If é=lz+my+nz, g=nx+ly+mz (=mzx+ny+lz and if the
same equations are true for all values of z, g, z when §, 5, ¢ are inter-
changed with 2, g, 2 respectively, shew that

B4 2mn=1, m?+2n=0, n?+2m=0.

+

15. Shew that the sum of the products n—r together of the =
quantities a, a?, a3, ...a" is
(a""’l 1) (a""”—l).. (an - 1) }(n r)(n-r+1).
(a-1)(a?-1)...(a*~T-1)

313. If the infinate series a,+ 8,xX + a.x* + a.g: + e 18 equal
to zero for every finite value of x fo'r which the series 18 convergent,
then each coefficient must be equal to zero identically.

Let the series be denoted by S, and let 8, stand for the ex-
pression a, +ax+ax" + ...... ; then §=a +x8,, and therefore,
by hypothesm a, +xS 0 for all finite values of z. But since S
is convergent, S cannot exceed some finite limit; therefore by
taking « small enough S, may be made as small as we please.
In this case the limit of S is a,; but S is always zero, therefore
@, must be equal to zero identically.

Removing the term a,, we have xS, =0 for all finite values of
x; that is, a, +a @ +a2" +...... vanishes for all finite values of x.

Similarly, we may prove in succession that each of the
coefficients a,, a,, a,,...... is equal to zero identically.

H. H. A, 17
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314. If two infinite series are equal to one another for every
Jinite value of the variable for which both series are convergent, the
cocfficients of like powers of the variable in the two series are equal.

Suppose that the two series are denoted by

g tax+ax+ax’+. ...
and A +Adz+ A+ A8+ ... ;
* then the expression
a—A,+(a,—4)x+(a,—4) 2" +(a, - 4,) 2"+ ......
vanishes for all values of x within the assigned limits; therefore |
by the last article
a,-4,=0, a,—4,=0, a,-4,=0, a,—4,=0,......

that is, a=A4, a,=4, a,=4, a,=4,...... ;
which proves the proposition.

o1 in & series of ascending powers of = as far

24
Ezample 1. Expand Trz-2

a8 the term involving 25,
2+ 23
1+x-22
where a,, a,, 4,5, a3,... are constants whose values are to be determined ; then
2+22=(142-2% (ag+aqy 2+ ay2® + ayz®+ ).

Let =ay+a,&+ a2 +agd+ ...,

In this equation we may equate the coefficients of like powers of = on
each side. On the right-hand side the coefficient of 2™ is a,+a Gp_g,
and therefore, gince x? is the highest power of z on the left, for all’ values of
n>2 we have )

Gyt 8y~ By 3=0;
this will suffice to find the successive coefficients after the first three have
been obtained. To determine these we have the equations

ay=2, a,+ay=0, ag+a,-ay,=1;

whence ay=2, ay= -2, a;=5.
Also ay+ay—a,; =0, whence ag= - 7;
a,+ag—a;=0, whence a,=12;
and ay+a,— ag=0, whence a;= - 19;
thas e 2204557 et 1204 1905+ ..

1+z-2
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Ezample 2. Prove that if n and r are positive integers

n'-n(n—l)'+"‘LE'”(n—zr-”‘"—‘%‘"—'g’(n_s)w...

is equal to 0 if r be less than =, and to [p if r=n.

z? 23 .
—~1)n= P R Tl
‘We have (e*-1) (1+E+'3+L4-+ ...... )
=a™+ terms containing higher powers of z...(1). .
Again, by the Binomial Theorem,
nn-1
(6% = 1)P=en% — petn—2 4 (:T)e"“”’ — e 3 eeerenens ).
By expanding each of the terms e"%, e®~D%, . we find that the coefficient
of 2% in (2) is
1"_" (n—l)"+n(n—l) (n-2)" n(n-1)(n-2) (n-3"
e TR L s T

and by equating the coefficients of z" in (1) and (2) the result follows.

Ezample 8. If y=azx+bzttcat+...... ,
express « in ascending powers of y as far as the term involving y3.

Assume z=py+qyi+ryd+...... y

and substitute in the given series; thus
y=a(py+qy*+ry®+...)+b(py+qy®+... )2 +c(py+qy*+...)% +.......
Equating coefficients of like powers of y, we have

ap=1; whenoep:%.

aq +bp?=0; whence q=—:—§.

2 ¢
ar+2bpg +cp*=0; whence r=_r - -

2 3 _ 3
z=¥—b—3’,—+(~2———~b fc)y+...
a a a' N

Thus

This is an example of Reversion of Series.

Cor. If the series for y be given in the form
y=k+az+ba?+cad+...
put y-k=2z;
then z=ax+bzl+exd+ ...

from which # may be expanded in ascending powers of z, thekia ot y-k.
i—2
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EXAMPLES. XXII. b.

Expand the following expressions in ascending powers of z as far
as %

1422 1-8z l+x
L 1-z-a%" 2 1—-2—622" 8. 2+ 2422°
3+2 1
4 2—x—a22" 5 l+ax—az?— 23"
. - . . a+bx
6. Find a and b so that the #'* term in the expansion of T=ap

may be (3n-2)z"~1L
7. Find a, b, ¢ so that the coefficient of 2" in the expansion of
a-é—lbx-l-)zx’ may be n2+1.
8. If y2+2y=x(y+1), shew that one value of y is
dot+iat— gttt
9. If c.z-“+a.z' —y=0, shew that one value of # is
y_o? 3% 124y

a al & ald
Hence shew that x=-00999999 is an approximate solution of the
equation 23+100x—1=0. To how many places of decimals is the

result correct ?

10. In the ex jon of (1+2)(1+ax)(1+a%r)(1+a3z)...... , the
number of factors being infinite, and a < 1, shew that the coefficient of

. 1 $r-1)
2718 (1-a) (1-a?) (1-ad)...... (l—a')a ) '

11. When a < 1, find the coefficient of #* in the expansion of

1
(1-azx) (1-a%)(1-a%2)...... to inf.”
12. If nis a positive integer, shew that
¢)] n"”‘l—n(n—l)"“-l-&(n-l:i) (n—2n+1— ... ={nn+1;
(n+ l)n

(2) nr—(n+1)(n-1)*+ (n—-2)"-...... =1;

the series in each case being extended to n terms ; and
@) 1"—n2"+1%?2—1)3"—......=(—1)" n;

@ (rpr-nmrp-ip+ 202D

the series in the last two cases being extended to n+1 terms.

(m+p-2)"—...... =|n;



CHAPTER XXIII.
PARTIAL FRACTIONS.

315. In elementary Algebra, a group of fractions connected
by the signs of addition and subtraction is reduced to a more
simple form by being collected into one single fraction whose
denominator is the lowest common denominator of the given
fractions. But the converse process of separating a fraction into
a group of simpler, or partial, fractions is often required. For

3~ bz
1-4x+3a°
ing powers of &, we might use the method of Art. 314, Ex. 1, and
80 obtain as many terms as we please. But if we wish to find the
general term of the series this method is inapplicable, and it is
simpler to express the given fraction in the equivalent form

1
T-z 1-3
can now be expanded by the Binomial Theorem, and the general
term obtained.

example, if we wish to expand in a series of ascend-

Each of the expressions (1—2)' and (1 - 3z)™

316. In the present chapter we shall give some examples
illustrating the decomposition of a rational fraction into partial
fractions. For a fuller discussion of the subject the reader is
referred to Serret's Cours d’Algébre Supérieure, or to treatises on
the Integral Calculus. In these works it is proved that any
rational fraction may be resolved into a series of partial fractions;
and that to any linear factor 2 —a in the denominator there cor-

responds a partial fraction of the form ;:A—a; to any linear

factor « ~b occurring fwice in the denominator there correspond

two partial fractions, 53;—16 and (acli_'T)’ If x—b occurs three

times, there is an additional fraction B, . and %0 on. YO

(m — ‘b\‘ b
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any quadratic factor «'+px+q there corresponds a partial

. Prs+Q .
—_—— x*
fraction of the form Frpzig if the factor «'+ px + ¢ occurs

Px+@, .
m, and so on.

Here the quantities 4,, B, B, B,...... P, @, P, @, are all
independent of .

twice, there is a second partial fraction

We shall make use of these results in the examples that
follow.
5z—1
2z3+z-6
Since the denominator 22?+ z — 6= (z +2) (2« - 3), we assume
bz-11 4 + B
203 +2-6 z+2 2z-3°
where 4 and B are quantities independent of z whose values have to be
determined.
Clearing of fractions,
5z-11=4 (22 ~3)+B (z+2).

Since this equation is identically true, we may equate coefficients of like
powers of z; thus

Ezample 1. Separate into partial fractions,

24 +B=5, -84+2B=-11;

whence 4=3, B=-1.
bo-11 _ 8 1
227 +2-6 z+2 22-8°
Ezample 2. Resolve —————— into partial fractions.
gt Frar P
me+n A B
Assume (x_—a)m—m'i-m.
mr+n=A4(x+D0)+B(x-a).................. (1).

We might now equate coefficients and find the values of 4 and B, but it
is simpler to proceed in the following manner.

Since 4 and B are independent of z, we may give to z any value we please.
In (1) put z-a=0, or z=a; then

_ma+n,
4= a+d’
. _ _mb-n
putting z4+b=0, or z= -b, B_m.
mr+n 1 ma+n+mb—n)
* ®-a)(w+b) atd\z-a ' z+d /"
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23z — 1122

Ezample 8. Resolve B0 0-5) into partial fractions.
23 — 1122 4 B C
Assume (2z_—1)(3'+—x)(3—__x)=2ﬁ+3—+—$+3—__x ............ (1);

. 28z~ 1123=4 (3+2) (3-%)+B (2z-1) 3 -2) + C (22~ 1) 3 +2)-
By putting in succession 22—-1=0, 3+2=0, 8 - 2=0, we find that
d=1, B=4, C=-1.

. BBz-llz 1 4 1
*C @z-1)(9-2%) 22-1 3+z 8-z

8z24+2-2
(z-2)? (1-22)

8#+s-2 _ 4 B C
@-0¢(-22) 1-2z z-2" -9’

82 +x-2=4 (x-2)*+B (1-22)(z-2)+C(1-2z),
.
3
let x - 2=0, then C=-4.
To find B, equate the coefficients of #?; thus

Ezample 4. Resolve into partial fractions.

Assume

Let 1-2z=0, then A=

8=4 -2B; whence B= -g.

. 8z*+z-2 1 5 4
' @-2yi(1-2z) 8(1-2z) 3(&-2) (z-2)°

42-192
@+ @E-9
42-19z¢ 4z+B, C |

(@+1)(z-4) «2+1  z-4’
42-192=(4z+B) (x—4) + C (22 +1).

Let =4, then C=-2;
equating coefficients of z?, 0=4+0,and 4=2;
equating the absolute terms, 42= -4B + C, and B= - 11,
. 42-19z _2-11 2
@ +1)(x-4) 22+1 z-4"

Ezample 5. Resolve into partial fractions.

Assume

317. The artifice employed in the following example will
sometimes be found useful.
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23 — 2423 + 48z . . .
9(“:_2)#:1)— into partial fractions.
91’—24z’+483_i+ f(z)
(z-2)¢(z+1) ~ z+1" (z-2)*’

where 4 is some constant, and f (x) a function of 2 whose value remains to
be determined.

Ezample. Resolve

Assume

923 - 2423+ 48x=A (z - 2)*+ (z+1) f (2).
Lot #= —1, then Ad=-1.
Substituting for 4 and transposing,
(z+1) f (2) =(x - 2)*+ 92® — 242> + 48z =at + 23+ 162+ 16;
. f(z)=23+16.
. : : . 23+ 16
To determine the partial fractions corresponding to w2 put z-2=z;

22416 _ (24+2)3+16 _ 284+627+12:4+24

then

(x-2)8" P 24
1,6 12 24
=;tatata
1 6 L 12
=z 2t @-ptE-2ptEoop-
92 -242%+48z 1 1 6 12 24

@@+ arltz-at @t Goopt @oon

318. In all the preceding examples the numerator has been
of lower dimensions than the denominator ; if this is not the case,
we divide the numerator by the denominator until a remainder is
obtained which is of lower dimensions than the denominator.

628+ 522 -7
Ezample. Resolve 3221

into partial fractions.

By division,

623+523-17 _ Bz—4 .

E7 g Ty Sk v I
8z-4 5 1

8 _9z-1 B8z+1 Tz-1'"

. B+bat-T 5 1
ey LA v s

and

319. We shall now explain how resolution into partial
fractions may be used to facilitate the expansion of a rational
fraction in ascending powers of .
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8 +x-2

Ezamplel. Find the general term of F-9P-22) when expanded in a

series of ascending powers of .

By Ex. 4, Art. 316, we have
Szt 4+z-2 1 5 4
(x-27(1-22) 3(1-2z) 8(z-2) (z-2)?
1 5

4
3(1 2z) 8(2 z) (2-27

=-la-gied (1--) -(-3)"

Hence the general term of the expansion is

2r 5 1 r+1
“§+6‘9T'“—2r")“"

Ezample 2. Expand (ITZ)—T(:?’) in ascending powers of z and find
the general term.
T+z 4  Bz+C,
00+ 1tz 1+a’
T+z=4 (1+2%) +(Bz+C) (1+2).
Let1+2=0, then 4=3;
equating the absolute terms, 7=4+C, whence C=4;
equating the coefficients of 22, 0=4+B, whence B= -3.
T+ 3 4-3z
T+a) (+2H) T+z  1+a?
=3 (1+2)1+(4-8z) (1 +2%)1

Assume

=3{l-z+22—.....+(-1)PzP+ ..}
+(4-38z) {1-22+a4—...... +(=1)P2¥+ ...},
To find the coefficient of 2":

r
(1) If » is even, the coefficient of z" in the second senes is 4 (- 1)¥;

therefore in the expansion the coefficient of z"is 3 +4 (- 1)2

(2) If ris odd, the coefficient of 2" in the second series is —8 (- 1)_‘l

r+l

and the required coefficient is 8 (-1)7 -38.

EXAMPLES. XXIII
Resolve into partial fractions :

L Ta=1 g _ 46+13 g _l+30+22°
* 1-bz+62 © 1A 11z—-16" © Qe Q-
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" 22-10x+13 5 2234+t —-2-3
(x—1)(#®-52+6)" * x(x-1)(2x+3)°

6 9 7 at— 323322+ 10

T (z-1) (@+2) T (@+1P(2-3) T

8 2623+ 208z 9 223 - 11245

- @+ (@+5)" " @-3)(@+22-5)
328 - 822410 523 + 6234 52

10. ) 11, CEVIEES) &

Find the general term of the following expressions when expanded
in ascending powers of z.

_ﬂ_ 13. 5r+6 14. 24+T72r+3
1+112r+2822" @+2)1-2) AFTzF10°
o4 4+30+22*
B o= 8 T (te-m9
3+ 2 —a2 4472
17. Tra) =4 18, T3 (AFop
2z+1 1_x+2x2
19. (z=1)(2®+1)" 2. (I-azp
1 3222
A T -a-w) > @S+
23. Find the sum of » terms of the series
1 z 2
(1) (1+$)(1+.’b‘2)+(1+x2)(1+ﬂ)+(l+x3)(l+z4)+ ......
(1 -ax) az (1 - a?z)

(2) (1+2) 1+az) (1 +az) (1+a"")(1+a2x)(1+a3x)+ ......

24, When x <1, find the sum of the infinite series
1 a3 at
T -2 A= A-#) G- -2 "
25. Sum to n terms the series whose pt* term is
2P (1+a9+)) B
A=z (1-27*T) (1=aP+i)"

. 26. Prove that the sum of the homogeneous products of n dimen-
sions which can be formed of the letters a, b, ¢ and their powers is

ar*3(b—c)+ b2 *2(c—a)+ et (a-b)
adb-c)+b3(c-a)+c3(a-b)




CHAPTER XXIV.
RECURRING SERIES.

320. A series wu +u +u+u,+......

in which from and after a certain term each term is equal to the
sum of a fixed number of the preceding terms multiplied respec-
tively by certain constants is called a recurring series.

321. In the series

1+ 22+ 3a™ + 4o + ba* + ...
each term after the second is equal to the sum of the two
preceding terms multiplied respectively by the constants 2z, and

—a*; these quantities being called constants because they are
the same for all values of n. Thus

ba'=2x. 4o’ + (— 2°). 32°;
that is,
wu, = 2zu, — 2’u,;
and generally when » is greater than 1, each term is connected
with the two that immediately precede it by the equation

w, =2ou,_, —x'u,_,,

or u, — 20w, +x'u,_ =0,
In this equation the coefficients of u, u,_,, and u,_,, taken
with their proper signs, form what is called the scale of Telation.
Thus the series

1+ 22+ 3a* + 42® + 5zt + ...
is & recurring series in which the scale of relation is
1-2x+a"

322. 1If the scale of relation of a recurring series is given,
any term can be found when a sufficient number of the preceding,
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terms are known. As the method of procedure is the same
however many terms the scale of relation may consist of, the
following illustration will be sufficient.

If 1-pzx —qa’ — ra®
is the scale of relation of the series

a,+ax+ax’+ar’+ ...
we have

axt=px.a_x"""'+qx'.a_x'+ra’.a a0
or Q=P + qa’-—l + e, 55

thus any coefficient can be found when the coefficients of the
three preceding terms are known.

323. Conversely, if a sufficient number of the terms of a
series be given, the scale of relation may be found.

Ezample. Find the scale of relation of the recurring series
246z + 1322+ 8523 +......
Let the scale of relation be 1 —pz —gx3%; then to obtain p and ¢ we have
the equations 18 - 5p - 2¢=0, and 35-13p - 5¢=0;
whence p=>5, and g= — 6, thus the scale of relation is
1-5x+ 623

324, If the scale of relation consists of 3 terms it involves
2 constants, » and ¢; and we must have 2 equations to de-
termine p and ¢. To obtain the first of these we must know
at least 3 terms of the series, and to obtain the second we
must have one more term given. Thus to obtain a scale of
relation involving two constants we must have at least 4 terms
given.

If the scale of relation be 1—px—ga*—ra’, to find the
3 constants we must have 3 equations. To obtain the first of
these we must know at least 4 terms of the series, and to obtain
the other two we must have two more terms given; hence to find
a scale of relation involving 3 constants, at least 6 terms of the
series must be given.

Generally, to find a scale of relation involving m constants,
we must know at least 2m consecutive terms.

Conversely, if 2m consecutive terms are given, we may assume
for the scale of relation
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325. To find the sum of n terms of a recurring series.

The method of finding the sum is the same whatever be the
scale of relation; for simplicity we shall suppose it to contain
only two constants.

Let the series be
G +ax+ar’+a @’ .o @)

and let the sum be §; let the scale of relation be 1— px —ga*;
8o that for every value of n greater than 1, we have
a,—pa, ,—qa, ,=0.
Now S=a,+ ax+ ag’'+...+ a_2x"7

—px 8= —pag—pax’— .. —pa,_x"'—pa _ ",
— gt 8= —qaxt — ... —qa, X" —qa _x"—qa _xt'.

o (L=px — g2°) 8§ = ay + (@, — pa,) x — (pa,_, + qa,_) =" —qa,_ """,
for the coefficient of every other power of z is zero in consequence
of the relation
au -—pau—l - qal—n =0.
@+ (@, —pa)x (P2, , +99,.,) T +ga, ="
1 - px— gz’ 1 - px - ga* )

Thus the sum of a recurring series is a fraction whose de-

nominator is the scale of relation.

oo S=

326. If the second fraction in the result of the last article
decreases indefinitely as n increases indefinitely, the sum of an

infinite number of terms reduces to a—"w.
1 - pzx— g’

If we develop this fraction in ascending powers of x as
explained in Art. 314, we shall obtain as many terms of the
original series as we please ; for this reason the expression

@+ (al _Pa‘o) x
1 - px — gz’
is called the generating function of the series.

327. From the result of Art. 325, we obtain

‘f’o + (a’l "'pa’o) z

T-po-ga =a,+ax+tar’+ .. +a, _a

4 (PO 90, )2 + g0 2
1-pe—qe
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from which we see that although the generating function
a,+ (al _pao) z

1 —pz— g’
may be used to obtain as many terms of the series as we please,
it can be regarded as thie true equivalent of the infinite series

a,+ax+ax’+ ... , ‘
only if the remainder
(pa,_, +qa, )2 +qa,_ "'

1-pz—gqz
vanishes when n is indefinitely increased ; in other words only
when the series is convergent.

328. When the generating function can be expressed as a
group of partial fractions the general term of a recurring series
may be easily found. Thus, suppose the generating function
can be decomposed into the partial fractions

4 N B + C
l—az 1+bz (l1-cx)'’
Then the general term is
{da’ + (- 1) BV + (r+ 1) Cc’} .

In this case the sum of n terms may be found without using

the method of Art. 325.

Ezample. Find the generating function, the general term, and the sum
to n terms of the recurring series

1-Tz-2"-4323—......
Let the scale of relation be 1 - pz — gz*; then
-147p-¢=0, -43+p+7¢=0;
whence p=1, ¢=6; and the scale of relation is
1-z-6s2%
Let S denote the sum of the series; then
S=1-Tz— z3-432%—......
-z8= - z+T2%+ 2+.....
-622S= -6z +4223+......

which is the generating function,
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2 ___1

1-8z , . . .
If we separate iz 6 into partial fractions, we obtain ol g

whence the (r+1)* or general term is
{(-1)rort1_3r} a7,
Putting r=0,1,2,..n-1,
the sum to n terms
={2-2224+2%% - ...+ (-1)* 122" 1} — (14824 8%2+...+ 3" 12"))
_24(=Qn-iontign ] _8ngn

1422 1-3z °

329. To find the general term and sum of n terms of the
recurring series a,+a,+a,+ ...... , we have only to find the
general term and sum of the series a,+az+a2’+ ...... , and put
=1 in the results.

Egzample. Find the general term and sum of n terms of the series
14+6+24484+......
The scale of relation of the series 1+ 6z + 24x?+ 8423 + .., is 1 - 524 622,
l+z
1-5z+622"
This expression is equivalent to the partial fractions

4 _ 8
1-82 1-2z°

If these expressions be expanded in ascending powers of x the general
term is 4.37-8.2"a",

Hence the general term of the given series is 4, 3" -3, 27; and the sum
of n terms is 2(3*-1)-3(2"-1).

and the generating function is

330. We may remind the student that in the preceding
article the generating function cannot be taken as the sum of
the series

1+ 62+ 240’ + 84a® + ...
except when « has such a value as to make the series convergent,.
Hence when 2 =1 (in which case the series is obviously divergent)
the generating function is not a true equivalent of the series,
But the general term of

1+6+24+84+......

18 tndependent of x, and whatever value x may have it will always
be the coefficient of " in

14 62+ 242 + 842 + ...

‘We therefore treat this as a convergent series and find =
general term in the usual way, and then put & =1,
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EXAMPLES. XXIV.

Find the generating function and the general term of the following
series:

1. 1462+922+1323+....... 2 2—x4+523—Tad+.......
3. 2437v4+b6224923+....... 4, T-6x+92242724+.......
5. 346241422+ 3623498244 27625+ .......

Find the n** term and the sum to » terms of the following series :
6. 2+65+13+35+....... 7. —-1+622430z%+.......
8. 2+4+7x+262%+912%+.......

9. 1422462242023 +6624421225+.......

10. —g+2+0+8+ .......

11, Shew that the series
124224324424 ..., +n2,
134234334434 ...... 408,
are recurring series, and find their scales of relation.
12. Shew how to deduce the sum of the first -n terms of the re-
curring series
A+ a7+ Azt agzd ...
from the sum to infinity.
13. Find the sum of 22+ 1 terms of the series
3-14+13-9+41-53+.......
14. The scales of the recurring series
ayt+a vt agrt +agzd+. ... ,
by+b, 2+ by + byzS+ ... ,

are 1+px+qa? 1+rx+sz? respectively; shew that the series whose
general term is (a,+ b,) 2" is a recurring series whose scale is

1+(p+7) 2+ (g+8+pr) 2®+ (gr+ps) 23+ gst.

15. If a series be formed having for its n** term the sum of # terms
of a given recurring series, shew that it will also form a recurrin,
series whose scale of relation will consist of one more term than that
of the given series.



CHAPTER XXV.

CONTINUED FRACTIONS,

331. An expression of the form a++ is called a

c+—
e+

continued fraction; here the letters q, b, ¢,...... m.z;,&' denote any
quantities whatever, but for the present we shall only consider
the simpler form a, + + , where a,, a,, a,,... are positive
a, +—
a + ...
integers. This will be usually written in the more compact form

1 1

332. When the number of quotients Q)5 gy Gy is finite the
continued fraction is said to be ferminating ; if the number of
quotients is unlimited the fraction is called an infinite continued
Sraction. '

It is possible to reduce every terminating continued fraction
to an ordinary fraction by simplifying the fractions in succession
beginning from the lowest.

333. To convert a given fraction into a continued fraction.

Let ” be the given fraction; divide m by m, let a, be the

quotient and p the remainder ; thus
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divide n by p, let a, be the quotient and ¢ the remainder ; thus

n q .
;:a,+1—)=a,+]-),
q

divide p by g, let «, be the quotient and » the remainder ; and so
on. Thus

m 1 1 1
__=al+ =al+ ......
n 1 a,+ a +
a,+
a, + ...

If m is less than =, the first quotient is zero, and we p;xt

and proceed as before.

It will be observed that the above process is the same as that
of finding the greatest common measure of m and % ; hence if m
and n are commensurable we shall at length arrive at a stage
where the division is exact and the process terminates. Thus
every fraction whose numerator and denominator are positive
integers can be converted into a terminating continued fraction.

Ezample, Reduce z.—% to a continued fraction.

Finding the greatest common measure of 251 and 802 by the usual
process, we have

5| 251 |802(38
6 6| 498
1

and the successive quotients are 3, 5, 8, 6; hence

%1_1 1 1 1
802 8+ b5+ 8+ 6

334. The fractions obtained by stopping at the first, second,
third,...... quotients of a continued fraction are called the first,
second, third,...... convergents, because, as will be shewn in
Art. 339, each successive convergent is a nearer approximation
to the true value of the continued fraction than any of the
preceding convergents.
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335. To shew that the comvergenis are alternately less and
greater than the continued fraction.

Let the continued fraction be a, + !
a+ a +

......

The first convergent is a,, and is too small because the part
1

1 . . .
—— ——... is omitted. The second convergent is @ + —, and is
a,+ a, + ' a

too great, because the denominator e, is too small. The third
. 1 .
convergent is @, + ~—-—, and is too small because a, +£— is too
. 2

great ; and so on. ’ ’

‘When the given fraction is a proper fraction a, =0 ; if in this
case we agree to consider zero as the first convergent, we may
enunciate the above results as follows :

The convergents of an odd order are all less, and the convergents
of an even order are all greater, than the continued fraction.

336. To establish the law of formation of the successive con-
vergents.

Let the continued fraction be denoted by
1 1 1

then the first three convergents are
9 a4+l a(sa+l)+a,
1’ & ° a,.a,+1 ’

and we see that the numerator of the third convergent may be
formed by multiplying the numerator of the second convergent
by the third quotient, and adding the numerator of the first con-
vergent ; also that the denominator may be formed in a similar
manner.

Suppose that the successive convergents are formed, in a
similar way ; let the numerators be denoted by p,, p,, p,,..., and
the denominators by ¢,, ¢,, ¢,,---

Assume that the law of formation holds for the nth convergent;
that is, suppose

P, =0, Py +[)-—8’ qn= a’uqu—\+ qu\—ﬂ'
\%—2%
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The (n+ 1)* convergent differs from the nt only in having

the quotient a_ +
an+l

in the place of a_; hence the (n+ 1)* con-

vergent

",
a + +
— ( Y P P Pus LTS (3P, +2._,) fp.—l
(a" + ) qu-~1 + qn-! a-+l (a" q“_‘ + qu-l) + qu-l
sy

L SY S , by supposition.

au-'-l q" + ql—l

If therefore we put

Pas1 T O Put Py 1ai1 =%y @t Tueys

we see that the numerator and denominator of the (n + 1)% con-
vergent follow the law which was supposed to hold in the case of
the nt, But the law does hold in the case of the third con-
vergent, hence it holds for the fourth, and so on; therefore it
holds universally.

337. It will be convenient to call a, the n** partial quotient;
1

the complete quotient at this stage being a, + -

@+ a,  +

We shall usually denote the complete quotient at any stage by &.
‘We have seen that

& = aupu—l +p--—’ .
. qu al QI—I + q'-jl ’
let the continued fraction be denoted by a ; then x differs from

Iqﬁ only in taking the complete quotient % instead of the paitial

_ q:xotient a,; thus

g iPusy +Pucy
kgu,+ 9.y

338. If ;—’: be the n't con'vergeﬁt to a continued fraction, then

Po 901 = Pa_yOn = (_ l)n._
Let the continued fraction be denoted by
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then

PuQur = Puy 1= (a'np-—l +P.5) 4 -1 " Pamy (a’u ur t qu-!)
= (— 1) (p-—l 9oy~ Puy 9-—1)
= (— l)' (P n-3Tn—3"Pa-s qu--s)’ similarly,
=(-1D""(p,9.—2 1)
But P -0 e=(aa,+1)—a,.a,=1=(—1);
hence Palur—Purqn=(-1)"

‘When the continued fraction is Jess than unity, this result will
still hold if we suppose that ¢, =0, and that the first convergent
is zero. .

Nore. When we are calculating the numerical value of the successive
convergents, the above theorem furnishes an easy test of the accuracy of the
work.

Cor. 1. Each convergent is in its lowest terms ; for if p, and
¢, had a common divisor it would divide p, ¢,_,—»,_, g,, or unity ;
which is impossible.

Cor. 2. The difference between two successive convergents is
a fraction whose numerator is unity ; for

Pu_Pai_ Palas~Paule_ 1
qn ’ 9-—1 qﬂ qu-l 9n q'\—l

EXAMPLES. XXV. a.
Calculate the successive convergents to

L ey Ty Iy TF 3

2 — — - = = =z )

S sy iy oy gy iy o

Express the following quantities as continued fractions and find the
fourth convergent to each.
253 5 832 1189 7. 129
179" © 159° " 3927 * 2318°

8, ‘37 9. 1139, 10, '3029. M. AWK,

4
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12, A metre is 39:37079 inches, shew by the theory of continued
fractions that 32 metres is nearly equal to 36 yards.

13. Find a series of fractions converging to ‘24226, the excess in
days of the true tropical year over 365 days.

14, A kilometre is very nearly equal to ‘62138 miles; shew that

the fractions 5 18 23 64

© Irackions g, g9 37° 108
ratio of a kilometre to a mile.

15. Two scales of equal length are divided into 162 and 209 equal
parts respectively; if their zero points be coincident shew that the
31* division of one nearly coincides with the 40t division of the other.

are successive approximations to the

16, f_M+=1 .o onverted into a continued fraction, sh
o ﬂ,+n2+n+l continu On, oW

that the quotients are n—1 and n+1 alternately, and find the suc-
cessive convergents.

17. Shew that

Pu+1=Pn-1_Pn
1) Lat17Pa-1 P
M Ins1—In-1 Gn’

@) p_.ﬁ_l) (1 _&-_-_1‘) = (Ints_ 1) (1 _q,._..:) .
DPn Pn+ In In+
18, If Pa ig the n: convergent to a continued fraction, and a, the
correspondin’é quotient, shew that

Prizdn-2~Pn-29n+2=Cn+3+Ops1: Ot Uyyg+ay.

339. Each convergent i nearer to the continued fraction than
any of the preceding convergents.

Let « denote the continued fraction, and a, Lasy | Pasy
q. 9u+l q.g.’

three consecutive convergents; then « differs from Puss only in
ntg

taking the complete (n + 2)™ quotient in the place of a_,.; denote
this by %; thus = Pas ¥ P
y ’ . kql+l + qu
~.P_n = k (pn+lq- - paQu'l-l) = k
9. 9.k +9)  g.(Rg.,t9)’
and Pars _ gy Pot1 80~ PuToss _ 1

Dut1 qu'l'l(kql-\-\-\‘ql)_ Qg . +¢)°
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Now % is greater than unity, and g, is less than ¢, ; hence on

both accounts the difference between Pusy and z is less than the
P

ntl

difference between =* and «; that is, every convergent is nearer

to the continued fraction than the next preceding convergent,
and therefore @ fortiori than any preceding convergent.

Combining the result of this article with that of Art. 335, it
follows that

the convergents of an odd order continually increase, but are
always less than the continued fraction ;

the convergents of an even order continually decrease, but are
always greater than the continued fraction.

340. To find limits to the error made in taking any convergent
Jor the continued fraction.

Let 5 ;’ At p “2t% be three consecutive convergents, and let
% denote the complete (n + 2)™ quotient;

_kp, P
then A n¥1 Ly n
Tkt

P _ k 1
= + = .
9, 4, (kg,,, +q,) q (9.“ +_qi)

Now k is greater than 1, therefore the difference between 2 and

Pa g less than ! , and greater than !

q. ' 9,94, +9,)

“ X~

Again, since ¢,,,>¢,, the error in taking %ﬂ instead of x is

1 1
less than P and greater than 5—- 7

» n+l

341, From the last article it appears that the error in

1
ta.kmg » instead of the continued fraction is less than - -
» niatl

or S S ; that is, less than 5; hence the larger
q- (au+l q. + QQ—I) a'u-HQn

a,,, is, the nearer does 2y approximate to the continued fracdiony,
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therefore, any convergent which immediately precedes a large
quotient i8 a near approxvmation to the continued fraction.

Again, since the error is less than i, , it follows that in order
to find a convergent which will differ from the continued fraction
by less than a given quantity é, we have only to calculate the

successive convergents up to % , where ¢ ? is greater than a.

342. The properties of continued fractions enable us to find
two small integers whose ratio closely approximates to that of
two incommensurable quantities, or to that of two -quantities
whose exact ratio can only be expressed by large integers.

Ezample. Find a series of fractions approximating to 3:14159.

In the process of finding the greatest common measure of 14159 and
100000, the successive quotients are 7, 15, 1, 25,1, 7, 4. Thus

1 1 1 1 1 11
3-14159=3+7—; Biis BT 7rd
The successive convergents are
3 2 88 85
1’ 7° 106° 113’ !
this last convergent which precedes the large quotient 25 is a very near
approximation, the error being less than éﬁ(llﬁjﬂ’ and therefore less than

1
35 (100y* O 000004

343. Any convergent is nearer to the continued fraction tham
any other fraction whose denominator is less tham that of the

convergent.

Let x be the continued fraction, &, Pacy two consecutive

convergents, E a fraction whose denominator s is less than ¢,.

If possible, let ; be nearer to z than %, then gmust be

nearer to « than 2= [Art, 339]; and since x lies between £» and
n—1 L]
Pn—l

, 1t follows that T must lie between £= and Pa=1 |
s q. Qo
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Hence

TPas Pa Pacy ot is <
8 q.—l qu qu—l qn qu—l

-

8
" I"QI— ~ ll—l < ; H

that is, an integer less than a fraction; which is mpossxble

Therefore 2, must be nearer to the continued fraction than T

344. If B, %, be two consecutive convergents to a continued

JSraction x, then qq 18 greater or less than x*, according as g 8

U

greater or less tkan'fl—),.

Let % be the complete quotlent corresponding to the con-
k' +p
ke +q’

. ’q’-'q’, —af= m, {pp’ (kg +9)" - q¢’ (kp’ + p)*}

vergent immediately sucoeedmg 7 ; then z=

_®p'q -pq) (e’ ~P'9)
9¢ (k' +9)°
The factor &°p'q’ — pq is positive, since p'>p, ¢’ >¢, and k> 1;

hence Iq)—z, > or <z, according as pg’ —p'q is positive or negative ;

’

that is, according as g- >or < Iq_)'

Cor. It follows from the above investigation that the ex-
pressions pq’' —p'q, pp’ 99 %, p* - q’a: ¢"*x® — p'* have the same
sign.

EXAMPLES., XXV. b.

1. Find limits to the error in taking ;'—(2):-23 yards as equivalent to
a metre, given that a metre is equal to 1°0938 yards.
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2. Find an approximation to
1453 5% 75 6% 0T
which differs from the true value by less than ‘0001.

3. Shew by the theory of continued fractions that dlﬂ'ers from

70

1
1'41421 by a quantity less than {1830 °
a3+6a2+13a+ 10

4 Express o 6w+ 14ab+ 160 +7
find the third convergent.
5. Shew that the difference between the first and n** convergents
is numerically equal to
1_1,1 (e

A
6. Shew that if @, is the quotient corresponding to p 2,

as a continued fraction, and

1 1 1 1 1 1
1) Pn_ s —— =
M Pn a“+au—1+ Oy-gt Gn_g+ as+ ast+ a;’
n 1 1 1 1 1
2 =ay + oo ——  —.,
@ a1 ¢ Gnegt G gt Gpgt a3+ ag

1.1 1
at+ a+ a+ a+
1) Pu2+P*u+1=Pn-1Pn+1+PnP.+z,

() Pu=¢n-1-

7. In the continued fraction veeeesy Shew that

8. IfPristhe nw convergent to the continued fraction

9
1 1 1 1
a+5— '—"b G+b+ ...... )

a
shew that Im=Pm+1y Im-1=7F Pon-

9. In the continued fraction
1 1 1

at+ b+ at

T
—

shew that
Pu+a2— (@D +2) Pyt Pu—3=0, gni3—(ab+2)gu+gy—g=0.
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10. Shew that

283

1 1 1 .
a (xl+m ‘”3_"' prprali to 2n quotlents)
1 1 1 .
=az+ — BF ant mE to 27 quotients.
11, If J]}V{’ z s I'St, are the n't, (n— 1) (n—2)* convergents to the
continued fractions
1 11 111 111
Gt GF BF Y G @t aF 7 G aF anE
respectively, shew that

M=a,P+R, N=(a,a;+1)P+a,R.

12, If p * is the n* convergent to

11 1
a+ a+ a4+ !

shew that p, and g, are respectively the coefficients of 2* in the

expansions of
4 az+z
l1-ax—2%? 1-az—a?’

Hence shew that p,‘=q,._1=“:: ]
equation 2~ at — 1=0.

13. 1f 2% s the convergent to

1 111
a+ b+ a+ b+ 7’

B , where a, 8 are the roots of the

shew that p, and ¢, are respectively the coefficients-of #* in the

expansions of
2+ba?— a3 and ax+(ab+1)22 — ot
1—(ab+2)a3+ a4 1—(ab+2)a?+ 24"

Hence shew that

apgy=bggy =ab 2 _g‘,
n+l__ +1_(gqn—
qu+x=92u=a B';_ﬁ( ﬂ“):

where a, 3 are the values of #? found from the equation
1 —(ab+2)m’+.z4=0.



CHAPTER XXVI
INDETERMINATE EQUATIONS OF THE FIRST DEGREE.

345. In Chap. X. we have shewn how to obtain the positive
integral solutions of indeterminate equations with numerical co-
efficients; we shall now apply the properties of continued fractions
to obtain the general solution of any indeterminate equation of
the first degree.

346. * Any equation of the first degree involving two un-
knowns  and y can be reduced to the form axsby=s ¢, where
a, b, ¢ are positive integers. This equation admits of an unlimited
number of solutions ; but if the conditions of the problem require
x and y to be positive integers, the number of solutions may be
limited. .

It is clear that the equation ax+dy=—c¢ has no positive
integral solution ; and that the equation ax — by = - ¢ is equivalent
to by — ax =¢; hence it will be sufficient to consider the equations
ax=by=c.

If a and b have a factor m which does not divide ¢, neither of
the equations axw by =c can be satisfied by integral values of =
and y; for ax = by is divisible by m, whereas ¢ is not.

If a, b, ¢ have a common factor it can be removed by division;
so that we shall suppose a, b, ¢ to have no common fa.ctor, and
that @ and b are prime to each other.

347. To find the general solution in positive integers of the
equation ax—by =c.

Let 1;! be converted into a continued fraction, and let% denote

the convergent just preceding %', then aq—bp ==1. [Art. 338.]
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I. If ag—bp =1, the given equation may be written
as — by = (ag — bp);
a(x—cq) =b(y - cp).
Now since @ and b have no common factor,  —cg must be

divisible by & ; hence x — cg = b¢, where ¢ is an integer,

T-oq_,_y-P,

b a
that is, x=bt+cq, y=at+cp;

from which positive integral solutions may be obtained by giving
to ¢ any positive integral value, or any negative integral value

numerically smaller than the less of the two quantities 9—;1, 2’;
a

also ¢ may be zero; thus the number of solutions is unlimited.

II. If ag-bp=-1, we have

ax— by =—c(ag-bp);
a(x+cq)=b(y+cp);
z+eg y+op
e

hence x=bt—cq, y=at—cp; -

={¢, an integer;

from which positive integral solutions may be obtained by gfving
to ¢ any positive integral value which exceeds the greater of the

two quantities 9 s %; thus the number of solutions is unlimited.

III. If either a or b is unity, the fraction % cannot be con-

verted into a continued fraction with unit numerators, and the
investigation fails. In these cases, however, the solutions may be
written down by inspection ; thus if 5=1, the equation becomes
ax—y=c; whence y=ax— ¢, and the solutions may be found by

ascribing to « any positive integral value greater than 2.
Nore. It should be observed that the series of values for z and y form

two arithmetical progressions in which the common differences are b and a
respectively. : :
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Ezample. Find the general solution in positive integers of 29z — 42y =5.

In converting ;% into a continued fraction the convergent just before g

is %; we have therefore
29x13-42x9=-1;
. 39x65-42x45=— 5;
combining this with the given equation, we obtain
29 (+65)=42 (y +45);

’ %26—5=M=t, an integer ;

29
hence the general solution is
z=43t - 65, y=29t-45.

348. Given one solution tn positive integers of the equation
ax — by = ¢, to find the general solution.
Let 4, k be a solution of ax—bdy=c; then ah —bk=c.
ax — by =ah—bk;
a(z—h)=b(y-k);
a:_;h= ya;k=t, an integer ;
oo w=h+bt, y=k+at;
which is the general solution.

349. To find the general solution in positive integers of the

equation ax+by=c.
Letg be converted into a continued fmction, and letg be the

convergent just preceding % ; then ag—bp=d1.

I Ifag—-bp=1, we have
@ + by =c (ag ~bp)
o a(eg—@)=b(y+ep);

cq—z_y+cp
——b =

oo x=cq—bt, y=at~cp;

=1, an integer;
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from which positive integral solutions may be obtained by giving
to ¢ positive integral values greater than %’ and less than %q .
Thus the number of solutions is limited, and if there is no integer
fulfilling these conditions there is no solution.

IL Ifag—bp=-1, we have
az +by =—c (ag - bp);
a(z+eg)=b(p-y);

x+cq cp- .
—b——q= pa y:t, an integer;

. x=bt—cq, y=cp—at;
from which positive integral solutions may be obtained by giving
to ¢ positive integral values greater than %q and less than % .

As before, the number of solutions is limited, and there may be
no solution.

III. If either a or b is equal to unity, the solution may be
found by inspection as in Art. 347.

350. Given ome solution in positive integers of the equation
ax + by =c¢, to find the general solution.
Let %, & be a solution of ax+ by =c; then ak +bk=c.
ax + by = ah + bk ;
a(@-h)=b(k-y);
a:%h = ka;y= ¢, an integer ;
x=h+bt, y=k—at;
which is the general solution.

351. T find the number of solutions in positive integers of the
equation ax + by =c.

Let ;—: be converted into a continued fraction, and let%, be the

convergent just preceding % ; thenag —bp=w 1.
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I. Let ag—bp=1; then the general solution is
x=cq—bt, y=at— cp. [Art. 349.]
Poz-ntlve integral solutions will be obta.med by giving to ¢
pomtlve integral values not greater than 2 3 and not less

than 2.
a

(i) Suppose that :1; and % are not integers.

V4

P _ °q_
Let a—m+f, 5 ="+9

where m, n are positive integers and f, g proper fractions; then
the least value ¢ can have is m + 1, and the greatest value is n;
therefore the number of solutions is

n—m= c—q— 9£+f— ——+f-—
Now this is an integer, and may be written a—b + a fraction, or

&% — a fraction, according as fis greater or less than g. Thus the

number of solutions is the integer nearest to :_I;’ greater or less
according as f or g is the greater.

i) Su e that _ is an inte er.
Ppos! ) 8!

In this case g =0, and one value of x is zero. If we include
this, the number of solutions is £+ /, which must be an in-
teger. Hence the number of solutions is the greatest integer in

;:ib +1 or aib , according as we include or exclude the zero solution.

(iii) Suppose that 2 is an integer.

In this case =0, and one value of y is zero. If we include
this, the least value of ¢ is m and the greatest is n; hence

the number of solutions is n—m+1, or a—‘;—y+ 1. Thus the
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number of solutions is the greatest integer in ‘% +1 or &, ac-

cording as we include or exclude the zero solution.

¢
b
In this case /=0 and g=0, and both  and y have a zero

value. If we include these, the least value ¢ can have is m, and
the greatest is n; hence the number of solutions is n —m + 1, or

iv) Suppose that ° and - are both integers.
ppo a g

aib +1. If we exclude the zero values the number of solutions is

(4
(Tb_l'

II. If ag—-dp= -1, the general solution is
w=bt —cq, y=cp—at
and similar results will be obtained.

352. To find the solutions in positive integers of the equa-
tion ax + by + cz = d, we may proceed as follows.

By transposition ax + by =d —cz; from which by giving to 2
in succession the values 0, 1, 2, 3,...... we obtain equations of
the form ax 4 by =¢’, which may be solved as already explained.

353. If we have two simultaneous equations
ax+by +cz=d, dx+by+cz=d,
by eliminating one of the unknowns, z say, we obtain an equation

of the form Az + By=C. Suppose that =/, y=g is a solution,
then the general solution can be written

_ x=f+Bs, y=g-—As
where s is an integer.
Substituting these values of x and y in either of the given

equations, we obtain an equation of the form Fs+ Gz=1/, of
which the ‘general solution is

s=h+@Gt, 2=k - Ft say.
Substituting for s, we obtain
z=f+Bh+ BGt, y=g— Ah—AGt;
and the values of x, y, 2 are obtained by giving to ¢ suitel\e
integral values.
H H A 9
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354. If one solution in positive integers of the equations
ax+by+ez=d, dx+by+cz=d,
can be found, the general solution may be obtained as follows.
Let f, g, h be the particular solution; then
af+bg+ch=d, af+bg+ch=d.
By subtraction,
a@-f)+b(y-g)+c(z-h)=0,
o (x—f)+b(y—g)+c' (z—h)=0;
whence
z—f _ y-g _ z-h _¢
b’ —bc ca' —ca ab—ab Kk’
where ¢ is an integer and % is the H.C.F. of the denominators
be' — b'c, ca’' — c'a, ab’ — a’b. Thus the general solution is

z=f+ (bc’—b’c)’%, y=g+(ca'—c'a)]£c, z=h + (ab’ — a'd) -’t;

EXAMPLES. XXVI.

Find the general solution and the least positive integral solution of
1 7z-Tlly=1. 2. 455z-519y=1. 3. 436z - 393y=5,

4, In how many ways can £1. 19s. 6d. be paid in florins and half-
crowns ?

5. Find the number of solutions in positive integers of
112+ 15y=1031.

6. Find two fractions having 7 and 9 for their denominators, and
such that their sum is 138.

7. Find two proper fractions in their lowest terms having 12

and 8 for their denominators and such that their difference is EIZ .

8. A certain sum consists of x pounds y shillings, and it is half
of y pounds # shillings; find the sum.
Solve in positive integers:
9. 6r+Ty+4:=122 10, 12r-1ly+42=22
1lr+8y—62=145) " —4x4 5Sy+ z=17}'
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11. 20z- 21y=38} 12. 13x+4112=103
3y+ 4s=34J" © Tz 5y= 4)°
13. 7Tr+4y+192=84. 14, 232+17y+112=130.

15. Find the general form of all positive integers which divided
by 5, 7, 8 leave remainders 3, 2, 5 respectively.

16. Find the two smallest integers which divided by 3, 7, 11 leave
remainders 1, 6, 5 respectively.

17. A number of three digits in the septenary scale is represented
in the nonary scale by the same three digits in reverse order; if the
middle digit in each case is zero, find the value of the number in the
denary scale.

18. If the integers 6, a, b are in harmonic progression, find all the
possible values of @ and b.

19. Two rods of e%ual length are divided into 250 and 243 equal
parts respectively ; if their ends be coincident, find the divisions which
are the nearest together.

20. Three bells commenced to toll at the same time, and tolled at
intervals of 23, 29, 34 seconds respectively. The second and third
bells tolled 39 and 40 seconds respectively longer than the first; how
many times did each bell toll if they all ceased in less than 20 minutes?

21. Find the greatest value of ¢ in order that the equation
72+ 9y =c may have exactly six solutions in positive integers.

22. Find the greatest value of ¢ in order that the equation
14z + 11y =c may have exactly five solutions in positive integers.

23. Find the limits within which ¢ must lie in order that the
equation 19z+14y=c may have six solutions, zero solutions being
excluded.

24, Shew that the greatest value of ¢ in order that the equation
az+by=c may have exactly n solutions in positive integers is
(n+1)ab—a—b, and that the least value of ¢ is (n—1)ab+a+b, zero
solutions being excluded.

\—2



355. We have seen in Chap. XXYV. that a terminating con
tinued fraction with rational quotients can be reduced to ar
ordinary fraction with integral numerator and denominator, anc
therefore cannot be equal to a surd; but we shall prove that ¢
quadratic surd can be expressed as an infinite continued fractior

whose quotients recur. We shall first consider a numerica

example.

Ezample. Express \/19 as a continued fraction, and find a series o

CHAPTER XXVIIL

RECURRING CONTINUED FRACTIONS.

fractions approximating to its value.

3

;\/19=4+(~/19—4)=4+ .

19 +4
5/%1=2+

Ji9+4

J19-2 . 5
5 —2% yigye’
V19-8_ 2

J195+2=1+

5 J19+3’
J19-3 5

Jl&;+3=3+

Jl9+3=1

PR UL

19 —
A/19-2 3

=14

5
Jl9+2=2+

5 J19+2°
N19 -4 1

3
J19+4=8+

g =2+

W19-4)=8+.covrrnnnen.

after this the quotients 2, 1, 3, 1, 2, 8 recur; hence

always the case.

NJ19=4+

24+ 1+ 3+ I+ 2+ 8+ "

It will be noticed that the quotients recur as soon as we come to
guotient which is double of the first. In Art. 361 we shall prove that this i
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[Ezplanation. In each of the lines above we perform the same series of
operations. For example, consider the second line: we first find the
~/19+

greatest integer in ; this is 2, and the remainder is

i 419—2.

We then multiply numerator and denominator by the surd

conjugate to \/19 — 2, so that after inverting the result

J19 g Ve begin a
new line with a rational denominator.]

The first seven convergents formed as explained in Art. 336 are
é 9 ];3: 9 61 170 1421
1’2 8’11’ 14’ 39° 326'

The error in taking the last of these is less than ., , and is therefore

(326)’
(320), or 1021400, and a fortiori less than °00001. Thus the
seventh convergent gives the value to at least four places of decimals.

less than ——,

356. Every periodic continued fraction is equal to one of the
roots of a quadratic equation of which the coefficients are rational.

Let 2 denote the continued fraction, and y the periodic part,
and suppose that

R TS SR S U

r=a brey E+ kv ?—/,

1 1 11

and y:—'m"'—_ ...... ST T Ty
n+ u+ v+ y

where a, b, c,...h, k, m, n,...u, v are positive integers.

Let g, 2 be the convergents to « corresponding to the

quotients A, & respectively; then since y is the complete quotient,

we have x—py p’ whence y = [ qac
qy+yq qz-p"

Let g, :;, be the convergents to y corresponding to the

. . ry+r
quotients %, v respectively ; then y= Tye

Substituting for y in terms of x and simplifying we obtain =
quadratic of which the coefficients are rational.
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The équation &y*+ (8—r)y—r=0, which gives the value of
y, has its roots real and of opposite signs ; if the positive value of

y be substituted in a:—:-}; ,:; :I; , on rationalising the denominator
A+ ,/B
C

B being positive since the value of y is real.

the value of « is of the form , where 4, B, C are integers,

) 1 1 1 1
Ezample. Express1+2+ 3+ 3+ 3+

Let z be the value of the continued fraction ; then z - 1=
whence 222 + 2z - 7=0,
The continued £ra;c/t10n is equal to the positive root of this equation, and
15 1
2

.. a8 a surd.

1 1 .
2+ 8+4(z-1)’

is therefore equal to

EXAMPLES. XXVIIL. a.

Express the following surds as continued fractions, and find the
sixth convergent to each:

1. V3. 2. 5. 3. 6. 4. 8.
5. J1L 6. W13. 7. Ji4. 8. 22
9. 2./8. 10, 4,/2. 11, 3,./5. 12. 410
1 1 6 7
18 - M g 15. J - URVAS
17. Find limits of the error when % is taken for 4/17.

18. Find limits of the error when 2 m is taken for ,/23.

Find the first convergent to 4/101 that is correct to five places
of decimals.

20. Find the first convergent to 4/15 that is correct to five places
of decimals.

Express as a continued fraction the positive root of each of the
following equations:
21. #*+22-1=0. 22, 22-4r-3=0. 23, 722-8x-3=0.
24, Express each root of #2—5x+3=0 as a continued fraction.
1 1
6 +6+ 6+
1 1 1

26. Find the value of i13sis

25. Find the value of 34—

+
WI-—«
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1 1 1 1 1
Find the value of —_—
27. Fin e value of 34 T+ 83+ 1% 24 33
. 1 1 1 1
28. Find the value of 5+ l_+ 17 iF o7
29. Shew that
1 1 1 1 1 1 1 1
3+ﬁ'é—;ﬁﬁ---—3<l+3+2+3+2_+ ------ )-
30. Find the difference between the infinite continued fractions
1 1.1 1 1 1 1 1 1 1 1 1

1+ 34+ b6+ 1+ 3+ 5+"" 3+ 1+ 5+ 3+ 1+ 5+

*357. To convert a quadratic surd tnto a continued fraction

Let N be a positive integer which is not an exact square,
and let @, be the greatest integer contained in ,/N ; then

JV=a,+(J/N-a)= a+JN if'rl=N—a,’.

Let b, be the greatest integer contained in _5/&? '; then

7
JN+“.=b+JN—b.Tn+“. JN a, b+ T,
LA ! T b+ L «/N“'“n

where a,=br,—a andr r.=N-al

Similarly

,\/AV"" a,, ,\/N a, b -
7, b+ e JN +a,
where a,=br,—a and rr,=N-apj;

and so on; and generally

L‘Z“_a'ﬂ =b +_‘}/N—a- T
r n=1

- — ~/N'G ;
where a,=b_r,_,—a,_ andr,_7,=N—-a?
o1 1.1
b+ b+ b+ b+ T ’
and thus ,/N can be expressed as an infinite continued fraction.

=b,_, +

Hence JN=a,+

We shall presently prove that this fraction consists of re-
curring periods; it is evident that the period will begin when-
ever any complete quotient is first repeated,
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- 'We shall call the series of quotients
W, JV+a, JN+a, JN+a,
’ r ry ' r,

the first, second, third, fourth...... complete quotients.

......

*358. From the preceding article it appears that the quan-
tities a,, 7, b,, b,, b,...... are positive integers; we shall now prove
that the quantities a, a, a,, ...... y Ty Ty T, ...are also positive in-
tegers.

"

Letlé s %, 7 be three consecutive convergents to ./, and
let]q)—,, be the convergent corresponding to the partial quotient b,

The complete quotient at this stage is M!-; hence
7

,JN+a_ , i
P P YN+ap +rp

r'
A= S+e, o CSV+ag+rg’
7,

Clearing of fractions and equating rational and irrational

parts, we have
ap' +rp=N¢, ag +rg=p’;
whence a, (pg' - p'q) =pp’ - 9¢'N, r.(pq -p'9) = Ng" -p".

But pg' —p'q==1, and pq¢' —p'q, pp'—q¢' N, Nq'* —p™ have
the sam